FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter
|
|
- Rickard Lindström
- för 9 år sedan
- Visningar:
Transkript
1 FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr Ildig IIR och FIR-filtr Ralisrig i av tidsdiskrta di t filtr Föstrmtod Tori: bara här Maria Magusso, Datorsd, Ist. för Systmtkik, Liköpigs Tkiska ögskola E) på avädig av aaloga filtr = tidskotiurliga filtr E) Isplig av CD mikrofo LP ativikigsfiltr 0 k E) Uppsplig av CD CDskiva Samplig 44 k A/D-omv. Uppsamlig 4 ggr md t D/A trukrad sic Lagrig på CD-skiva. t t t t LP glätt- igsfiltr ög- talar Olika idala filtrtypr (rptitio) Lågpass-filtr (LP) släppr igom låga frkvsr ögpass-filtr (P) släppr igom höga frkvsr Badpass-filtr (BP) släppr igom mlla-frkvsr Badspärr-filtr (BS) stoppar mlla-frkvsr Badpass Idala filtr går it att implmtra prfkt Ett idalt lågpass-filtr är rktagl- fuktio vars ivrsfourirtrasform är sic. Sic har oädlig lägd och tar därmd d för låg tid att falta md. Om faltig ska sk o-li (it off-li) måst också filtrt vara kausalt (h(t)=0, t<0). Dt är it sic. Illustratio på ästa slid
2 Illustratio av kausalitt fram övr s(t t). ra gam mla framtid da. Lit filtrtrmiologi Gräsfrkvs: Där förstärkig har sjukit md OBS! db / 3 db Vid f Filtr käd faltig glidr h(t-) t övr rlappar då ba da värd d, oc ch it Kostruktio av ick-idala, aaloga filtr D valigast filtrtypra är: Buttrworth (gr jämast passbad) Tjbysjov (gr smalast övrgågsbad) Dssa ka fås i fyra variatr: LP-filtr P-filtr BP-filtr BS-filtr Vi ska bara titta (kursivt) på Buttrworth, LP-filtr Buttrworth-filtr t t (kursivt) Gr maimalt jämt passbad. Sakar ollställ. Polra liggr jämt fördlad på halvcirkl i västra halv-plat av dt kompla s-plat. Filtrts t gräsfrkvs c svarar mot halvcirkls radi. Fis i olika variatr som kallas :t ordigs filtr där =,, 3,...
3 3 Buttrworth-filtr i s-plat (kursivt) Fourirtrasform F( ) för tt Buttrworth-filtr md = (k i t) (kursivt) c s s c s c = =3 3 har kvatio: = F =4 4 c s c c c c s c s c j j s s c Buttrworth-filtr md = i s-plat (kursivt) polr c s s c s c F / c Fourirtrasforms blopp 4 Sätt s=j! c c j j c j c c j c c F 4 c4 4 c c / c Amplitudspktrum F( ) för olika Buttrworth-filtr (kursivt) För tt :t ordigs g Buttrworth-filtr gällr: F / c
4 Två olika ralisrigar av tt Buttrworth-filtr th md = (kursivt) s / sc sl R / sc s s s A 3 A / RC / LC R / L s / LC / R C s / R C Fyr-fältig, utvidgad (frå fö 0) Laplactrasform X L s t st dt s X? -trasform (dubblsidig) X j X j Fourirtrasf t TDFT t jt dt j Fourirsri DFT T,, där T är sampl. avst Sambad Laplac- och -trasform Laplactrasform s X L t Im s /T R s t T st dt Im s /T /T R s Laplactrasform av sampl. sigal X s LS st - st (kursivt) Im R -trasform (dubblsidig) X Om avbildig frå s-plat (s=+j) till -plat (kursivt) : Bijktiv avbildig = tt-till-tt-avbildig. Avbildig i frå hla s-plat,, till -plat är it bijktiv Avbildig frå, /T /T till -plat är bijktiv
5 Kovrgsområd E högrskvs (()=0( för < 0 )h har tt kovrgsområd >R +, där R + är radi till största t pol. (E västrskvs (()=0 för > 0 ) har tt kovrgsområd <R -, där R - är radi till mista pol.) ((E dubblsidig skvs har tt rig-format kovrgsområd R + < < R - -, där R + och R - är radir till två polr. Ig pol får ligga i rig.)) Kausalitt I tt kausalt systm orsakas utsigal av isigal, d v s för impulssvart gällr att h(t)=0 för t<0 (llr h()=0 för <0). Utsigal bror alltså it på kommad (framtida) värd äd ii isigal. i Alla fysikaliska systm måst vara kausala. Obsrvra att i tillämpig där ma jobbar md lagrad data (off-li) ka systmt vara ick-kausalt. För tt kausalt systm gällr att M<=N där: a b c... M... M... K K N p... p... N Bvis på tavla Stabilitt h y h Vi bgräsar oss till kausala systm. Dfiitio: Ett systm h() är stabilt om bgräsad isigal () mdför bgräsad utsigal y(). Ma ka visa att stabilitt Illustratio på uppås i följad fall: tavla. h Bvis på tavla. Alla polr iaför htscirkl Jämför: alla polr i västra halvplat (Laplactrasform) Tidsdiskrta filtr fis i två variatr: ) FIR-filtr FIR = fiit impuls rspos (ädlig lägd på impulssvart, ick-rkursivt) E) y k a k b k c k Y a a b c X k a k b k c k h b c Alltså iga polr (förutom i origo) => + alltid stabilt
