Digital Signalbehandling i multimedia
|
|
- Anita Karlsson
- för 6 år sedan
- Visningar:
Transkript
1 Digil siglbhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy örläsig Digil Siglbhdlig i mulimdi EI65 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Digil Siglbhdlig Smplig AD Digil sig. bhdl. Digil krs DA Lågpssilr Lågpssilr Rkosrukio Digil Sigl Procssig: Pricipls, Algorihms, d Applicios. Joh G. Prokis, Dimiris G. Molkis DSP srrs ki xs Isrums DSK673 örläsigr: Bg Mdrsso Digil siglbhdlig, Is ör lkro- och iormioskik Exmpl: Ekok x AD x y DA y mikroo Dly D höglr Digil siglbhdlig, Isiuio ör lkro- och iormioskik Exmpl på rvrb kok Dly D Dly D 3 Hur lår d? Vi sr på lborior Mlb och DSP. Vi bsämmr också ördröigr D, D och D 3 u xr isrum. Smplk: 8 khz. 3 4
2 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Exmpl på krsr Alog krs, RC-krs Digil siglbhdlig, Isiuio ör lkro- och iormioskik Ihåll LP4 EI65 Joh G. Prokis, Dimiris G. Molkis, Digil Sigl Procssig: Pricipls, Algorihms, d Applicios', ourh Ediio, Chprs -. Prso Pric Hll, ISB ISB y y b x Digil krs x krs y y y b x Chpr : Chpr : Chpr 3: Chpr 4: Chpr 5: Chpr 6: Chpr 7: Chpr 8: Chpr 9: Iroducio. Discr-im Sigls d Sysms. h z-rsorm d is Applicio o h Alysis o LI Sysms. rqucy Alysis o Sigls. rqucy-domi Alysis o LI Sysms. Smplig d Rcosrucio o Sigls. h Discr ourir rsorm: Is propris d Applicios. Eici Compuio o h D: s rsorm Algorihms igår. Implmio o Discr-im Sysms. Kod som körs vr gåg y värd is rå ADomvdlr.9, b xadipu; y-.9*yold x; yoldy; DAoupuy; örläsig: Övig Lboriodorövig: 4 immr pr vck 4 immr pr vck immrvck udr 4 vckor Ilämigsuppgir i kombiio md dugg Amäligslisor ill lborior på hmsid. 5 6 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Exmpl. MP3 kodig v musik Digil siglbhdlig, Isiuio ör lkro- och iormioskik Vd är idsdiskr sigl? Exmpl på idsdiskr siglr mprurkurv x{ } Siussigl xsi 8 { } 7 8
3 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Exmpl på idsdiskr krs. y 5 x 5 x- 5 x- 5 x-3 5 x-4 b Lågpssilr Smplig AD x Digil sig. bhdl. Digil krs krs Krs bräkr mdlvärd v d m ss isiglvärd. y 5 x - 5 x- 5 x- - 5 x-3 5 x-4 Vd gör ovsåd krsr kvior? D örsärkr låg rkvsr bs D dr örsärkr hög rkvsr disk M hur? D vill vi ku bräk i d kurs. y.9 y- x b. y.5 y- x DA y Lågpssilr Rkosrukio Målsäig i kurs: örså smbd mll krsr lig ov och dss gskpr, spcill rkvsgskpr. Digil siglbhdlig, Isiuio ör lkro- och iormioskik Siusoids koiurlig x { cos 44 {.4 { A mpliud rkvs 443 Φ s x Priodid Ω viklrkvs Ω.4 { cos 44 { 44 rkvs A mpliud rigoomrisk smbd: Eulrs ormlr: Ω viklrkvs cos Ω si Ω Φ Ω Ω Ω Ω id ördröig 9 Digil siglbhdlig, Is ör lkro- och iormioskik Syisk lud, ågr xmpl övrs: vågorm, udrs: rkvsihåll Sius x si { Hz Digil siglbhdlig, Is ör lkro- och iormioskik Syisk lud, ågr xmpl övrs: vågorm, udrs: rkvsihåll AM-sys x.8 si { si 3 { Hz 66 Hz Addiiv sys summ v siussiglr rombo x si k { k k Hz M-sys Ymh x si{ { 3 si { } Hz Hz Clri
