============================================================ ============================================================
|
|
- Ulrika Pettersson
- för 8 år sedan
- Visningar:
Transkript
1 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y) :, y f ( )} Då gäller: Are( D) f ( ) d (F) Lå D vr e pl område mell vå oiuerlig urvor som defiiers med, g( ) y f ( ). Då gäller: Are( D) [ f ( ) g( )] d (F) Om område D defiiers v c y d, f ( y) då vi y roll för och y och iegrer på y. d då lir re(d ) c f ( y) dy Om område D defiiers v c y d, g( y) f ( y) då lir re(d ) [ f ( y) g( y)] dy d c v
2 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler ÖVNINGAR Uppgif. Förlr formel re( D) f ( ) d (F) där D {(, y) :, y f ( )} och y f () e oiuerlig ice-egiv fuio. Lösig: Med rä lijer delr vi D i delområde D. Då lir re( D) re( ). D Lå m och M vr fuioes mis och sörs värde i de slu iervlle [, + ] och Δ +. Vi upps re D ) med hjälp v vå reglr: ( mδ re( D ) M Δ. Därför hel re( D) re( D ) D m M uppss med + + m Δ re( D) M Δ (*) dvs med e uder- och e över-riemsumm som hör ill iegrle f ( ) d. Elig gde är f () e oiuerlig fuio och därmed eiserr iegrle. Därför, om m( ) ( och därmed ) går åd Riemsummor i (*) mo iegrle dvs Δ f ( ) d och vi får frå (*): f ( ) d re( D) f ( ) d re ( D) f ( ) d vd sulle viss. Amärig. På lide sä härleder m ovsåede formel (F). v
3 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler Uppgif. Berä re v de områdee som egräss v ) y, och y ) y ( dvs -el), y rc, och c) y ( dvs -el), y si, och 3 d) y 5 ochh y 8 Lösig: ) Förs esämmerr vi särigspuer: å 4 4, 4 ( Am: Vi susiuer i åd fuioer för oll vile fuio är sörre i iervlle [,4] ) Are / 4 Svr ) ) Are rc De oesämd iegrle rc erär vi med hjälp v priell iegrio: u rc v' u' + + v rc ( )d rc rc rc l. Därför rc rc l l 3 v
4 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler Svr ) l c) Are si( ) d [ coss ] d) Vi eecr f ( ) 3 55 och g ( ) 8 Särigspuer : f ( ) g( ) ,, 3 4 Vi delrr eräig i vå delr: i) I iervlle är f ( ) g( ) ( M e jämför f() och g() för ise de. ) [ Are A f ( ) g( )] d 3 6 [ + 8] d 4 ii) I iervlle 4 är omvä g( ) f ( ) ( Jämför f(3) och g(3) för ise de) 4 [ Are A g( ) f ( )] d Därför hel re ges v AA+A 8. Svr d) Are 8 4 [ ] d 4 Uppgif 3. Berä re v de områdee i förs vdre v urvor (dvs >, y>) som egräss y, y och 9 y. Lösig. Förs esämmer vi särigspuer mell urvor:.för dee vå rä lijer y, y hr vi y, y ±. Vi r som ligger i förs vdre 4 v
5 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler Till slu 3. y, y ± där 3 3 ligger i förs vdre Are A+A ( ) d + ( ) + ( + l3) l3 9 d Svr: Are l 3 Uppgif 4. Berä re v de område som ligger mell urv 4 + si(7 y) och lijer, y och y. Lösig: Are(D) cos(7y) [4 + si(7y )] dy 4y v
6 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler Uppgif 5. Vis ellipissiv med hlvlr och hr re A. y Tips. Elipses evio är + Lösig. Vi erär re v de del som ligger i förs vdre och därefer muliplicerr med 4. y Frå evioe + får vi y ± där y + är evioe för de övre dele v urv. A d. ör lös iegrle väder vi susiuioe si d cosd, Gräser: /, / / A cos d cos cosd d / + cos() si() / d + Därmed lir ellipses re lir 4 A, 4 6 v
