Föreläsning 11: Grafer, isomorfi, konnektivitet
|
|
- Ann-Marie Lindqvist
- för 7 år sedan
- Visningar:
Transkript
1 Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns n knt mlln u oh v. Dss är å änpunktr v. Grn v tt hörn v, g(v), är ntlt kntr som hr v som änpunkt. Hnskkningstormt: För G = (V,E) gällr 2 E = v V g(v) Ty vrj knt irr två gångr till summn v hörngrrn. Exmpl: Om n grf hr fm hörn, kn vrj hörn h gr tr? Gr fyr? För gr tr är summn 3 5 = 15, vs u oh ärför omöjligt. För gr fyr är summn 4 5 = 20, så möjligt om grfn hr 10 kntr. Spill nkl grfr Kompltt grfr, K n : nkl grfr m n hörn oh n knt mlln vrj pr v hörn. För mximum runns i lokl nätvrk (LAN) oh prossorkopplingr i prllll mskinr. K 5 är n nklst ik-plnär grfn, n kn int rits i plnt utn tt kntr skär vrnr. Cyklr, C n är n grf m n hörn i n ykl. LAN konfigurrs iln som ring-nätvrk. Hjul, W n : r tt hörn till C n oh kntr från vrj hörn till ny hörnt. Gr runns i LAN. n-kur, Q n : grf m 2 n hörn rprsntrn itsträngr v läng n. Hr knt mlln två hörn som skiljr i n itposition. Vnligt sätt tt koppl ihop prllll prossorr, t x Intl Hypru
2 Biprtit grfr Grf G är V kn ls upp i två isjunkt lmängr V 1 oh V 2 så tt vrj knt i G förinr tt hörn i V 1 m tt hörn i V 2. Os: t finns ing kntr mlln hörn i V 1 llr mlln hörn i V 2. En iprtit grf är kompltt om t finns n knt från vrj hörn i V 1 till vrj hörn i V 2. Btkns K m,n, är m = V 1, n = V 2. Exmpl: V 1 = stuntr på DAT501, V 2 = uppgiftr tt lös. Kntr ngr löst uppgiftr. Exmpl: Ett stjärnnätvrk är n iprtit grf K 1,n. Här m n = 4: Exmpl: C k är iprtit för jämn k: lägg hörn m jämn nummr i V 1, hörn m u nummr i V 2. Är följn grf iprtit? Om V 1 så måst,, V 2 (Vrför?) Då kn plrs i V 1 utn konfliktr. Gnom tt rrngr om grfn rhålls K 2,3 : Ny grfr från gml (W,F) är n lgrf v G = (V,E) om W V oh F E. Om G 1 oh G 2 är nkl så är G 1 G 2 = (V 1 V 2,E 1 E 2 ) okså nkl. Exmpl: Konstrur unionn v grfrn G 1 oh G 2 nn. f f g g 2
3 Grfrprsnttion oh isomorfi Vill kunn vgör om två grfr är intisk, ortstt från numrring v hörn. För tt rprsntr grfr nväns närhtsmtrisr A: A ij = 1 om t finns knt från hörn i till hörn j (vs, i oh j är grnnr), nnrs A ij = 0. Exmpl: Närhtsmtrisr för två grfr G 3 oh G 4 u1 u2 v5 v1 v2 v3 u5 u4 u3 v4 G 3 = , G 4 = Enkl grfr G 1 = (V 1,E 1 ) oh G 2 = (V 2,E 2 ) är isomorf omm t xistrr n ijktion f : V 1 V 2 för ll u oh v i V 1 gällr tt om u oh v är grnnr i G 1 så är f(u) oh f(v) grnnr i G 2 Os: Dtt är svårt tt vgör gnrllt. För tt vis isomorfi måst vi normlt konstrur f. Invrintr som G 1 oh G 2 måst h gmnsmm för tt vr isomorf: smm ntl hörn smm ntl kntr grr v motsvrn hörn måst vr smm om n grf är iprtit måst n nr vr t om n är kompltt måst n nr vr t, t. Exmpl: Avgör om grfrn G 3 oh G 4 ovn är isomorf. hr smm ntl hörn = 5, hr smm ntl kntr = 8 oh hr lik mång hörn v smm gr: tt m gr 2, två m gr 3 oh två m gr 4. försök hitt isomorfin f mh hörngrrn: g(u 3 ) = g(v 2 ) = 2, så f(u 3 ) = v 2 är n möjlightn g(u 1 ) = g(u 5 ) = g(v 1 ) = g(v 4 ) = 3, så ntingn (i) f(u 1 ) = v 1 oh f(u 5 ) = v 4, llr (ii) f(u 1 ) = v 4 oh f(u 5 ) = v 1 Knsk fungrr å möjlightrn. 3