4 3 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Priodisk siglr, siglr uppbyggd v hrmoisk dlor Siglr som är priodisk, dvs smm vågorm upprps md priod k skrivs som summ v siussiglr md hrmoisk dlor. Siglr bsår v rkvskompor hrmoisk dlor,, 3, 4 osv där Sigl k llså skrivs klls grudo x A Asi φ A si φ A si 3 φ osv Exmpl 3 3 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Smplig sid x cos 44 {.4 vläs md rkvs llr x x. s Hz mll vläsigr 44 cos.4 s s 44 dvs. 44 Bckigr: Ω rkvs rspkiv viklrkvs ör idskoiurlig siglr. rkvs rspkiv viklrkvs ör idsdiskr siglr. Övrs : Vågorm, drs: rkvsihåll 3 4 Digil siglbhdlig, Isiuio ör lkro- och iormioskik idsdiskr sius sid 3 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Kpil Discr-im Sigls sid 4-43 Bckigr: x i viss böckr väds x[] x cos cos hll, 8.5 <.5 gr mis smplpriod, x 4 {... ör övrig Impuls: δ ör övrig 4...} { 4 } {......} Hur ri rkvsihåll? Spkrum X priod Lyss på sigl gom spl upp d gom DA-omvdlr Vi välr u priod < <.5 och splr upp md s Hz -5 < < 5 vrklig rkvs y cos 8 cos 5 5 Sg: u < {......} x u x cos Diiio: Kusl sigl sigl som är ör giv idx Md hälp v impuls k vi skriv x { 4 } δ 4 δ δ x k δ k k 6
5 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Exmpl på krsr sid 57, 58 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Ergi, k sid 44, 45 A ördröig ski x z - yx- rgi: E x B örs ordigs krs x z - y k: P E< klls rgy sigl <P< klls powr sigl x.5 y.5 y- x- Jäm, udd C Adr ordigs krs x z z - y äm v x x udd odd x x spglig v x oldig, rlcio Här bhövr vi hälp v Z-rsorm, kp 3. krig origo gr y x Mr om srukurr i kpil Digil siglbhdlig, Isiuio ör lkro- och iormioskik Discr-im Sysms LI sysms IR,IIR IR: Krs md ädlig mi x. y x x IIR: Krs md oädlig mi x. y.5 y x Liri om x α x β x gr y α y β y Ski ivri om x y mdör x y Digil siglbhdlig, Isiuio ör lkro- och iormioskik Mmik i kurs Komplx l: z b r Φ r Φ där r b Φ rc b om > rcosφ rsiφ Eulrs ormlr: cos si Omskrivig md Eulrs ormlr:, cos si BIBO-sbili Boudd ipu > boudd oupu om ör vr x M x gällr y M y < Vlig vä rigoomisk smbd cos cos b llr.5 cos b cos b cos cos.5 cos cos 9
6 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Gomrisk summ: S oädlig summ S ädlig summ Bvis ör gomrisk summ:... Bild... g u dirs D gr summ D oädlig summ... < om Digil siglbhdlig, Isiuio ör lkro- och iormioskik Om år vi si si Jämör igrl: si d
Digital Signalbehandling i multimedia
Digil siglhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy Digil siglhdlig, Is ör lkro- och iormioskik örläsig Exmpl: Ekok Digil Siglhdlig i mulimdi EI65 Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr
Digital Signalbehandling i multimedia
LH, Lud Uivrsi örläsig Digil Siglhdlig i mulimdi EI65 Digil Siglhdlig Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr Lågpssilr Rkosrukio Digil Sigl Procssig: Pricipls, Algorihms, d Applicios. Joh G.