7 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler Amärig: Om hr vi e cirel med rdie och vi får de äd formel; cirels re. PARAMETERKURVOR. Vi err e fuios urv y f (), som är give äve på prmeer form y h(), g(), där y h() är oiuerlig, g() är oiuerlig deriverr fuio. Vi r vidre g() är mooo i iervlle och därmed vrje värde svrr mo e e -värde och speciell ( ), ( ). Då vi sriv om reformel elig följde re(d) ( ) d yd y( ) ( ) d h( ) g f ( ) d Amärig: Om g() är VÄXANDE, då pue svrr mo och dvs, och vi hr re(d) ( ) ( ) d y. mo Om g() är AVTAGANDE, då hr vi omvä ordig: svrr mo och mo, och i de fll re(d) ( ) ( ) d y. Uppgif 6. Berä re mell -el, lijer, och urv ) si, y + cos(), / ) cos, y + cos(), / Lösig: ) Fuioe si är oiuerlig deriverr, 7 v
8 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler cos, och väde för /. För ädpuer och / hr vi mosvrde -värde ( ) si och ( / ). Allså, för vrje i iervlle [, / ] får vi e e i iervlle [,] där väser ädpu svrr mo och höger ädpu svrr mo / Därför / re(d) yd y( ) ( ) d ( + cos)cosd Vi rsformerr iegrde ( + cos)cos ( + cos si )cos (3 si ) cos för u väd vrielye yp f (si ) cosd : / Are (3 si )cosd 7 (3 v ) dv 3 Vrielye: v si dv cosd v / v Svr ) 3 7 ) cos, y + cos(), /, ' si Efersom ( ) cos är sörre ä ( / ) cos( / ) ser vi väser ädpu ( för iervlle på -el) svrr mo / Därför re y( ) ( ) d / ( + cos())( si( )) d Vi rsformerr iegrde ( + cos) ( si) ( + cos si ) ( si) ( + cos ) ( si) för u väd vrielye yp f (cos ) si d : 8 v Vrielye: v cos dv si d v / v
9 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler Are ( + cos )( si) d / 5 ( + v ) ( dv) 3 Svr ) 3 5 Uppgif 7. Berä re mell -el och urv ( cyloide) ) si, y cos, Lösig: Srpue svrr mo. Edpue svrr mo d d ( cos ) d. Are yd ( cos)( cos) d + cos ( cos + cos ) d ( cos + ) d 3 Svr: Are 3 Uppgif 8. Berä re mell -el och urv +, y si, Lösig: Srpue svrr mo. Edpue svrr mo. 9 v
10 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler d d ( + ) d Are yd ( + )si( ) d [prielliegrio] + [ cos cos + si( ) ] Svr: Are + ( AREABERÄKNING I POLÄRA KOORDINATER) Vi err re v e vielformde område som defiiers med hjälp v polär oordier θ och r. ( r cos( θ), y rsi( θ) ) Område D defiiers med θ, r r( θ) där och är oser och r r(θ) e oiuerlig fuio i iervlle θ (se edsåede figur). Då gäller re(d) [ r( dθ. v
11 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler Uppgif 9. Härled formel re(d) [ r( dθ, där område D defiiers med θ, r r( θ), r r(θ) e oiuerlig fuio i iervlle θ och är oser och Lösig: Vi rir hlvsrålr och delr D i delområde D. y r r O Då lir re ( D ). re( D) re( ). Med hjälp v vå cirelseorer vi upps D Noer re v e cirelseor med rdie r och viel v (i rdier) är v r v A r. Därför uppsr vi re D ) med ( v
12 Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler ( r ),mi Δ ( r,m θ re( D ) Δθ ) och hel re re( D) re( ) med D ( r,mi ) ( r,m) Δθ re( D) Δθ (*) Vi hr llså pproimer re (D) med e uder- och e översumm för iegrle [ r( dθ. Fuioe [ r ( är oiuerlig efersom, elig gde, r (θ ) är oiuerlig. Därmed eiserr [ r( dθ. Därför, om m( Δθ ) ( och därmed ) går åd Riemsummor i (*) mo iegrle [ r( dθ och ( *) ger [ r( dθ re( D) [ r( dθ dvs re( D) [ r( dθ ( vd sulle viss). Uppgif. Berä re v område D som defiiers v r cos(θ ), Lösig: Vi erär re v område D med hjälp v formel θ. 4 / 4 / 4 ( cos(θ )) dθ cos(θ ) dθ re( D) [ r( dθ si(θ ) / 4 Svr: re ( D) v
SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP
Armi Hlilovic: ETRA ÖVNINGAR, SF676 Sysem v lijär DE Sid v 6 SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Iehåll: Mrisorm Begyelsevärdesprobleme Eises- och eydighessse ör lijär sysem
Läs merc k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om
RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså
Läs merFOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.