4 Slutlign, g(u 2 ) = g(u 4 ) = g(v 3 ) = g(v 5 ) = 4, så ntingn (i) f(u 2 ) = v 3 oh f(u 4 ) = v 5, llr (ii) f(u 2 ) = v 5 oh f(u 4 ) = v 3 Pröv först m (i) i å flln: 3 2, 1 1, 5 4, 2 3, 4 5. Avil hörnn i G 3 nligt funktionn för tt rhåll G 4 : v1 v3 Därm är G 3 oh G 4 isomorf. v4 G 4 = Notr tt t är joigt tt koll isomorfi för hn! v v2 = G 4 I xmplt finns tr möjlig prmuttionr till. V hänr t x om vi försökr öp om hörnn nligt ltrntivn (ii) ovn? Konnktivitt (smmnhng) Finns väg v 0,v 1,...,v n från hörn v 0 till hörn v n om t finns kntr som förinr hörnn i skvnsn, oh som kn följs från v 0 till v n. Vägns läng är n. Cykl innär tt vägn örjr oh slutr i smm hörn. Enkl väg innhållr ingn knt mr än n gång. Dt är oft ointrssnt tt trvrsr n knt frm oh tillk tt gotykligt ntl gångr. Exmpl: i G 3 ovn finns t mång vägr frånu 1 till u 3 : 1. u 1,u 4,u 2,u 3 : nkl väg v läng 3 2. u 1,u 5,u 4,u 1,u 2,u 3 : nkl väg v läng 5 som innhållr ykln u 1,u 5,u 4,u 1 3. u 1,u 2,u 5,u 4,u 3 : nkl väg v läng 4 En nkl grf är smmnhängn om t finns n väg mlln vrj pr v hörn. Smmnhängn komponntr (llr r komponntr) är mximl smmnhängn lgrfr v G. Om mn kn stryk tt hörn (oh ll nslutn kntr) oh prour n grf m flr komponntr, klls hörnt n rtikultionspunkt. Om strykningn v n knt skpr flr komponntr klls kntn n ro. Exmpl: I tt stjärnnätvrk är ntrumnon n rtikultionspunkt. All kntr är ror. Exmpl: I G 1 oh G 2 på sin 2 är vrj knt n ro. I unionn G 1 G 2 finns ingn ro. Hörnt är rtikultionspunkt i ll tr grfrn. 4
5 Vägr oh isomorfi Isomorf grfr måst h isomorf vägr. Om n grf hr n nkl ykl v läng r, så måst n nr grfn okså h t. Givt närhtsmtrisn M för grfn G så ngr (i,j) i M r ntlt vägr v läng r från hörn i till hörn j. M r är vnlig potns v M, int oolsk proukt. Bvis v tormt följr nn. Först tt Exmpl för G 3 ovn: M = , M2 = Bvis m inuktion. Bs: snt för vägr v läng 1, nligt närhtsmtrisn , M3 = Inuktionshypots: Antg M r (i,j) är ntlt vägr v läng r från hörn i till hörn j. Notr tt M oh ll ss potnsr är symmtrisk. Vis tt M r+1 (i,j) är ntlt vägr v läng r + 1 från i till j Dt gällr tt n M r+1 = M r M oh M r M(i,j) = M r (i,k)m(k,j) k=1 är M r (i,k)m(k,j) är ntlt vägr v läng r + 1 från i till j vi hörnt k. Så totl ntlt vägr v läng r + 1 från i till j rhålls gnom tt r ntlt vägr vi ll möjlig mllnhörn k. 5
v v v v 5 v v v 4 (V,E ) (V,E)
. Grftori Btylsn v ilr som stö oh inspirtion för mtmtisk rsonmng kn knppst övrsktts. Stuirn v nkl ilr hr gtt oss grftorin. Tyvärr, llr lykligtvis, visr t sig snt tt nkl oh nturlig frågställningr om nkl
