TNA001- Matematisk grundkurs Tentamen Lösningsskiss
|
|
- Roland Nyberg
- för 5 år sedan
- Visningar:
Transkript
1 TNA00- Matematisk grudkurs Tetame Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + = 4 x = x = I x + x = 4 x = x = I Svar: x =, x =.a) Lijes ekvatio isatt i plaets ger ( + s) ( + s) + (4 s) = 0 s = vilket ger skärigspukte ( +, +, 4 ) = (, 5, ). b) Origo, O, ligger i plaet. Vi ritar e figur. u u = ( ) P O Q Det kortaste avstådet mella pukte P och plaet ges av u. Vi bildar vektor u = OP = ( ). 6 Projektiosformel ger ( ) ( ) u = 6 ( ) = ( ) som ger avstådet u =. Svar: Det kortaste avstådet mella pukte och plaet är l.e.
2 .a) Vi får si x 5 si x + = 0 [t = si x] t 5t + = 0... t =, t = vilket ger si x = si x = si π 6 x = π 6 + π eller x = 5π 6 samt si x = som sakar lösig ty V si = [,]. + π Svar: x = π 6 + π eller x = 5π 6 + π, Z. b) Trigoometriska etta ger cos v + si v = cos v = ± si v och då π < v < π fås vilket ger samt ta v = cos v = ( ) = si v = si v cos v = ( ) = 4 si v cos v = si v cos v si v = 4 ( ) ( ) = 4 7 = 4 7. Svar: si v = 4 4, ta v =. 7 4.a) z = + i ger arg z = π (+ π) samt z = ( ) + ( ) =. Svar: arg z = π (+ π), z =. b) Vi får z = + i = e iπ vilket ger z = (e iπ ) = e iπ = e i(8π +4π ) = e i4π Svar: z = 0 0 i. = (cos 4π + i si 4π ) = ( i ) = 0 0 i. c) Vi får med z = x + iy z + 4 = z + x + iy + 4 = x + iy + (x + 4) + iy = (x + ) + iy (x + 4) + y = (x + ) + y (x + 4) + y = 4((x + ) + y ) x + 8x y = 4x + 8x y x + y = x + y = 4 = vilket ger alla pukter på e cirkel med medelpukt i origo och radie. Svar: Alla pukter på e cirkel med medelpukt i origo och radie.
3 5.a) Vi får e x + e x 0e x + 8 = 0 [t = e x, t > 0] t + t 0t + 8 = 0 och prövig ger att t = är e rot till ekvatioe. Faktorsatse ger då att t är e faktor till polyomet i västerledet. Polyomdivisio och faktoriserig ger då Med t = e x, t > 0 fås då t + t 0t + 8 = 0 (t )(t + t 8) = 0... (t )(t )(t + 4) = 0. samt e x = 4 som sakar lösig ty e x > 0. Svar: x = 0, x = l. t =, t =, t = 4. e x = x = l = 0, e x = x = l b) Eftersom fuktioe f(x) = e x, där D f = R, är strägt växade och därmed har ivers fås dvs f (x) = l(x+). y = e x e x = y + x = l(y + ) x = l(y + ) Då D f = R ger detta att V f (x) = R. Och vi ser också ur f (x) = l(x+) att D f (x) = ], [ ty x + > 0 x >. Svar: f (x) = l(x+), D f (x) = ], [, V f (x) = R. 6.a) Defiitiosmägde för l ger () x 4 > 0 (x )(x + ) > 0 [Teckeschema] x ], [ ], [ () x > 0 vilket ger D olikhet = (], [ ], [) ]0, [ = ], [. Vi får då l(x 4) l + l x, x ], [ l(x 4) l x, x ], [ [lfuktioe strägt växade] x 4 x, x ], [ x x 4 0, x ], [ (x + )(x 4) 0, x ], [ [Teckeschema] x [,4] ], [ = ], 4]. Svar: Olikhete har lösigsmägde x ], 4]. b) Vi tar e pukt i respektive pla och bildar e vektor frå det ea plaet till det adra. Vi får 0 8 u = ( 0 ) ( 0) = ( 0) Vi projicerar dea vektor på ormalvektor = ( ), och får
4 8 ( 0) ( ) u = 0 ( ) = 8 ( ). Det kortaste avstådet ges då av u = 8. Svar: Det kortaste avstådet mella plae är 8 l.e. 7. Vi udersöker påståedet med iduktio. Steg. För = fås ger VL() = HL() om t VL() = k + k k= = t och HL() = t + t t = t + t t ( + t) t = 0 t ( + t) t = 0 t + t t = 0 t(t + t ) = 0... t =, t = 0, t =. Nu udersöker vilka av dessa som stämmer. t = ger 4 k + k k= = Där vi direkt ser att detta påståede ej stämmer för alla Z + ty högerledet är ej defiierat för = och för > är dessutom högerledet egativt, vilket är omöjligt då västra ledet edast iehåller e summa av positiva termer. t = 0 ger som är sat. t = ger 0 = 0 k= k + k k= = + Steg. För = fås (reda visat) dvs VL() = HL(). VL() = k + k k= = + = och HL() = + =.