Läs mer1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekviosssem. Gusselimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekviosssem med oek m m m m ss) och m ekvioer: E lföljd -ippel) s s s är e lösig ill
Läs merH1009, Introduktionskurs i matematik Armin Halilovic. Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är
H009, Inrodukionskurs i memik Armin Hlilovi NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definiion. En irkel är mängden v de punker i plne vrs vsånd ill en given punk är
Läs merLINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER
ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder LINJÄ VBILDNING V PUNKE OCH PUNKMÄNGDE vildig v e puk Vi hr defiier lijär vildigr ell vå vekorru Vi k forell erk puker so orsvekorer och däred erk vildigr
Läs mer1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
Läs merHuvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral
ri Hlilovic: EX ÖVNING Mss och tgdput ILLÄMPNING V INEGLE. MSSN OCH YNGDPUN MSSN Huvud etod för eräig v ss för e v e ropp ed desitete, är trippelitegrl, dd so hör till urse i flervriells. Me, ågr el prole
Läs merhelst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god
Teme i TEN, HF, Memisk sisik Dum -8-7 Kurskod HF Skrivid: 5-75 Lärre: Armi Hlilovi Hjälmedel: Bifog formelhäfe (" Formler oh beller i sisik ") oh miiräkre v vilke y som hels De är INTE TILLÅTET väd miilo,
Läs merI den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak
Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile
Läs merApproximationen med den här metoden kallas minstakvadratmetoden.
Ari Hlilovic: EXTRA ÖVNINGAR MINSTAKVADRATMETODEN Mistvdrtetode. INLEDNING frå lijär lger) Låt vr ett olösrt sste dvs. ett sste so sr lösig). Vi sriv ssteet på fore A = ss ) där...... A, och................
Läs merHOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER
HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm
Läs mer(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd.
Armi Hlilovic: EXTRA ÖVNINGAR Lijär ekvioem. Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () och m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
Läs merUPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor
Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista
Läs merDIAGONALISERING AV EN MATRIS
Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr
Läs mervara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )
rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------
Läs merÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.
ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst
Läs merär ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.
Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer
Läs merTILLÄMPNINGAR AV DIAGONALISERING Beräkning av potenser A n. Rekursiva samband (s.k. differensekvationer).
rmi Hlilovic: ETR ÖVNINGR Tillämpigr v digoliserig TILLÄMPNINGR V DIGONLISERING Beräig v poteser. Reursiv smbd s.. differesevtioer. Beräig v poteser med hjälp v digoliserig Om mtrise är digoliserbr dvs
Läs merEkvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
Läs merDefinition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)
Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given
Läs mer10. Tillämpningar av integraler
90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re
Läs mer= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel
Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr
Läs mersom är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)
Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merKOORDINATVEKTORER. BASBYTESMATRIS
Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme
Läs merMatematisk statistik
Teme TEN, HF, -5-4 Memis sisi Kusod HF Sivid: 8:5-:5 Läe: Ami Hlilovic Hjälmedel: Bifog fomelhäfe "Fomle och belle i sisi " och miiäe v vile som hels Siv m och esoumme å vje bld De emesl få ej behålls
Läs merf(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Läs merKVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER
rmi Hlilovi: EXR ÖVNINGR v Ivers mtriser KVDRISK MRISER, DIGONLMRISER, MRISENS SPÅR, RINGULÄR MRISER, ENHESMRISER, INVERS MRISER KVDRISK MRISER Defiitio E mtris me rer oh oloer, lls vrtis typ Defiitio
Läs merDubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
Läs merFORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats:
TRIGONOMETRISKA FORMLER... si 0 si 6 FORMELBLAD HF700, Bggproduktio 6. si cos 7. si45 si 4 si( ) t( ), cos( ) cos( ) cot( ) si( ) 8. cos( ) coscos sisi si 60 si 4. 9. cos( ) coscos sisi cos 0 cos 6 5.
