ρ. Farten fås genom integrering av (2):
|
|
- Per Lundberg
- för 8 år sedan
- Visningar:
Transkript
1 LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt s = st + () D tgtill ccltio ä gi i txt: = s s = d t t = d t d dt = () Accltio i omliktig bstäms ligt () ft och kökigsdi. Ft fås gom itgig (): = t t + (3) Isättig i () md utyttjd () och (3) g t t tt = + = + ( ) t Accltios stolk ä lltså t = t + t = + 4 Spcillt fö t = 6 s, = 6 m och = m/s fås =. 44m/s 3. m/s.
2 LP 6.46 ω Accltio i dt tulig systmt gs dt llmä uttyckt s = st + () I dt hä fllt h i ciklöls md di (kökigsdi). Eftsom båglägd ä s=, så k ft och ftökig p tid uttycks i iklhstight: s =, s =. Accltios omlkompot klls oft fö ctiptlccltio: s = = = () ) Vid iss iklhstight = ω bli ctiptlccltio lik md d föski ccltio = g. Isättig i () g g = ω (3) g ω = Eht fö iklhstight ä d/s. Vtlt fås gom tt diid md π och multiplic md 6. Alltså, tlt p miut bli 6 π g Nämädt fö = 5. m och g = m/s bli 9 pm b) Om iklccltio ä kostt = α fås md itgig dfiitio på iklccltio dω α dt = ω = αt (7) Viklccltio bli lltså α g α = g t ω = t. Isättig iklhstight o ll α 33. d/s
3 LP 6.5 t Accltio i dt tulig systmt gs dt llmä uttyckt s = st + () Hä ts tågts ft kostt så tt och ṡ = = 36 km/h () ṡ = (3) Accltio ä då ligt k () ṡ = = Accltios stolk få ligt txt j östig ädt g. Dtt illko k skis g < ll g < ilkt g mist tillåt kökigsdi mi = g Numiskt fås 36 km/h m/s mi = = ( ) = ( ) = g m/s m/s m (7) S: Kökigsdi måst stö ä mi = g ll mi = km
4 LP 6.53 y t b x Accltio gs i dt tulig systmt dt llmä uttyckt s = st + () Hä ä mlltid bkus ktio gi i dt ktsisk kooditsystmt så tt i böj md tt bstämm uttyck fö hstight och ccltio i dtt systm. Vi t tt d hoisotll hstightskompot L ä kostt: ẋ = () Dt btyd tt ccltio i x-iktig ä oll, x =, ds kopps ccltio ä lltså tikl, = y y! Vi utyttj dtt x y = bsi (3) L πx πx bπ πx y = bcos = cos L L L L bπ πx πx bπ πx y = si = si L L L L L Nu ä b = L/3 och lägt ä git: x = L/3. Vi få lltså fö dtt läg Lπ π π y = cos = 3L 3 6 Lπ π 3 π y = si = (7) 3L 3 6L Ft k skis = x + y = + = + π π = 36 + π (8) Hstightskto bild i dtt läg ikl md x-xl. y y π t = = = x 6 si = π π + 36 och cos 6 = π + 36 (9) Pojic u ccltio på tgtil- och omliktig: 3 3 π π 3 π t = t = y si = = 6L π L π π 6 3 π = = y cos = = 6L π + 36 L π + 36 () () Kökigsdi k u hålls u (), (8) och () = ( 36 + π ) = = π 3 / L