5 Steg. Atag att påståedet är sat för ågot p Z +, dvs Detta medför och vi har p+ p k= = p. k+k p+ VL(p + ) = k + k = k + k + (p + ) + (p + ) = el. atagadet = dvs VL(p + ) = HL(p + ). k= p k= p p + + (p + ) + (p + ) = p p + + p + + p + p + = p p + + p + p + = p p + + (p + )(p + ) p(p + ) + (p + )(p + ) = p + p + (p + )(p + ) = (p + )(p + ) (p + )(p + ) = p + p + HL(p + ) = p + (p + ) + = p + p + Därmed har vi visat att om sambadet gäller för = p så gäller det för = p +. Steg. Sambadet gäller eligt Steg för =. Eligt Steg gäller det då äve för = + =. Då gäller det äve för = + = och = + = 4 o.s.v. Alltså gäller sambadet för alla Z +, VSV. Svar: Se ova.
5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
Läs merTNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
Läs merUppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Läs merProblem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.
UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt
Läs merInledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan
Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle
Läs merInledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana:
TATA79/TEN3 Tetame, 08-04-06 Iledade matematisk aalys. Utred med bevis vilket eller vilka av följade påståede är saa: (a) Om x 7 är x(x 3) 5; (b) Om (x )(x 6) 0 är x 6; (c) (x + 6)(x ) > 0 om x > 6. Solutio:
Läs merTNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör
Läs merTNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA001- Matematisk grundkurs Tentamen 016-10-8 - Lösningsskiss 1. a) 1 1 1 0 0 1 0 + 1 0 Sedvanligt teckenschema visar att detta är uppfyllt [,0[. Svar: [,0[. b) Vi löser ekvationen 1 = genom att studera
Läs merH1009, Introduktionskurs i matematik Armin Halilovic. använder vi oftast induktionsbevis.
MATEMATISK INDUKTION För att bevisa att ett påståede P() är sat för alla heltal 0 aväder vi oftast iduktiosbevis Iduktiossatse Låt P() vara ett påståede vars saigsvärde beror av heltalet 0 där 0 är ett
Läs mervara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
Läs merOm komplexa tal och funktioner
Om komplexa tal och fuktioer Aalys60 (Grudkurs) Istuderigsuppgifter Dessa övigar är det täkt du ska göra i aslutig till att du läser huvudtexte. De flesta av övigara har, om ite lösigar, så i varje fall
Läs merH1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Läs merSvar till tentan
UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Prov i matematik ES, K, KadKemi, STS, X ENVARIABELANALYS 0-03- Svar till teta 0-03-. Del A ( x Bestäm e ekvatio för tagete till kurva y = f (x =
Läs merTentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl
TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte
Läs merTentamen i Flervariabelanalys F/TM, MVE035
Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg
Läs merFörslag till övningsuppgifter FN = Forsling/Neymark, K = Kompendiet Vektorer, linjer och plan, ÖT = Övningstentamen
TNA00 Förslag till övigsugiter FN = Forslig/Neymar, K = Komediet Vetorer, lijer och la, ÖT = Övigstetame Vetorer, lijer och la ÖT:4,, K, K och Ugitera, och eda Ugit x Lije y t, t R z a) Beräa avstådet
Läs merUppgift 3. (1p) Beräkna volymen av pyramiden vars hörn är A=(2,2,2), B=(2,3,4), C=(3,3,3) och D=(3,4,9).