6 E) y Tidsdiskrta filtr fis i två variatr: ) IIR-filtr IIR = ifiit impuls rspos (oädlig lägd på impulssvart, rkursivt) k B y k a k b k c k Y a b c a b c X B B Alltså båd polr och ollställ => - ka vara istabilt + färr kofficitr ä FIR Mtodr för kostruktio av digitala filtr Placrig av polr och ollställ i dt kompla p -plat. pa TDFT: fis spå htscirkl. Föstrmtod. Dt fis flr mtodr bskriva i läroböckr, m dt hoppar vi övr i da kurs. Om vi ka jobba md lagrad data (off-li) ka vi också välja FFT samt multiplikatio lik i Fourirdomä md öskat filtr. Kostruktio i -plat E) BS-filtr TDFT : j Im j R Kostruktio i -plat E) otchfiltr (smalt BS-filtr) TDFT : j Im j R
7 Kostruktio i -plat. E) LP-filtr f f, f / T / T 0.5 T Kostruktio i -plat. E) BP-filtr f f, Kostruktio i -plat. E) P-filtr f f, 0.5 T f / T / T Kostruktio i -plat. E) BS-filtr f f, Notch-filtr f / T / T 0.5 T f / T / T 0.5 T
8 Föstrmtod för kostruktio av FIR-filtr (här tt LP-filtr) Utgå frå TDFT: () för tt idalt LP-filtr. Ivrs TDFT gr tt oädligt impulssvar h(). Trukra h() gom att multiplicra skvs md tt föstr w(). ögrskifta dt symmtriska impulssvart så att filtrt blir kausalt. ögrskift gr it ågo kostig ffkt dt gr bara fördröjig av utsigal. h Föstrmtod, ) md LP-filtr id Utgå frå TDFT: id (W) för tt idalt LP-filtr. Ivrs TDFT gr tt oädligt impulssvar h(). j j d h id id id Föstrmtod, ) md LP-filtr Trukra h id () gom att multiplicra skvs md tt föstr w(). Föstrmtod, ) md LP-filtr Rsultatt av trukrig h id ()w() högrskiftas så att filtrt blir kausalt. W
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Läs merFyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat
Sigal- och Bildbhadlig FÖREÄSNING 6 -trasform - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta systm. Vi ska s hur d hägr ihop md TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig.
Läs merFöreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning
Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig
Läs merFöreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system
Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology
Läs merFyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 12. Ex) på användning av z-transform: ljud. z-transform och TDFT, formler
Sigal- och Bildbhadlig FÖREÄSNING -trasfor - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta syst. Vi ska s hur d hägr ihop d TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig. aplac-trasfor
Läs merFöreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso
Läs merFöreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)
Läs merFöreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson)
Digital sigalbhadlig ESS040 Förläsig 0 Digital sigalbhadlig ESS040 Kapitl 7 Digitala FourirTrasform DFT LTH 0 dlo Grbic (mtrl. frå Bgt Madrsso Istitutio för ltro- och iformatiosti Lud Uivrsity 53 Digital
Läs merDefinition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.
Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio
Läs merTEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)
TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita
Läs merInlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.
Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars
Läs mer1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser.