Läs merNågot om funktionsföljder/funktionsserier
mtemtis metoder E, del D, FF Något om futiosföljder/futiosserier. Putvis och liformig overges Vi etrtr reellvärd futioer med gemesm defiitiosmägd D IR, M D. Me (äst) llt går helt logt för omplevärd futioer
Läs merRättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8
Läs merKURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))
Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en
Läs merDN1240 numi12 1
F7 Ssem av ODE - iiialvärdesproblem Exises & edige Lipsciz Euler overges fel overgesordig Lösigssaror fasrum Sabilie äslige Högre ord. evaio ill försa ord. ssem Ruge-Kua-meoder seglägdsreglerig Sva evaioer
Läs merTentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15
Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.
Läs merINTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM )
Armi Hlilovic: EXTA ÖVIGA Cuchys itegrlriterium ITEGALKITEIET ( äve lls CAUCHYS ITEGALKITEIUM ) POSITIVA SEIE Defiitio E serie är ositiv om 0 för ll Eftersom delsummor v e ositiv serie bildr e väde ositiv
Läs merTaylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden.
Armi Hlilovic: EXRA ÖVNINGAR ylors ormelör evribeluktioer AYLORS FOREL FÖR FUNKIONER AV EN VARIABEL ylors ormel väds bl vid i umerisk beräkigr ii optimerig och iii härledigr iom olik tekisk och mtemtisk
Läs merAPPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL
Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a
Läs merDefinition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är
Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.
Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie
Läs merFörslag till övningsuppgifter FN = Forsling/Neymark, K = Kompendiet Vektorer, linjer och plan, ÖT = Övningstentamen
TNA00 Förslag till övigsugiter FN = Forslig/Neymar, K = Komediet Vetorer, lijer och la, ÖT = Övigstetame Vetorer, lijer och la ÖT:4,, K, K och Ugitera, och eda Ugit x Lije y t, t R z a) Beräa avstådet
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merTentamen i Envariabelanalys 1
Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,
Läs merInledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan
Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle
Läs mera) Bestäm samtliga asymptoter (lodräta/vågräta/sneda). b) Bestäm samtliga stationära punkter och deras karaktär (min/max/terrass). c) Rita grafen.
TENTAMEN Kurs: HF9 Matematik, moment TEN (analys) atum: okt 8 Skrivtid 4:-8: Eaminator: Armin Halilovic För godkänt betyg krävs av ma 4 poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive
Läs mer1 Armin Halilovic: EXTRA ÖVNINGAR
Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger
Läs merTentamen med lösningar i IE1304 Reglerteknik Måndag 16/
Tetme me löigr i IE4 Reglertei Måg 6/ 9.-. Allmä iformtio Emitor: Willim Sqvit. Avrig lärre: Willim Sqvit, tel 8-79 4487 Cmpu Kit, Tetmeuppgifter behöver ite återläm är u lämr i i rivig. Hjälpmeel: Räre/rfräre.