Kotrollskriig 9 sep 06 VERSION B Tid: 8:5-000 Kurser: HF008 Aalys och lijär algebra (algebradele HF006 Lijär algebra och aalys (algebradele Lärare: Ari Haliloic, Maria Arakelya, Fredrik Berghol Exaiator:
Läs merÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.
ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst
Läs merTenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2
Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5
Läs merb 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Läs merBertrands postulat. Kjell Elfström
F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.
Läs merDel A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1
UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.
Läs merTillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
Läs mervara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
Läs merTentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Läs merEkvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Läs merTentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl
1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs mer4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Läs merStången: Cylindern: G :
mekaik I, 09084- A V H f mg G N B 3 d Frilägg cylider och de lätta ståge! Ståge påverkas av kraftparsmometet M samt kotaktkrafter i A och O. Cylider påverkas av kotaktkrafter i A och B samt tygdkrafte
Läs merLinjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Läs merc n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Läs merGenomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Läs merÖvning 3 - Kapitel 35
Övig 3 - Kapitel 35 7(1). Brytigsidex får vi frå Eq. 35-3: c = = v. 998 10 8 19. 10 8 ms ms = 156.. 6(4). (a) Frekvese för gult atriumljus är,998 10 589 10 5,09 10 (b) När ljuset färdas geom glas blir
Läs merKontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10
KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade
Läs merSida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.
Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a
Läs merVad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Läs merTentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Läs mer29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-6, 29/10-8/11, = m n
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Trasformmetoder, 5 hp ES, gyl, Q, W --9 Sammafattig av föreläsigara - 6, 9/ - 8/,. De trigoometriska basfuktioera. Dea kurs hadlar i pricip om att uttrycka
Läs mer1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Läs merRättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8
Läs merx 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Läs merKompletterande material till kursen Matematisk analys 3
Kompletterde mteril till kurse Mtemtisk lys 3 Augusti 2011 Adrzej Szulki 1 Supremum, ifimum och kotiuerlig fuktioer I ppedix A3 i [PB2] defiiers begreppe supremum och ifimum. mooto tlföljder är ekvivlet
Läs merFourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL
Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.
Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie
Läs merStela kroppens rotation kring fix axel
FMEA10 01 Sammafattig av Föreläsig om Stela kroppes rotatio krig fix axel (FMEA10) Föreläsig 1: Kiematik (14.-14.5) Cirkelrörelse: E partikel P rör sig i e cirkelbaa med radie R. Vi iför cyliderkoordiater
Läs merInduktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Läs meri de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering.
Kap 9. 9.5, 9.8 9.9, 6.5. Talföljd, mootoa talföljder, koverges, serier, koverges, geometriska serier, itegralkriterium, p serier, jämförelsekriterier, absolut koverges, altererade serier, potesserie,
Läs merTentamen i Envariabelanalys 1
Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,
Läs merVisst kan man faktorisera x 4 + 1
Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp
Läs mer! &'! # %&'$# ! # '! &!! #
56 6 MATRISER 6.6. Tillämpningar I exemplen nedan antar vi att {e, e 2 } är en ON-bas i planet och Oe e 2 ett högerorienterat system i detta plan. Exempel 6.39. Antag att u e + e 2 e är en vektor i planet
Läs merDEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
Läs merLösningsförslag TATM
Lösningsförslag TATM79 016-09-6 1 a) Vi isolerar x + och kvadrerar ekvationen observera att det då bara blir en implikation!): + x + = x x + = x ) x + = x ) = x 1x + 1 x 1 x + 10 = 0 x = 1 6 ± 7 6 Eftersom
Läs merENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Läs merAndra ordningens lineära differensekvationer
Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom
Läs merx2 6x x2 6x + 14 x (x2 2x + 4)
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den
Läs merTentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
Läs merMS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
Läs merRäkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Läs mersom är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)
Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi
Läs merResultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken.