Lasse Björkma 999 . Rita följade tidssekveser. a) δ e) u b) δ f) u u c) δ + δ g) u d) u h) u. Givet tidssekvese x i edaståede figur. Rita följade tidssekveser. a) x c) x b) x + 3 d) x 3. Givet tidssekvesera
Läs merDigital signalbehandling Sampling och vikning på nytt
Ititutio ör data- och lktrotkik Digital igalbhadlig Samplig och vikig på ytt 00-0-6 Bgrpp amplig och vikig har viat ig lit våra att hatra å till vida att dt har kät vårt att tolka vad om hädr md igal om
Läs merInstitutionen för data- och elektroteknik 1999-11-30. samplingsvillkoret f. Den diskreta fouriertransformen ges av
Istitutio för data- och ltroti 999--3 Digital sigalbhadlig f Implmtrig av FFT- och IFFT-rutir Vi har här tidigar i digital sigalbhadlig studrat tidsdisrt fourirtrasform, DFT och mölightra att aväda Fast
Läs merFÖRELÄSNING 13: Tidsdiskreta system. Kausalitet. Stabilitet. Egenskaper hos ett linjärt, tidsinvariant system (LTI)
p. FÖRELÄSNING 3: Tidsdiskrea sysem. Kausalie. Sabilie. Linjära idsinvariana sysem (LTI-sysem) Differenial- och differens-ekvaioner Räkna på idskoninuerlig LTI-sysem med Fourierr. (kursiv) Räkna på idsdiskre
Läs merTransformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )
6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så
Läs merDigital signalbehandling
Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity Förläsig : Digital Sigalbhadlig ESS4 Digital sigalbhadlig ESS4 3 ISBN -3-873-5 ISBN -3-87374- Digital Sigal Procssig: Pricipls, Algorithms, ad Applicatios.
Läs merDigital signalbehandling Digital signalbehandling
Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso
Läs merDigital signalbehandling Alternativa sätt att se på faltning
Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],
Läs merInvestering = uppoffring av konsumtion i dag för högre konsumtion i framtiden
Ivstrg = uppoffrg av osumto dag för högr osumto framtd Vad är förtagsooms vstrg? Rsurs som a aväds udr låg td. Asaffgar udr tdsprod som mdför btalgar udr flra tdsprodr framåt. Ivstrgar förtagsprsptv. Dl
Läs merDigital signalbehandling
Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity örläsig : Sigalbhadlig ESS4 Sigalbhadlig sigalbhadlig A/D sig. bhadl. D/A Lågpassiltr Lågpassiltr ESS4 9 Samplig krts Rkostruktio Sigal Procssig:
Läs merFöreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)
Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit
Läs mer= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel
Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr
Läs merSlumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Läs merHar du sett till att du:
jua b r t t u a lr r l a r r a å l g P rä t r g u s p u m h a c tt val? t bo s F Rock w S Du har tt stort asvar! Som fastghtsägar m hyra gästr llr campg trägår är u otrolgt vktg aktör! Självklart för att
Läs merTENTAMEN Datum: 18 aug 11 TEN2: TRANSFORMMETODER
TENTAMEN Daum: aug TEN: TRANSFORMMETODER Program:. Daa/ lkro och. Gamla udr Mdicikkik Kur: MATEMATIK Kurkod HF, H Skrivid::5-:5 Hjälpmdl: Formlblad dla u låmpl och miiräkar av vilk p om hl. Lärar: Armi
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Läs merKorrelatio n : Korrelation Korrelation är samma sak som faltning med. Signal- och Bildbehandling FÖRELÄSNING 12
Sigal- oc Bildbeadlig FÖELÄSNING Korrelaio (D) Korskorrelaio (ofa kalla bara korrelaio) Auokorrelaio oc effekspekrum Brus Lijära ssem LTI-ssem (Lijär idsivaria ssem) Differeial- oc differes-ekvaioer (kursiv)
Läs mer7 Sjunde lektionen. 7.1 Digitala filter
7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas
Läs merFöreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson)
Digitl siglbhdlig E040 örläsig 9 Digitl siglbhdlig E040 Kpitl 6 mplig LH 04 Ndlko Grbic (mtrl. frå Bgt Mdrsso Dprtmt of Elctricl d Iformtio chology Lud Uivrsity 6 Kpitl 6 mplig Vi tittr u ärmr på smplig
Läs merDigital signalbehandling Fönsterfunktioner
Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Läs merATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
Läs merTentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Läs merDEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Läs merTSDT18/84 SigSys Kap 4 Laplacetransformanalys av tidskontinuerliga system. De flesta begränsade insignaler ger upphov till begränsade utsignaler
9 Stabilitet för energifria LTI-system Marginellt stabilt system: De flesta begränsade insignaler ger upphov till begränsade utsignaler Kap 2, bild 4 h t h( t) dt /< < t gäller för marginellt stabila LTI-system
Läs merHittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Läs merDigital signalbehandling Föreläsningsanteckningar Bilagor
Bilaa Istitutio ör data- och lktrotkik Bilaor -3-8 U ma U ma U ma Varias (kvatisrisbrusts kt) 3 σ P() d 3 d 3 3 4 4 Altrativt, kvatisrislts kt τ är d tid som sial lir iom kvatisrisstt Bil.vsd Flt är ästa
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Läs merStatistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:
Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad
Läs merTENTAMEN Datum: 4 feb 12
TENTAMEN Daum: b Tid: 8:5-:5 TEN: TRANSFORMMETODER Program: Daa/ lkro och Gamla udr Mdicikkik Kur: MATEMATIK Kurkod HF, 6H Skrivid:8:5-:5 Hjälpmdl: Formlblad dla u låmpl och miiräkar av vilk p om hl Lärar:
Läs merρ. Farten fås genom integrering av (2):
LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt
Läs mer1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.
Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma
Läs merRäkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
Läs merUmeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Läs merDigital Signalbehandling i multimedia
LH, Lud Uivrsi örläsig Digil Siglhdlig i mulimdi EI65 Digil Siglhdlig Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr Lågpssilr Rkosrukio Digil Sigl Procssig: Pricipls, Algorihms, d Applicios. Joh G.
Läs merProblem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.
UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt
Läs merLinjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Läs mer1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Läs merTunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0
Förläsig 9. Förra gåg: Sridig ot ottialarriär. Pottialodll (idalisrad): U U ( ) 0, 0 L, för övrigt ψ( ) ik ik ifallad U = U ψ( ) F trasittrad ik rflktrad U = 0 0 L Iuti arriär 0 < < L: ( fall) ) E U ψ
Läs merTSDT08 Signaler och System I Extra uppgifter
TSDT08 Signaler och System I Extra uppgifter Erik G. Larsson ISY/Kommunikationssystem december, 2008 P. Ett LTI system har impulssvaret och matas med insignalen ht) = e 2t ut) xt) = e 3t ut) + cosπt +
Läs mersom gör formeln (*) om vi flyttar första integralen till vänsterledet.
Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl
Läs merREGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
Läs merTNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Läs merDIGITALA FILTER DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1
DIGITALA FILTER TILLÄMPAD FYIK OCH ELEKTRONIK, UMEÅ UNIVERITET 1 DIGITALA FILTER Digitala filter förekommer t.ex.: I Photoshop och andra PC-programvaror som filtrerar. I apparater med signalprocessorer,
Läs merGRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int
Läs merSida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.
Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a
Läs merFourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL
Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade
Läs merDIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Läs merTENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
Läs merMånadsrapport för januari-mars 2015 för Landstingsfastigheter Stockholm. Anmälan av månadsrapport för Landstingsfastigheter januari-mars 2015.
locum. VÄRD FR VÅRD 2015-05-07 2015-05-28 - ÄRD 12 AMÄLA r.oc 1501-0234 1 (1) Styrlsn för Locum AB Månadsrapport för januari-mars 2015 för Landstingsfastightr Stockholm Ärndt Anmälan av månadsrapport för
Läs merHambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
Läs merVECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 270 lottnummer 1.000 kronor vardera:
Dragningsresultat vecka 14-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till
Läs merdär a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Läs merAndra ordningens lineära differensekvationer
Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom
Läs merBeställare: FFAB genom Shany Poijes Antal sidor: 12. Projekt: Varav bilagor: 6. Projektansvarig: Niklas Jakobsson Datum:
Rap p rt R1 778-1 Bställar: FFAB Shay Pijs Atal sidr: 12 Prjt: 1778 Vara bilar: 6 Prjtasari: Nilas Jabss Datu: 217-6-13 K Drai sl i sta, Sparbasä, H ärst Bräi a trafibullr iför dtaljpla 1 Prjtbsrii Austibyrå
Läs merTSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2
Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:
Läs merTenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2
Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Läs mer4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Läs merDigital Signalbehandling i multimedia
Digil siglbhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy örläsig Digil Siglbhdlig i mulimdi EI65 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Digil Siglbhdlig Smplig AD Digil sig. bhdl. Digil
Läs merHSB ENERGIAVTAL EXEMPLET VÄRMLAND PER WIKSTRAND, HSB VÄRMLAND PRESENTATION HSB-BÅTEN 2015
HSB ENERGIAVTAL EXEMPLET VÄRMLAND PER WIKSTRAND, HSB VÄRMLAND PRESENTATION HSB-BÅTEN 2015 PRISUTVECKLING PÅ FÖRBRUKNINGSMEDIA 1996-NU HSB ENERGIAVTAL Full kontroll på r förbrukning och ra utgiftr för förbrukningsmdia.