Läs merFöljande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Läs merEkvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm
Läs merFöreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)
Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merLINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Läs mer1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Läs merInterpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system
Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar
Läs merV1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Läs merV1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Läs merEkvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Läs mervara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr
Läs merTEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)
EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär
Läs mer13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Läs merTillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
Läs merINLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp
rmi Hliloic: EXR ÖVNINGR Lijär bildigr LINJÄR VBILDNINGR INLEDNING: Fktioer bildigr Beteckigr och grdbegrepp Defiitio E fktio eller bildig frå e mägd till e mägd B är e regel som till ågr elemet i ordr
Läs merKURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:
Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn
Läs merFöljande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Läs merTENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare
Istitutioe för dt- och eletrotei 5-5-4 TETAME KURSAM PROGRAM: m Eletro- och dtigejörslije å / läsperiod årsurs /läsperiod 3 KURSBETECKIG LET39 96 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3
Läs merORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Läs merTNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =
Läs mervara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett
Läs merMatte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor
Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:
Läs merORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Läs merSvar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y
Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE
Läs merTENTAMEN HF1006 och HF1008
TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och
Läs merSF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
Läs merTENTAMEN. Tillämpad digital signalbehandling. Sven Knutsson. Typgodkänd räknare Sven Knutsson: Signalprocessorn ADSP-2105
Istitutioe för dt- och eletrotei 4-8- TETAME KURSAM PROGRAM: m Eletroigejörslije å / läsperiod årsurs /läsperiod 4 KURSBETECKIG LET39 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3 7.3 HJÄLPMEDEL
Läs mer11.7 Kortversion av Kapitel INTEGRALBEGREPPET
498 11. INTEGRALBEGREPPET Defiitio 11.16 R är e obestämd itegrl. De beteckr e primitiv fuktio till f(x). Vi smmfttr skillder mell bestämd och obestämd itegrler: Obestämd itegrl: itegrle skr gräser. De
Läs merKVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER
rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs mer( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen
gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,
Läs mer============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
Läs merKompletterande material till kursen Matematisk analys 3
Kompletterde mteril till kurse Mtemtisk lys 3 Augusti 2011 Adrzej Szulki 1 Supremum, ifimum och kotiuerlig fuktioer I ppedix A3 i [PB2] defiiers begreppe supremum och ifimum. mooto tlföljder är ekvivlet
Läs merRandvillkoren tecknas
Tenis Högsoln i Linöping, IEI /Tore Dhlberg TENTMEN i Hållfsthetslär - Dimensioneringmetoder, TMHL09, 2007-06-05 l 8-12 R O B L E M med L Ö S N I N G R Del 1 - (Teoridel utn hjälpmedel) 1. En bl belsts
Läs mersom gör formeln (*) om vi flyttar första integralen till vänsterledet.
Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl
Läs mer15 Multipelintegraler, sfäriska koordinater, volymberäkningar
Nr 5, 9 april -5, Amelia 5 Multipelintegraler, sfäriska koordinater, volmberäkningar 5. Multipelintegraler et finns många tillämpningar där fler än tre variabler är aktuella. I statistik kan vi vilja undersöka
Läs merTentamen i Flervariabelanalys F/TM, MVE035
Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg
Läs merKap Generaliserade multipelintegraler.
Kap 4.3. Generaliserade multipelintegraler. 50. Beräkna följande generaliserade multipelintegraler: A a. dxdy, ges av x, 0 xy x A b. A c. A d. A e. K x ( + x 2 )( + x 2 y 2 ) dxdy, ges av x > 0, xy x dxdy,
Läs merVektoranalys II. Anders Karlsson. Institutionen för elektro- och informationsteknik
Vektoranalys II Anders Karlsson Institutionen för elektro- och informationsteknik 9 september 215 Översikt 1 Kurvor och ytor, linje- och yt-mått 2 Integraler, Kap. 1.3 Linjeintegraler Ytintegraler Volymsintegraler
Läs merSystem med variabel massa
Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe
Läs merEkvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp.
VÅGEKVATIONEN Vi betratar följade PDE u( u( x t, där > är e ostat, x, t (ev) Evatioe (ev) a besriva vågutbredig, trasversella svägigar i e sträg och adra fysialisa förlopp Radvärdesproblemet består av
Läs merPlanering för Matematik kurs E
Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.
Läs mer= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.
Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att
Läs merRIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
Läs mer3-fastransformatorn 1
-fastrasformator TRANSFORMATORN (-fas) A B C N φa φb φc rimärsida N E -fastrasformator består i pricip av st -fastrasformatorer som är sammaopplade. Seudärsida N YNy trafo. a b c KOLNGSSÄTT rimärsida a
Läs merTentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
Läs merFöljande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A
Läs merTentamen: Lösningsförslag
Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet
Läs mer============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Läs merProblem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik
KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna
Läs mer