Kommetarer till Christer Nybergs bok: Mekaik Statik Kommetarer kapitel 2 Sida 27 Resultatet av kryssprodukte i exempel 2.9 ska vara följade: F1 ( d cos β + h si β ) e z Det vill säga att lika med tecket
Läs merTentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Läs merF4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
03-0-4 F4 Matematirep Summatece Summatecet Potesräig Logaritmer Kombiatori Säg att vi har styce tal x,, x Summa av dessa tal (alltså x + + x ) srivs ortfattat med hjälp av summatece: x i i summa x i då
Läs merAv Henrik 01denburg\ Radikaler. För att lösa ekv.: x n = a (n helt, pos. tal) konstruerar man kurvan
Av Herik 01deburg\ Eligt gymasiets kurspla skall av lära om poteser medtagas huvudsaklige vad som är behövligt för viade av e säker isikt i lära om logaritmer. Alla torde vara ese därom, att det är syerlige
Läs merHöftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
Läs merEnkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...
Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................
Läs merLINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merFöreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
Läs merFöreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)
Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit
Läs merKontrollskrivning (KS1) 16 sep 2019
Kotrollskrivig (KS) sep 9 Tid: 8:- Kurs: HF Lijär algebra och aals (algebradele) Lärare: Maria Shaou, Ari Halilovic För godkät krävs poäg (av a 9p) Godkäd KS ger bous eligt kurs-pm Fullstädiga lösigar
Läs merCirkulära data och dess statistiska tillämpningar
U.U.D.M. Project Report 2017:5 Cirkulära data och dess statistiska tillämpigar Erik Persso Examesarbete i matematik, 15 hp Hadledare: Jesper Rydé Examiator: Jörge Östesso April 2017 Departmet of Mathematics
Läs merLösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
Läs mer. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Läs mer(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?
Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt
Läs mer= (1 1) + (1 1) + (1 1) +... = = 0
TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Läs merθx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Läs merArmin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
Läs merKonvexa funktioner. Axel Flinth N3CD Hvitfeldtska Handledare: Åke Håkansson
Kovexa fuktioer x 1, x I t 0,1 : tf x 1 + 1 t f(x ) f(tx 1 + 1 t x ) Axel Flith 90103-3397 N3CD Hvitfeldtska 009-010 Hadledare: Åke Håkasso Sammafattig Dea uppsats behadlar begreppet kovexa fuktioer utifrå
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet
Läs merTFM. Avdelningen för matematik Sundsvall Diskret analys. En studie av polynom och talföljder med tillämpningar i interpolation
C-UPPSATS 00:0 TFM. Avdelige för matematik MITTHÖGSKOLAN 85 70 Sudsvall 060-4 86 00 Diskret aalys E studie av polyom och talföljder med tillämpigar i iterpolatio p(x + ) p(x + ) p(x + 3) p(x + 4) d p (x
Läs merBorel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Läs merf(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.
Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V
Läs merIntroduktion till Komplexa tal
October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Läs merFUNKTIONSLÄRA. Christian Gottlieb
FUNKTIONSLÄRA Christia Gottlieb Matematiska istitutioe Stockholms uiversitet 2002 Iehåll 1. Komplexa tal och vektorer i plaet 1 Tillämpigar på trigoometriska formler 7 2. Geometriska serier 8 3. Biomialsatse
Läs merEkvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp.
VÅGEKVATIONEN Vi betratar följade PDE u( u( x t, där > är e ostat, x, t (ev) Evatioe (ev) a besriva vågutbredig, trasversella svägigar i e sträg och adra fysialisa förlopp Radvärdesproblemet består av
Läs merGrafisk analys av en skalär rekursion
Grafisk aalys av e skalär rekursio Aders Källé MatematikCetrum LTH aderskalle@gmail.om Sammafattig Här ska vi tittärmare på vad som häder med lösigara på rekursiosformler på forme +1 = f( ) då. Metode
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
Läs merUppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
Läs merTrigonometriska polynom
Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.
Läs merIntroduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Läs merJag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Läs merFÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis
FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio
Läs merIcke-lineära ekvationer
Icke-lieära ekvatioer Exempel: Rote till ekvatioe x = cos( x) är lika med x -koordiate för skärigspukte mella kurvora y = x och y = cos( x). Vi ka plotta kurvora på itervallet [,] med följade Matlabkommado
Läs merEGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET
EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET INLEDNING Ett polyom ( i variabel λ ) av grad är ett uttryc på forme P( λ) a λ + aλ + aλ + a, där a Polyomets ollställe är lösigar ( rötter) till evatioe
Läs merLösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS
UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led
Läs mer