Läs mer4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
Läs merTentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Läs merRäkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Läs mer)10 ANTAGANDEHANDLING. DETALJPLAN för Dyrtorp 1:129, Håvestensgården Färgelanda kommun Ajourhållning verkställd GRÄNSER
³ 98 6493900 1:11 88 1:41>2 92 1:15>2 94 1:3>6 1:79 1:80 ga:7 SNICKERIVÄGEN 1:89 1:88 1:87 102 1:86 106 108 1:42 98 96 PLANBESTÄMMELSER Följad gällr iom områd md daståd btckigar. Där btckig sakas gällr
Läs merUppskatta ordersärkostnader för tillverkningsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad
Läs merEkvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm
Läs merArkitekturell systemförvaltning
Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm
Läs merTIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Läs merResttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Läs merFöreläsning 10. java.lang.string. java.lang.string. Stränghantering
Föläig Stäghtig j.lg.stig E täg btå tt tl tc Stäg i ht om objt l Stig E täg it modifi ft tt d h pt! Stig - l : ch[] - cot : it + lgth(): it + chat(it): ch + idxof(ch): it E täg h: Ett äd och lägd Ett tl
Läs merTrigonometriska polynom
Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.
Läs merRÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Läs merRÄKNESTUGA 2. Rumsakustik
RÄKNESTUGA Rumsakustik 1. Beräka efterklagstidera vid 15, 500 och 000 Hz i ett rektagulärt rum med tegelväggar och med betog i tak och golv. Rummets dimesioer är l x 3,0 l y 4,7 l z,5 [m].. E tom sal med
Läs mer================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Läs mer( ), så kan du lika gärna skriva H ( ω )! ( ) eftersom boken går igenom laplacetransformen före
Några allmänna kommentarer gällande flera av lösningarna: Genomgående används kausala signaler och kausala system, vilket innebär att det är den enkelsidiga laplacetransformen som används. Bokens författare
Läs merKompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Läs merÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION
SVENSKA KRAFTNÄT / ENETJÄRN NATUR AB Riskaalys Stamätstatio Sösätra UPPDRAGSNUMMER 1270858000 ÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION Ikom till Stockholms stadsbyggadskotor
Läs mer1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,
Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och
Läs mer247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Läs merVi bygger för ett hållbart Trollhättan. Kvarteret Fridhem. 174 nya hyreslägenheter i klimatsmarta passivhus.
Vi byggr för tt hållbart Trollhättan vartrt ridhm 174 nya hyrslägnhtr i klimatsmarta passivhus. Ett grönt kvartr i n skön stad. vartrt ridhm är vrigs hittills största satsning på så kallad Passivhus. 174
Läs merKontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Läs merFORMLER TILL NATIONELLT PROV I MATEMATIK KURS E
(8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p
Läs merHandbok. för evenemang och möten i Borås. Framtagen av Säkerhetsnålen Borås välplanerat värdskap
Hadbok för vmag och möt i Borås Framtag av Säkrhtsål Borås välplarat värdskap hadbok 3 4 20 22 23 24 25 Ildig 1. Chcklista tillståd 2. Mall för säkrhtspla samt xmpl på säkrhtspla 3. Rkommdatior miljö Tillståd
Läs mer= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.
Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att
Läs merTentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Läs merBibliotekshllgskolan Specialar.. l, =:l51 c
Bibliotekshllgskolan Specialar. l, =:l51 c I POROIID... 0.00.2 IrnEDIJIBG... 0.3 BIBLIOGIIAFI... 0.000000.4. 5 EXBMPEL l?a INDEXERADE DIKTER...~..~ Detta specialarbete ar en del av Svenskt lyrikindex,
Läs merTentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
Läs mer