Läs merAlgoritmer och datastrukturer, föreläsning 11
Aloritmr oh tstrukturr, förläsnin Dnn förläsnin hnlr rfr. En rf hr n män nor (vrtx) oh n män år (). Ett xmpl är: A E F B D G H C Z Dnn rf hr följn män v nor: {A, B, C, D, E, F, G, H, Z Dn hr följn män
Läs merUppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Noder (hörn) och bågar (kanter)
Grfer Jokim Nivre Uppsl universitet Institutionen för lingvistik oh filologi Översikt Grunegrepp: Noer (hörn) oh ågr (knter) Grfteoretisk egrepp: Stigr oh ykler Delgrfer oh smmnhängne grfer Rikte oh orikte
Läs merLaboration 1a: En Trie-modul
Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr
Läs merNordic Light Roulett. Aluminiumpersienn. Nordic Light Roulett Installation - Manövrering - Rengöring. Aluminiumpersienn
INSTALLATION - MONTERING - RENGÖRING Originlokumntt får int i txt llr utförn änrs utn mgivn v Turnils AB. www.nori-light.om Nori Light SE-441 15 Alingsås, Swn Tl: +46-322 775 00 E-mil: orrurop@turnils.om
Läs merF8: Logiska komponenter. Introduktion. Koder. Avkodare. Logiska komponenter
Innhåll: - Avkor - Diitl kor - 2-4 vkor - 7-smnts isply - Kor - Multiplxr - Dmultiplxr F8: Loisk komponntr Loisk komponntr Introuktion Dt är növänit tt skp mr komplx ylok än runlän rinrn (n, or, not) som
Läs merMaking room for tomorrow
Byggnsgui Byggnsgui 2013 Byggnsgui 2013 Innrvägg Allmänt 4-5 Sknor oh rglr 6-7 Montg 8-9 WllClik 10-11 Typr oh gruppr 12-15 Väggnyklr 16-21 Typövrsikt 22-25 Väggruppr C 26-65 Väggruppr C+ 66-93 Väggruppr
Läs merThe Next Generation platform Snabbguide
Sngui Vi hr skpt nn sngui för tt u på tt nklt sätt kn knt ig m mång v vår vrktyg oh funktionr i vår plttform. Lär ig vr u hittr prouktr tt hnl, nyhtr, grfr, plr olik Orrtypr, övrvk in positionr, liv-hjälp
Läs merMitt barn skulle aldrig klottra!...eller?
Mitt brn skull ldrig klottr!...llr? trtgi! ls n n tu n g n r h y Täb g och in sn ly b, g in n k c y m ts Gnom u i lyckts v r h l ri t m t g li å rt klott unn. m m o k i t r tt lo k sk in m Hjälp oss tt
Läs merElementær diskret matematikk, MA0301, våren 2011
Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = 9 8 7 6 På liknan sätt får vi att t
Läs merTillståndsmaskiner. Moore-automat. Mealy-automat. William Sandqvist
Tllstånsmsknr Moor-utomt Mly-utomt Wllm Snvst wllm@kth.s ÖH. Bstäm tllstånsrm oh tllstånstll ör skvnskrtsn. Vlkn v mollrn Mly llr Moor pssr n på krtsn? Wllm Snvst wllm@kth.s . Ur krtsshmt kn öljn smn ställs
Läs merFinaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Läs merRobin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Läs mer1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter
Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn
Läs merf(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
Läs merH1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.