Digital signalbehandling
Istitutio ör ltro- och iormtiosti LH, Lud Uivrsity örläsig : Siglbhdlig ESS4 Siglbhdlig siglbhdlig A/D sig. bhdl. ESS4 Smplig Rostrutio ISB -3-873-5, ISB -3-87374- Sigl Procssig: Pricipls, Algorithms,
Digital signalbehandling
Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity Förläsig : Digital Sigalbhadlig ESS4 Digital sigalbhadlig ESS4 3 ISBN -3-873-5 ISBN -3-87374- Digital Sigal Procssig: Pricipls, Algorithms, ad Applicatios.
Digital signalbehandling
Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity örläsig : Sigalbhadlig ESS4 Sigalbhadlig sigalbhadlig A/D sig. bhadl. D/A Lågpassiltr Lågpassiltr ESS4 9 Samplig krts Rkostruktio Sigal Procssig:
ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)
Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)
TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2
Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm
Föreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson)
Digitl siglbhdlig E040 örläsig 9 Digitl siglbhdlig E040 Kpitl 6 mplig LH 04 Ndlko Grbic (mtrl. frå Bgt Mdrsso Dprtmt of Elctricl d Iformtio chology Lud Uivrsity 6 Kpitl 6 mplig Vi tittr u ärmr på smplig
Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning
Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig
HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER
HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm
TENTAMEN Datum: 18 aug 11 TEN2: TRANSFORMMETODER
TENTAMEN Daum: aug TEN: TRANSFORMMETODER Program:. Daa/ lkro och. Gamla udr Mdicikkik Kur: MATEMATIK Kurkod HF, H Skrivid::5-:5 Hjälpmdl: Formlblad dla u låmpl och miiräkar av vilk p om hl. Lärar: Armi
TENTAMEN Datum: 4 feb 12
TENTAMEN Daum: b Tid: 8:5-:5 TEN: TRANSFORMMETODER Program: Daa/ lkro och Gamla udr Mdicikkik Kur: MATEMATIK Kurkod HF, 6H Skrivid:8:5-:5 Hjälpmdl: Formlblad dla u låmpl och miiräkar av vilk p om hl Lärar:
Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system
Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology
============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def
Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt
FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter
FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr
Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25
SF676, am 5 aug 7 Isiuio för mamaik, KH SF676, Diffrialkvaior md illämpigar am isdag 5 aug 7 Skrivid: 8:-: Eamiaor: Krisia Bjrklöv För godkä (bg E krävs r godkäda modulrr frå dl I Varj moduluppgif bsår
FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.
som gör formeln (*) om vi flyttar första integralen till vänsterledet.
Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl
Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson)
Digital sigalbhadlig ESS040 Förläsig 0 Digital sigalbhadlig ESS040 Kapitl 7 Digitala FourirTrasform DFT LTH 0 dlo Grbic (mtrl. frå Bgt Madrsso Istitutio för ltro- och iformatiosti Lud Uivrsity 53 Digital
vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr
Digital signalbehandling Föreläsningsanteckningar
Iiuio ör d- och lroi Digil iglhdlig Förläigcigr --7 Kur gr grudupr om ldr i mmi uryc, vi hir i i på pri implimrigr m ämr ädå dl å i örigåd. Vrör digil iglhdlig? Poiiv grrd oggrh (gräd v l ir) rproducrrh
TENTAMEN. Tillämpad digital signalbehandling. Sven Knutsson. Typgodkänd räknare Sven Knutsson: Signalprocessorn ADSP-2105
Istitutioe för dt- och eletrotei 4-8- TETAME KURSAM PROGRAM: m Eletroigejörslije å / läsperiod årsurs /läsperiod 4 KURSBETECKIG LET39 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3 7.3 HJÄLPMEDEL
Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.
Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
Frikort utskrivet 14/6 2013, giltigt t.o.m 23/4 2014 24/4 2014 150 kr 150 kr Första avgift erlagd för nytt avgiftsåret
Ho gosadssydd och fio D ä upp ill vaj ladsig a fassälla om osadsa sall vaa 1100 ll läg fö högosadssydd. D lagsifad högosadssydd ä isgilig. Elig Fullmäigs bslu ä högosadsa fö öpp hälso- och sjuvåd fö pso
Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )
6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så
Vilka varor och tjänster samt länder handlar svenska företag med? - och varför?
Emj www.mf.smj Smällsm fö u Emf uvcl d slml sm mlm ll läudvs smällsus. Syf ä lv övd fösåls fö u smällsm fu. Ml båd s c s fösåls fö u d s u Sv. Ml bså v fy s övd uf sm bdl usdl, bsmd, fsmd c ffl m. Uf bsvs
som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)
Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi
6 Strukturer hos tidsdiskreta system
6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.
VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera:
Dragningsresultat vecka 27-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till
1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter
Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn
Lösningar till övningsuppgifter i
Löigr ill öviguppgifr i Adr Svärdröm 999 Bäm mdlvärd och ffkivvärd för igl i figur. v Uppgif. -,5,5,5 ---------------------------------------------------------------------------------------------------------------
( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen
gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,
Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat
Sigal- och Bildbhadlig FÖREÄSNING 6 -trasform - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta systm. Vi ska s hur d hägr ihop md TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig.
1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.
Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma
Föreläsning 10 pn- övergången III
Förläsig 10 - övrgåg - övrgåg Tmrur RkombiBo Hög srömmr/säigr Småsiglmoll rmigskcis Sol LWiM Diffusioskcis 16-04- 0 Förläsig 10, Komo7ysik 016 1 Diffusiossrömmr E F V - V E F - µ µ = = i + 1 1 0 W W D
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)
TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita
Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y
Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE
Digital signalbehandling Sampling och vikning på nytt
Ititutio ör data- och lktrotkik Digital igalbhadlig Samplig och vikig på ytt 00-0-6 Bgrpp amplig och vikig har viat ig lit våra att hatra å till vida att dt har kät vårt att tolka vad om hädr md igal om
= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel
Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr
Föreläsning 7 pn-övergången III
Förläsig 7 -övrgåg III -övrgåg Tmrur Diovrir Småsiglmoll rmigskcis Diffusioskcis 13-4-17 Förläsig 7, Komofysik 13 1 Komofysik - Kursövrsik Biolär Trsisorr -övrgåg: kcisr Ookomor -övrgåg: srömmr Mi: Flsh,
TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor
ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs
ρ. Farten fås genom integrering av (2):
LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt
TENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare
Istitutioe för dt- och eletrotei 5-5-4 TETAME KURSAM PROGRAM: m Eletro- och dtigejörslije å / läsperiod årsurs /läsperiod 3 KURSBETECKIG LET39 96 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3
INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)
INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående
Sommarpraktik - Grundskola 2017
Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)
EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär
Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:
Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad
Digital signalbehandling Digital signalbehandling
Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso
( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =
gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:
============================================================ ============================================================
Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)
bruksanvisning/ user manual
bruksanvisning/ user manual IBU 50 - IBU 50 RF L ä s d e n n a b r u k s a n v i s n i n g f ö r s t! B ä s t a k u n d, T a c k f ö r a t t d u h a r v a l t a t t k -p ö pra o deun k t C. y lvii n dhao
Föreläsning 11: Grafer, isomorfi, konnektivitet
Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns
SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP
Armi Hlilovic: ETRA ÖVNINGAR, SF676 Sysem v lijär DE Sid v 6 SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Iehåll: Mrisorm Begyelsevärdesprobleme Eises- och eydighessse ör lijär sysem
Ämne: Svenska åk 5 Läromedel: ZickZack Skrivrummet åk 5 Beräknad tidsåtgång: 160 minuter per vecka
Pdgogisk plig: Skiv gum, bä, bskiv, fökl, isu och åbä x, åk 5 u v i s Å k l s I k B ä ö F b m gu A äs T E G 1 B Äm: Svsk åk 5 Läoml: ZickZck Skivumm åk 5 Bäkd idsågåg: 160 miu p vck LGR 11, l 1 Skols vägud
Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor
Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:
Jag vill inte vara ensam
Jg ill ine r ensm Krl-Gunnr Sensson G =132 f l m n o u s s s z f l l u z mp n s s n s s n s s n s s s s n s s n s s mps s n s s n s s n s s n s s n s s n ff s s s s s s s s s s s s mp s s s s s s s s s
Höstlov i Motala 2010
Höstlv i Mtl 2010 1-5 vbr S prgrt ch läs tt s sr udr årt på: tl.s/ug Bwlig Mtl Bwlighll Öppttidr Mådg 1/11 13.00-16.00 Tisdg 2/11 12.00-16.00 Osdg 3/11 13.00-16.00 Trsdg 4/11 12.00-16.00 Frdg 5/11 12.00-16.00
R S T. k a fp n a f s a f a f LAPLACETRANSFORMEN. (Enkelsidig) laplacetransform, forts. z. Antag. xt dt. Följaktligen existerar.
Atg Fö 6, 7 & 8 - Lplcetrsormlys 1 LAPLACETRANSFORMEN Låt ~x t xt e t, där R, såd tt z ~x t dt< ågot 0 > 0 R S T xt z < 0 0 xt dt Fölktlge exsterr F F l l ~ q xt q xt (el. grudde.) Fö 6, 7 & 8 - Lplcetrsormlys
Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl
1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta
Föreläsning 10. java.lang.string. java.lang.string. Stränghantering
Föläig Stäghtig j.lg.stig E täg btå tt tl tc Stäg i ht om objt l Stig E täg it modifi ft tt d h pt! Stig - l : ch[] - cot : it + lgth(): it + chat(it): ch + idxof(ch): it E täg h: Ett äd och lägd Ett tl
En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n
g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil
FÖRELÄSNING 13: Tidsdiskreta system. Kausalitet. Stabilitet. Egenskaper hos ett linjärt, tidsinvariant system (LTI)
p. FÖRELÄSNING 3: Tidsdiskrea sysem. Kausalie. Sabilie. Linjära idsinvariana sysem (LTI-sysem) Differenial- och differens-ekvaioner Räkna på idskoninuerlig LTI-sysem med Fourierr. (kursiv) Räkna på idsdiskre
Uppgifter 9 och 10 är för de som studerar byggteknik
INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt
Formelsamling Ljud i byggnad och samhälle
ormlsamlg jud bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grudläggad akusska dfor oh räkrglr -dmsoll la ljudåg som ubrdr sg os -rkg: Aos Effkärd rms
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
Trädstrukturer. Definitioner och terminologi. Informationsteknologi Tom Smedsaas 21 augusti 2016
Iformtiostkoloi Tom Smss uusti 6 Trästrukturr Dfiitior och trmioloi I list hr vrj o xkt ftrföljr (utom sist) och förår (utom först). Om vi tillåtr tt o hr flr ftrföljr rhållr vi trästruktur: c f h i j
Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion
Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?
27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.