5 LP 6.59 O ω P Röls sk i tt pl så tt d k bskis md plpolä koodit. I d llmä uttyck fö hstight och ccltio i plpolä koodit igå koodit och smt ds tidsdito. Vi böj lltså md tt bstämm dss tidsdito. Viklhstight ä kostt: = ωt = ω = () Bku ä gi: b = cosh () ll ωt ωt = ( + )= ( + ) (b) Tidsdiig g om () utyttjs: ω ωt ωt = ( )= ωsihωt ω ωt ωt = ( + )= ω coshωt (3) ) Dt llmä uttyckt fö hstight i cylidkoodit ä Isättig smbd (-3) g = + + = ωsihωt + ωcosh ωt b) Dt llmä uttyckt fö ccltio i cylidkoodit ä Isättig smbd (-4) g ( ) + ( + ) + = (7) ( ) + ( + ) = ω coshωt ω coshωt ω sih ωt (8) = ω sihωt c) Ek () g b = cosh cosh = b ty sih + cosh = b sih = b Isättig i () g = ω = ω b
6 LP 6.6 P Röls sk i tt pl så tt d k bskis md plpolä koodit, tt spcilfll cylidkooditsystmt. Viklhstight ä kostt: = ω = () Bku ä gi = c bcos () O Tidsdiig g om () utyttjs ( ) = = b si bωsi (3) cos = bω = bω cos Dt llmä uttyckt fö hstight i cylidkoodit ä = + + Isättig smbd (-4) g = bωsi + ( c bcos ) ω och ft bli ( ) = = + = b ω si + c bcos ω (7) = ω b + c bccos (8) Dt llmä uttyckt fö ccltio i cylidkoodit ä Isättig smbd (-3) g ( ) + ( + ) + = (9) [ ( ) ] + ( + ) = bω cos c bcos ω bωsi ω = ( bcos c) ω + bω si () Stolk ccltio ä då ( ) = = + = bcos c ω 4b ω si () = ω 4b + c 4bccos () Fö = fås = ( c b)ω ; = ω 4 b + c 4 bc = π = ( + )ω = ω + +
7 LP 6.69 P Git ä tt lägt som fuktio tid gs koodit = ωt () = kt Koodit äds också m just i dt btktd ögoblickt ä = R () Fö hstight och ccltio gäll då tt = V = ω = kt = = (3) = k Dt llmä uttyckt fö hstight i cylidkoodit ä = + + Isättig g = V + Rω + kt Ft ä = V + R ω + 4k t Numiskt fås då = m/s = 5 m/s (7) Dt llmä uttyckt fö ccltio i cylidkoodit ä ( ) + ( + ) + = (8) Isättig g ( ) + + ( ) + = Rω R Vω k (9) = Rω + V + k () ω Accltios stolk ä 4 = = R ω + 4V ω + 4k () Numiskt fås då = m/s = ( )+ m/s = m/s. 43 m/s
8 CHEROKEE LP 6.7 N4FL Röls sk i tt pl så tt d k bskis md plpolä koodit. Smbdt mll dss ä git ftsom höjd h ä käd: h = si () h Eftsom flygplt id tid t = pss kt ofö O och hstight ä gi k m också ski O t = cos () Smbd () och () tillsmms md Pythgos sts g som fuktio tid: = h + t (3) Dt llmä uttyckt fö hstight i cylidkoodit ä = + + Pojic u hstightskto på bsktos iktig. Figus gomti och k g tillsmms md smbd (-3) = cos ṙ = h t + t = si si = = h h + t Dt llmä uttyckt fö ccltio i cylidkoodit ä ( ) + ( + ) + = (8) M ccltio ä ligt txt oll! Kompot ä lltså fö sig oll och om och utyttjs fås h = = / h + t ( ) 3 (9) + = = 3 h t ( h + t ) ()
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E
(8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p
Schrödingerekvationen i 3 dim: Väteatomen.