H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen
Läs merF5: Vektorer (Appendix B) och Vektormodulation (Kap PE 2)
F5: korr Appnd B oh kormodlon Kp PE g välrkr - Norml nl n nrlldrn g välrkr -S-p g välrkr -PWM Modlon v omvndlr - + R L C d + d Fgr.8: Dn ndrök omvndlrn yrd lkrkr nln ll nä Fgr.9: Bärvågmodlon md nformg
Läs merHeadset för det Mobila kontoret
Hdst för dt Mobil kontort Dt t r o t n o k mobil Plntronics strtd 1962 och hr sdn dss nbrt inriktt sig på tt utvckl br kommuniktionshdst. Idg är Plntronics världsldnd på hdst och hr tt brtt utbud v hdst
Läs merTentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Läs merSF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Läs merVATEK Multifix kopplingar för alla rörtyper
Vtk_logo_cmyk-2012.pf 1 2011-11-25 13.09 VATEK Multifix kopplingr för ll rörtypr VATEK MULTIFIX ÄR EN SERIE rgfst rörkopplingr för ll typr v rör till å vttn och gslningr. Kopplingrn introucrs i Svrig v
Läs merEtt förspel till Z -transformen Fibonaccitalen
Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.
Läs merVill veta kvaliteten hos våra vattenföringsdata?
Vll vt kvlttn hos vår vttnförngsdt? Bnt Görnsson, G Bo Toms Lndlus, FoU //9 Bkgrund - gnomförd v n stud för tt tst någr xmpl på noggrnnhtskrv på Bo:s Q-dt En v Bo:s huvuduppgftr är tt t frm kvlttskontrollrd
Läs merDatastrukturer och algoritmer
Innhåll örläning oh 9 Priorikör rfr oh grflgorimr Kommr forä in på nä förläning Kpil.5- oh 7 i kurokn Priorikö Spifikion v priorikö Moll: Pinrn på n kumogning, mn kommr in i n vi iorning mn hnl uifrån
Läs merSvar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y
Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE
Läs merUppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Läs merTrädstrukturer. Definitioner och terminologi. Informationsteknologi Tom Smedsaas 21 augusti 2016
Iformtiostkoloi Tom Smss uusti 6 Trästrukturr Dfiitior och trmioloi I list hr vrj o xkt ftrföljr (utom sist) och förår (utom först). Om vi tillåtr tt o hr flr ftrföljr rhållr vi trästruktur: c f h i j
Läs merInstallatörens referenshandbok
Instlltörns rfrnshnok Dikin Althrm - lågtmprtur Split + ERHQ011-014-016BA ERLQ011-014-016CA EHVH/X11+16S18CB EHVH/X11+16S26CB Instlltörns rfrnshnok Dikin Althrm - lågtmprtur Split Svnsk Innhåll Innhåll
Läs merLINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Läs merFöretagens synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll
Förtgns synpunktr på skttsystmt, skttfuskt oh Skttvrkts kontroll Rsultt från n riksomfttn unrsökning vårn Rpport :3 1 2 Föror Skttvrkt gör rglunt mätningr v morgrns oh förtgns syn på skttsystmt, skttfuskt,
Läs merSEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Läs merKontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Läs merHittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Läs merSF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Läs merTentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.
Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.
Läs merKontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
Läs merVolym och dubbelintegraler över en rektangel
Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =
Läs merGeometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?
Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde
Läs merRäkneövning 1 atomstruktur
Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren
Läs merLINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Läs mer24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Läs merKaffe 5 kr Bulle 5 kr Kaffe och bulle 8 kr
Exmpl Som knt gällr tt sts Exmpl Följnd skylt finns på tt cfé Pythgors sts Arn Södrqvist, KH-Syd 3 + 4 = 5 Likhtn kn tolks som n mnifsttion v Pythgors Kff 5 kr Bull 5 kr Kff och ull 8 kr Likhtn 5+ 5= 8
Läs merUppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Läs merACO VVS. industribrunn. EG Industribrunn
CO VVS inustrirunn EG 170 270 Inustrirunn CO Stinlss Systmövrsikt skrivning nvänningsområn Egnskpr Tr stnrprogrm m runnr, gllr, silkorgr, vttnlås smt tillhör ör olik lstningskrv oh golvtypr som normlt
Läs merGeneraliserade integraler
Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst
Läs merT-konsult. Undersökningsrapport. Villagatan 15. Vind svag nordvästlig, luftfuktighet 81%, temp 2,3 grader
Unersökningsrpport Villgtn 15 Vin svg norvästlig, luftfuktighet 81%, temp 2,3 grer Dtum: 2011-12-19 Beställre: Sven Svensson Kmeropertör: Tom Gisserg Aress Telefon E-post Hemsi Spikrn 152 070 338 47 70
Läs merOperativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik
Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet
Läs merInnehåll. Om gasfjädrar 1. Modeller (1 dan = 1 kgf = 2.25 lbf) Cylinder. Initialkraft dan. diameter mm < 250 < 500 250 < F INIT < 750 500 < F INIT
DO NOT OPEN - HIGH PREURE. FIING PREURE MAX 150 BAR. PROTECT AGAINT DAMAGE. TRÖMHOMEN AB, Box 216, E-573 23 T rnås, wdn T l. +46 140 571 00, T lx +46 140 571 99 DO NOT OPEN FIING PRE PROTECT AGA TRÖMHOMEN
Läs merξ = reaktionsomsättning eller reaktionsmängd, enhet mol.