27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E
(8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p
I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak
Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile
Digital signalbehandling Digitalt Ljud
Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1
Övning 3 - Kapitel 35
Övig 3 - Kapitel 35 7(1). Brytigsidex får vi frå Eq. 35-3: c = = v. 998 10 8 19. 10 8 ms ms = 156.. 6(4). (a) Frekvese för gult atriumljus är,998 10 589 10 5,09 10 (b) När ljuset färdas geom glas blir
Tentamen TEN1, HF1012, 1 juni Matematisk statistik Kurskod HF1012 Skrivtid: 8:00-12:00 Lärare och examinator : Armin Halilovic
Ttm TEN, HF, jui 7 Mtmtis sttisti Kursod HF Srivtid: 8:-: Lärr och mitor : Armi Hlilovic Hjälpmdl: Bifogt formlhäft "Formlr och tbllr i sttisti " och miirär v vil tp som hlst. Förbjud hjälpmdl: Tlfo, lptop
BUFFÉ. Smedj an, 340. Gr öndal, 270 Fr i t t er s på gul a är t or kr yddade med kor i ander f r ön
MIDDAGSMENY TRE RÄTTER Meny 1, 450 Sashi mi på Sal mal ax med mar i ner ad kål r abbi, f or el l r om, mi somaj onäs och kr assesal l ad Ör t f är ser ad går dskyckl i ng med ci t r on- och t i mj anpot
Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1
Kap 7 Fourierransformanalys av idskoninuerliga signaler Kap 7 Fourierransformanalys av idskoninuerliga signaler 2 Fourierransformen Fourierransformen ill x(): F { x() } = X(ω) = x() e jω d Inversa fourierransformen
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.
Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 12. Ex) på användning av z-transform: ljud. z-transform och TDFT, formler
Sigal- och Bildbhadlig FÖREÄSNING -trasfor - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta syst. Vi ska s hur d hägr ihop d TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig. aplac-trasfor
Schrödingerekvationen i 3 dim: Väteatomen.
Föläsig : Schödigkvtio i di: Vätto. Lösts v Schödig 96. Fökl spktllij få vätt och vis däd tt S. fg!!! Schödig kv i D: Ψ(, t) U( )Ψ(, t) i Ψ(, t) t Solikhtstolkig: Ψ(, t) d Noig: Ψ(, t ) d Sttioä tillståd:
1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekviosssem. Gusselimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekviosssem med oek m m m m ss) och m ekvioer: E lföljd -ippel) s s s är e lösig ill
Matematisk statistik
Teme TEN, HF, -5-4 Memis sisi Kusod HF Sivid: 8:5-:5 Läe: Ami Hlilovic Hjälmedel: Bifog fomelhäfe "Fomle och belle i sisi " och miiäe v vile som hels Siv m och esoumme å vje bld De emesl få ej behålls
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar
DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +
Digital signalbehandling Föreläsningsanteckningar Bilagor
Bilaa Istitutio ör data- och lktrotkik Bilaor -3-8 U ma U ma U ma Varias (kvatisrisbrusts kt) 3 σ P() d 3 d 3 3 4 4 Altrativt, kvatisrislts kt τ är d tid som sial lir iom kvatisrisstt Bil.vsd Flt är ästa
vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )
rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------
TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000
TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8
VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 249 lottnummer 1.000 kronor vardera:
Dragningsresultat vecka 10-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
o n k o k t k t fk t ej k t ek t k t o n k k k k k k jz
Ta tre mideråriga arr. Edeius yr. Herzberg Sra 1 Sra2 At 1 At2 Ter Bass1 Bass2 Sra1 a 4 ej ej t G =120 t t t t t t t a Sra2 4 4 ej ej a At1 4 s dj s s s s dj s s s a At2 4 4 s dj s s s s dj s s s 4 b Ter
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar
Hela denna bilaga är en annons från bråviken bil
d b ä os få båk b Ö : Ö 1-17 Ö 1-17 5 6 O VÄ P Ö ORR F R Ö Ö Fä Å o Å Ö u F /F X u o F C o ä u F F C Å 2 % ouä öw cz Y Puo å 38 o u b s VÄj P j F Rju R V FRÄ 2, 5% FjP år: kbox hu sbå Pyso V 2 x V-skäm