Föläsig : Schödigkvtio i di: Vätto. Lösts v Schödig 96. Fökl spktllij få vätt och vis däd tt S. fg!!! Schödig kv i D: Ψ(, t) U( )Ψ(, t) i Ψ(, t) t Solikhtstolkig: Ψ(, t) d Noig: Ψ(, t ) d Sttioä tillståd:
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E
FORMLER TILL NTIONELLT PROV I MTEMTIK KURS D OH E LGER Rgl dgdsktio kdigsgl kojugtgl Ektio p q ött p p p q o dä p o q p q RITMETIK Pi T G M k d m µ p t gig mg kilo kto di ti milli miko o piko 9 6 - - -
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D
(7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + ) = + + ( ) = + (kdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ektio + p+ q = 0 ) ) ött p p p =
LÖSNINGAR TILL PROBLEM I KAPITEL 6
LÖSNINGR TILL RLEM I KITEL 6 L 6. cceleionen söks. Vi unj efiniionen hsighe: ẋ och cceleion: Hä ä läge en funkion ien. 3 = + b + c ẋ = + b+ 3c = b+ 3c = b+ 6c L 6. Vi unj efiniionen på hsighe: ẋ och cceleion:
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D
(7 FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + = + + ( = + (kdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ektio + p+ q = ött p p p = + q o = dä + = p o = q
Partikeldynamik Problemsamling Lösningar
Patikeldynamik Poblemsamling Lösninga a Chiste Nybeg MEKANIK Patikeldynamik Lösninga Chiste Nybeg och Libe A Få kopieas Patikeldynamik Poblemsamling LÖSNINGAR TILL PROLEM I KAPITEL 6 LP. Acceleationen
verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att
Istitutioe fö Mei Chiste Nybeg Ho Essé Nichols Apzidis 011-08- 1) Tete i SG1130 och SG1131 Mei, bsus Vje uppgift ge högst 3 poäg. Ig hjälpedel. Sivtid: 4 h OBS! Uppgifte 1-8 sll iläs på sept pppe. Lyc
LÖSNINGAR TILL PROBLEM I KAPITEL 2
LÖNINGR TILL RLEM I KITEL L. Kftn h stolkn. Dss iktning ltivt koodintln ä också känd och givn v vinkln. Kftns - komponnt ä då sin, mdn - komponntn ä cos. Vi kn skiv kftn på vktofom: + sin cos ll komponntfom
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D
(7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdskvtio ( + ) = + + ( ) = + (kvdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ekvtio + p+ q = ött p p p = + q
Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system
Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology
Målsättning: modell. Kvinnor kan uppnå fantastisk fysik genom att lyfta tunga vikter och äta bra mat utan att svälta sig själva.
Målättig: dll E plig tä tä kvi bö fku på tt lä ut följd: Kvi k it v ädd fö tug vikt, Få kvi tt i tt d k b ut vtt kppvikt å läg d ä fit, D k it bt fölit ig på våg fö tt utväd i ftg, D bö lägg tö fku på
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tntamnsskivning i Mkanik Dl Dynamik fö M 558 Lösningsföslag. Låt v btckna kulans fat fö stöt och v kulans fat ft stöt. Låt btckna impulsn fån golvt på kulan. Enligt impulslagn gäll: ( ) : = mv cos mv cos
θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1
LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på
Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl
1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta
Kursinformation i Partikeldynamik för M (TMME08)
Kursinformation i Partikeldynamik för M (TMME08) 18h föreläsningar, 6h lektioner och h datorlaboration i period VT, 009. Kurshemsida www.mechanics.iei.liu.se/edu ug/tmme08/ Föreläsare och examinator Jonas
Föreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson)
Digitl siglbhdlig E040 örläsig 9 Digitl siglbhdlig E040 Kpitl 6 mplig LH 04 Ndlko Grbic (mtrl. frå Bgt Mdrsso Dprtmt of Elctricl d Iformtio chology Lud Uivrsity 6 Kpitl 6 mplig Vi tittr u ärmr på smplig
LEDNINGAR TILL PROBLEM I KAPITEL 2 OBS! En fullständig lösning måste innehålla en figur!
LEDNINGR TILL ROLEM I KITEL OS! En fullständig lösning måste innehålla en figur! L.1 Kroppen har en rotationshastighet. Kulan beskrier en cirkelrörelse. För ren rotation gäller = r = 5be O t Eftersom och
FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter
FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr
Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning
Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig
Digital signalbehandling
Istitutio ör ltro- och iormtiosti LH, Lud Uivrsity örläsig : Siglbhdlig ESS4 Siglbhdlig siglbhdlig A/D sig. bhdl. ESS4 Smplig Rostrutio ISB -3-873-5, ISB -3-87374- Sigl Procssig: Pricipls, Algorithms,
Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem
nsttutonn fö Man Ncholas pads tl: 79 78 post: nap@mch.th.s hmsda: http://www.mch.th.s/~nap/ S-85 ntamn S Man, 85 BS! nga hjälpmdl. Lca tll! Poblm ) En hosontll am ' md längdn l ota md n onstant nlhastght
============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def
Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt
som gör formeln (*) om vi flyttar första integralen till vänsterledet.
Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl
Lösningar till Problemtentamen
KTH Mkanik 2005 10 17 Mkanik II, 5C1140, M, T, CL 2005 10 17, kl 14.00-18.00 Lösninga till Pobltntan Uppgift 1: Två cylinda d adina spktiv R sitt ihop so n stl kopp. Dn kan ota fitt king n fix hoisontll
Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10
KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade
Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.
Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars
Teori för linjära ordinära differentialkvationer med konstanta koefficienter
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär
16.3. Projektion och Spegling
6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.
f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik- och partikeldynamik Lösningsförslag ( ) ( ) ( ) ( )
Utgåva Tntansskivning i Mkanik (FMEA30) Dl tatik- och patikldynaik 305 Lösningsföslag. a) Filägg stång + skylt! Infö spännkaftna = och = i linona, tyngdkaftn g = k ( 00g), angipand i skyltns asscnta G
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C ALGEBRA Kdeigsegle ( + ) + + ( ) + Kojugtegel ( + )( ) Adgdsektioe Ektioe + p + q 0 ötte p p p p + q o 4 4 id + p o q q ARITMETIK Pefi Tiopotes
Matematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
TENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare
Istitutioe för dt- och eletrotei 5-5-4 TETAME KURSAM PROGRAM: m Eletro- och dtigejörslije å / läsperiod årsurs /läsperiod 3 KURSBETECKIG LET39 96 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
EGENVÄRDEN och EGENVEKTORER
rmi Hliloic: EXTR ÖVNINGR EGENVÄRDEN och EGENVEKTORER Defiitio. Egeektor och egeärde för e lijär bildig Låt V r ett ektorrum och T : V V e lijär bildig frå V till V. Om det fis e ollskild ektor och e sklär
Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor
Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:
Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3
laiablanals I Vintn Ösikt föläsninga läscka Dt tj kapitlt i ksn bhanla bbl- och tipplintgal. Dn intgaln i känn till fån naiablanalsn b a f kan j ofta ss som aan n f mllan a och b fnktion a tå aiabl och
LÖSNINGAR TILL PROBLEM I KAPITEL 7
LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen
TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2
Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:
Stången: Cylindern: G :
mekaik I, 09084- A V H f mg G N B 3 d Frilägg cylider och de lätta ståge! Ståge påverkas av kraftparsmometet M samt kotaktkrafter i A och O. Cylider påverkas av kotaktkrafter i A och B samt tygdkrafte
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
TATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger.
TATA 57/TATA8 8 augusti 26. Lösningar ) Lösning : Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger [ z + z ] Y (z) = z + z z 3 z 2 som i sin tur ger (efter ommöblering) Av
Kursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
Föreläsning 10. java.lang.string. java.lang.string. Stränghantering
Föläig Stäghtig j.lg.stig E täg btå tt tl tc Stäg i ht om objt l Stig E täg it modifi ft tt d h pt! Stig - l : ch[] - cot : it + lgth(): it + chat(it): ch + idxof(ch): it E täg h: Ett äd och lägd Ett tl
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)
TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
Utgångspunkter. Hushåll med värmeelement
söjd!) l, hl sjlfö (Pss! Ig få o ik! b sd. D o k s g i id p ö f S di upp i sll k s u i o s u h Poduk då oc sl. l k l o d g kici. l g li o g h b di u d dis D g. o s k i f p p if u d d i i i h f s ö f d
Vila vid denna källa (epistel nr 82)
Text oh musk: Carl Mhael Bellm Arr: Eva Toller 2004 opno Alto 1 1V - 2 Hm - 4 5 6 s -, kl - _ vår oh får ll - hngs - frs - så E - du ka ols mtt Alto 2 1V - 2 Hm - 4 5 6 tgt mel, f, n, lg s - kl -, vår
SF1625 Envariabelanalys
Föreläsning 17 Institutionen för matematik KTH 6 december 2017 Anmälan till tentamen För att skriva tentamen (2018-01-08) behöver ni anmäla er (Mina sidor, deadline 18:e december). Idag Kap 7. Tillämpningar
lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.
Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt
f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48)
LEDIGR TILL ROLEM I KITEL 3-48) L 3. α Mg ntg tt den hög lådns mss ä M. Filägg åd lådon! Filäggningsfiguen, som skll innehåll pktiskt tget ll infomtion som ehövs fö tt lös polemet, viss hä. Kontktkften
Tunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0
Förläsig 9. Förra gåg: Sridig ot ottialarriär. Pottialodll (idalisrad): U U ( ) 0, 0 L, för övrigt ψ( ) ik ik ifallad U = U ψ( ) F trasittrad ik rflktrad U = 0 0 L Iuti arriär 0 < < L: ( fall) ) E U ψ
Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl
Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt
Extra övningsuppgifter i Fourieranalys, 2012/13
Extra övningsuppgifter i Fourieranalys, /3 Här betyder θ Heavisidefunktionen, även betecknad H eller χ (,. Om E är en mängd, är χ E (x den karakteristiska funktionen för E, alltså den funktion som är då
FORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats:
TRIGONOMETRISKA FORMLER... si 0 si 6 FORMELBLAD HF700, Bggproduktio 6. si cos 7. si45 si 4 si( ) t( ), cos( ) cos( ) cot( ) si( ) 8. cos( ) coscos sisi si 60 si 4. 9. cos( ) coscos sisi cos 0 cos 6 5.
vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr
Lektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1
Lektion 1 Kursinnehåll - kursprogram - schema Det praktiska - boken - idag sid 71-101 Mattebakgrund - Spannes Blixtkurs Laplacetransform AK 17 Koppling till tillståndsbeskrivning AK 18 Betoning av transienter
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till! Problem
Institutionn fö Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-9 ntamn i 4 Mani II, 9 Inga hjälpmdl föutom: papp, pnna, linjal, passa. Lca till! Poblm ) L a En bhålla
SNS 22 januari 2014. Catharina Lagerstam S N S. j a n u a r i
K ås: Klväg A, 3 tockholm Mobl: 73-9 9 9 cth.lgstm@gml.com Cth Lgstm Cth Lgstm, vå, All ghts sv 9 s Ekoomsk / st boföstå It: Rovsgstkk Jsk övväg ttpkt Cth Lgstm, vå, All ghts sv ttpkt Rvsos fl? V som skll
Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.
Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio
LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller
LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten
Digital Signalbehandling i multimedia
Digil siglbhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy örläsig Digil Siglbhdlig i mulimdi EI65 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Digil Siglbhdlig Smplig AD Digil sig. bhdl. Digil
Sammanfattning av formler i balkteoripärm PJG,
Saafattig a frler i balkteripär JG -- sitt B: Böj- ch stågerka eligt Berlli/Eler-balkteri Defratisatagade: öjig: ε w Späig: Sittstrheter: σ Eε σ N σ d σ d σ d V τ d V τ d Sittstrheter id ll töjig: N σ
Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av
Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av
TNA004 Analys II Tentamen Lösningsskisser
TNA004 Analys II Tentamen 20-06-0 Lösningsskisser. a) De båda kurvorna skär varandra i x 0 och x. På intervallet 0 x är x x. Området D är då det skuggade i figuren nedan, där även en tunn rektangel är
Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner
Lösningar Heureka Kapitel 3 Rörelse i två dimensioner Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik Heureka:Kapitel 3 3.1) Enligt figuren: nordliga förflyttningen: 100+00-100=00m Östliga förflyttningen:
Formelsamling i kretsteori, ellära och elektronik
Formelamling i kretteori, ellära och elektronik Elektro- och informationteknik Lund teknika högkola April 8 Formelamling i kretteori, ellära och elektronik 8 Komplexvärden Realdelkonvention: v(t) = Re{V
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso
Något om funktionsföljder/funktionsserier
mtemtis metoder E, del D, FF Något om futiosföljder/futiosserier. Putvis och liformig overges Vi etrtr reellvärd futioer med gemesm defiitiosmägd D IR, M D. Me (äst) llt går helt logt för omplevärd futioer
SF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr
SKOLRESA. På Gotland!