Kemisk jämvikt. Kp. 6.1 4. Spontn kemisk retion: r G < 0, p konst, T konst. Jämvikt där G hr minimum i syst. Kinetiken (hög ktiveringsenergi) kn hindr. 6.1 Minimet i Gibbs fri energi. (p konst, T konst.)
Läs merInduktion LCB 2000/2001
Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n
Läs merDär a mol av ämnet A reagerar med b mol av B och bildar c mol av C och d mol av D.
1 Kemisk jämvikt oh termoynmik Vi en kemisk rektion omvnls en eller fler molekyler från en form till en nnn. Mång olik typer v kemisk rektioner hr ren reovists uner kursen. För tt eskriv v som häner vi
Läs merSats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b
Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:
Läs merSammanfattning av ALA-B 2007
Crl-Mgnus Trä t7 Smmnttning v L- 7. Ordinär dirntilkvtionr (ODE). Först ordningns homogn ODE.... ndr ordningns homogn ODE.... Inhomogn kvtionr.... Sprl vrilr 5. Intgrrnd ktor 6. En ltrntiv örskjutningsrgl.
Läs mer13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Läs merTrigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Läs merGör slag i saken! Frank Bach
Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn
Läs merV Ä G E N T I L L V A T T E N w w w. a v a n t i s y s t e m. s e
VÄGEN TILL VATTEN v n i y m Vn vi in kn J ordn vnillgångr är norm, mn Grundvn är n dl v vn räknr mn bor nö, i och lvn blir vig krlopp d br 3% kvr för vår vnförörjning När yvn rängr nd i mrkn rn d och blir
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.
Läs mer24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Läs merUppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7 e 8, HF oh HF8 Moment: TEN Lnjär lger, hp, skrftlg tentmen Kurser: Lnjär lger oh nlys HF oh Anlys oh lnjär lger, HF8, Klsser: TIELA, TIMEL, TIDAA T: 8-, Plts: Cmpus Flemngserg Lärre: Mr Shmoun
Läs merStyleView Scanner Shelf
StyleView Scnner Shelf User's Guide Mximl vikt: 2 ls ( kg) SV-vgn & Huvud-enhet Alterntiv - LCD-vgnr Alterntiv 2 - Lptop-vgnr Alterntiv 3 - Väggspår Alterntiv 4 - Bksid v SV-vgn 3 6 7 Reduce Reuse Recycle
Läs merSamling av bevis som krävs på tentan MVE465, 2018
Smling v bevis som krävs på tentn MVE5, 8 Meelväresstsen för integrler. Det är Theorem, på si. i Ams. Lecture, si. -8 Om f är en kontinuerlig funktion på intervllet [; b], så nns et en punkt c [; b] sån
Läs merProduktdatablad Januar 2016
Pmium Sufc P565-5701, P565-5705 & P565-5707 Poukttbl Jnu 2016 INTERNATIONELLT MASTERDOKUMENT, ENDAST FÖR PROFESSIONELLT BRUK H5680 Poukt Sp Sufc P565-5801, P565-5805 & P565-5807 Bkivning P565-5801 Sp Sufc
Läs merSammanfattning, Dag 9
Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet
Läs merKmerobjektiv oc elokusering Zoomobjektiv Ett kmerobjektiv sk normlt vbil ett objekt som beinner sig på någr meters vstån på en ilm i en krtig örminskning. Det innebär tt okllängen på et objektiv mn sk
Läs merTryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Läs merORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Läs merLödda värmeväxlare, XB
Lödd värmeväxlre, XB Beskrivning/nvändning XB är en lödd plttvärmeväxlre utveckld för nvändning i fjärrvärmesystem t ex, luftkonditionering, värme, tppvrmvtten. XB lödd plttvärmeväxlre tillverks med fler
Läs merKan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Läs merUlefos Multifi x Rörkopplingar för alla rörtyper
Ulfos Multifi x Rörkopplingr för ll rörtypr ULEFOS MULTIFIX är n sri rgfst rörkopplingr för ll typr v rör. För gs välj pckning v NBR. Kopplingrn introucrs i Svrig v Ulfos i slutt v 90-tlt och hr sn ss
Läs merVilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Läs merDagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer
Dgens ämnen Repetition: kvdrtisk former oh ndrgrdskurvor Andrgrdsytor System v differentilekvtioner Rng, signtur oh tekenkrktär Sts 9.1.11. Låt Q: E R, dim E = n vr en kvdrtisk form. Då gäller λ min u
Läs mer14 Spelteori Två-personers nollsummespel och konstantsummespel: sadelpunkt
14 Spelteori 14.1 Två pers nollsummespel: sdelpunkt 14.2 Två pers nollsummespel: rndomiserd strtegi, dominns, grfisk lösning 14.3 LP och nollsummespel 14.4 Två personer - icke konstnt spel. 14.5 Intro
Läs merTentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Läs mer14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Läs merIntegralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Läs merKurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
Läs merMalmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa
Läs merInnan du kan använda maskinen ska du läsa den här Snabbguiden så att maskinen ställs in och installeras på rätt sätt.
Sngui Strt här MFC-6890CDW Innn u kn nvän mskinn sk u läs n här Snguin så tt mskinn ställs in oh instllrs på rätt sätt. VARNING Tlr om hur u sk gör för tt förhinr prsonskor. Anslut INTE USB-kln ännu (om
Läs merIntegraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
Läs merUttryck höjden mot c påtvåolikasätt:
Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:
Läs merTENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor
ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs
Läs merLÖSNINGAR TILL PROBLEM I KAPITEL 2
LÖNINGR TILL RLEM I KITEL L. Kftn h stolkn. Dss iktning ltivt koodintln ä också känd och givn v vinkln. Kftns - komponnt ä då sin, mdn - komponntn ä cos. Vi kn skiv kftn på vktofom: + sin cos ll komponntfom
Läs merKurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab. Kurvanpassning jfr lab. Kurvanpassning innebär approximation. Kurvanpassning jfr lab
Kurvnpning Beräkningvetenkp II Punktmäng > pproimerne unktion Finn olik ätt tt pproimer me polynom Prolem me hög grtl kn ge tor kt Från lortionen, olik Mtlkommnon: [ 9 ]; y [ ]; linpe,; % kp -el p polyit,y,
Läs merMedborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll
Morgrns synpunktr på skttsystmt, skttfuskt oh Skttvrkts kontroll Rsultt från n riksomfttn unrsökning vårn Rpport :1 1 1 2 2 Föror Skttvrkt gör rglunt mätningr v morgrns oh förtgns syn på skttsystmt, skttfuskt,
Läs merAssociativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Läs merTentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Läs merVirkessortiment. Tabell 9. Virkesåtgång löpmeter per kvm (exkl. spill) 18 Att välja trä
18 Att välj trä Virkessortiment Bygg- oh trävruhndeln hr ett rikt sortiment v virke i mång dimensioner oh v olik kvliteter. Idg efterfrågs främst hyvlde dimensioner. De dimensioner oh profiler som redoviss
Läs merSIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr
Läs merMateriens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
Läs merSPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN
Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR
Läs merDiskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Läs merBelöningsbaserad inlärning. Reinforcement Learning. Inlärningssituationen Belöningens roll Förenklande antaganden Centrala begrepp
Belöningsbserd Inlärning Reinforcement Lerning 1 2 3 4 1 2 3 4 Belöningsbserd inlärning Reinforcement Lerning Inlärning v ett beteende utn tillgång till fcit. En belöning ger informtion om hur br det går
Läs merICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)
Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir
Läs merdefinitioner och begrepp
0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs mer2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Läs merx 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Läs mer