2016 * SKOLRESA På Gotld! Skolpkt I pktt igå följd: Båt t/, luch/middg v på övft. Butf Viby Hm-KippbyViby Hm. Logi i um/tugo md hlpio. Fi té hl vitl till Kippby Somm- & Vttld. Eklt pivät fö hl kl! Miigolf
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)
@Anticimex' Byg g n ad sb e skriv n i n g Bosfads bygg n ad. Stomme, material: Byggnadsår/ ombyggnadsår: 1963/ Hustyp/antal våningar:
BESI KT I GS PROTOKOLL - Antiimx Fösäkingsbsiktning v småhus Byg g n d sb skiv n i n g Bsfds bygg n d J I m '- ' uq I Byggndså/ mbyggndså: 193/ Hustyp/nt våning: 2-pns phus Tktyp, tkbäggning : Ppp, ågutnd
Markanvisning inom fastigheten Kastanjen 9 i Midsommarkransen till AB Familjebostäder
GATU OCH FASTIGHETSKONTORET TJÄNSTEUTLÅTANDE GFN 20010122 Hdl: Li Fild Rio Ytttd Mkyå Tl: 508 263 20 lifild@fktockholm D 014111537:1 20011217 Till Gtu och ftihtmd Mkii iom ftiht Ktj 9 i Midommk till AB
TNA004 Analys II Sixten Nilsson. FÖ 1 Kap Inledning
TNA004 Anlys II Sten Nlsson FÖ Kp 7. 7. Inlenng V komme tt eet någ vktg tllämpnng v ntegle. I smtlg ll gö v ett ngenjösesonemng ä en s.k. Remnnsumm övegå en estäm ntegl. Det ä vktgst tt u FÖRSTÅR esonemngen,
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =
SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.
UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt
Uppskatta ordersärkostnader för tillverkningsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
15825 93FY51 1 93FY51/ STN1 Elektromgnetism Tent 15825: svr och nvisningr Uppgift 1 Från Couloms lg och E F/q hr vi uttrycket: E 1 4πε ρl dl r Vi väljer cylindrisk koordinter och sätter r zẑ ˆR och dl
En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n
g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil
Stela kroppens rotation kring fix axel
FMEA10 01 Sammafattig av Föreläsig om Stela kroppes rotatio krig fix axel (FMEA10) Föreläsig 1: Kiematik (14.-14.5) Cirkelrörelse: E partikel P rör sig i e cirkelbaa med radie R. Vi iför cyliderkoordiater
Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Formelsamling. TFYA16 Mekanik TB. r r. B r. Skalär produkt. Vektorprodukt (kryss produkt) r r r. C r B r Φ A r. En vektor: där Φ är vinkeln mellan A r
oelsalg TYA6 ekak TB E eko: a a ˆ + a ˆj + a kˆ z ˆ ˆj kˆ a a a + a + a Skalä poduk ˆ ˆ ˆ ˆj z Vekopoduk (kss poduk) C c ˆ + c ˆj + c kˆ C A B A B cosφ dä Φ ä kel ella A C A B Dä A A, B B och Φ ä kel ella
Tentamen i Envariabelanalys 1
Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Möt Privata Affärers och Placeringsguidens aktiva läsekrets
2014 Möt Pvt Affäs och Pcngsgudns ktv äskts Und 2013 stod nnonsön på Sto Pcngskvän nskt mot nskt md 1 500 v vå mst pcngsntssd äs. Sto Pcngskvän Bok n hkvä md Pvt Affäs och Pcngsgudns ktv äskts Pvt Affä
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
Reglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10
Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning
1 Föreläsning IX, tillämpning av integral
Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek
Arbetsbok 1 Jämna steg. o, s, m, a, r, i. Elisabeth Marx. Individuell lästräning för elever i förskoleklass och lågstadiet
Abtbk 1 Jämna tg m a p Elabth Max ö,, m, a,, vdull lätänng fö lv föklkla ch lågtadt nnhålötcknng -ljudt 2 -ljudt 8 m-ljudt 20 a-ljudt 29 -ljudt 40 -ljudt 50 Blaga: Lält (1:1 tll 1:8) 63 mpal fö Fölagdgng: