Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.

Storlek: px
Starta visningen från sidan:

Download "Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera."

Transkript

1 Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie (eller oädlig summa) a är ett försö att addera alla tale i e följd (a ), N. Om försöet lycas säger vi att serie är overget. Om försöet misslycas säger vi att serie är diverget. Försöet består i att ma bildar följde (s ) beståede av delsummora s = a N + a N+ + + a, = N, N +, N + 2,... Försöet defiieras som lycat om S = lim s existerar. Serie med värdet (eller summa) S. Vi sriver då S = a. Försöet defiieras som misslycat om S = lim s ite existerar. Serie a är då di- verget, d.v.s det går ite att addera tale i följde (a ), N. a är då overget Geometrisa serier. Om vi försöer addera tale a = x, =, 2, 3,..., där x är ett reellt tal, så får vi de geometrisa serie x = + x + x 2 + x 3 + = För delsummora s = + x + x x har vi xs = x + x x + x och ( x)s = s xs = ( + x + x x ) (x + x x + x ) = x vilet ger s =, då x =, s = x x = x, då x =. ( ) x Med hjälp av ( ) ser vi att de geometrisa serie divergerar om x och overgerar om < x <. I det seare fallet har vi S = x = x. =

2 Räeregel för overgeta serier. Om a, b är overgeta och A, B är ostater så är (Aa + Bb ) overget och (Aa + Bb ) = A a + B b Om däremot a är overget, meda b är diverget, och A, B är ostater, B = 0, så är (Aa + Bb ) diverget. Sats. Om att serier divergerar. a overgerar så måste a 0. Dea sats a bara avädas för att bevisa Absolutoverges. E serie absolutoverget serie är automatist overget. a sägs vara absolutoverget om a <. E Altererade serier. E altererade serie är e serie där varaa term är positiv och varaa term är egativ. E altererade serie a alltså srivas som ( ) a eller ( ) a ( ) där a > 0 för alla. Leibiz overgesriterium. Om a avtar mot 0 så overgerar ( ). Exempel. Eligt Leibiz riterium overgerar seriera (a) ( ) (b) cos π + l (c) ( ) Partiell itegratio. Detta är balägesvariate av produtregel, (AB) = A B + AB, för derivatio. Atag att F är e atiderivata till f. För de obestämda itegrale av e produt f g gäller f (x)g(x) dx = F(x)g(x) F(x)g (x) dx För e bestämd itegral av f g gäller b a f (x)g(x) dx = [ F(x)g(x) ] x=b x=a b a F(x)g (x) dx. Detta fugerar ormalt bara om g (x) är e elare futio ä g(x). Så är fallet om t.ex. g(x) är ett polyom, g(x) = l x eller g(x) = arcta x. Exempel. Exempel. π 0 te 2t dt = t 2 e2t 2 e2t dt = C + t 2 e2t 4 e2t. π t si t dt = [ t cos t] π 0 ( ) cos t dt = π cos π + [si t] π 0 = π. 0 2

3 rigoometrisa formler. Expoetiallage e w e z = e w+z för alla w, z C ( ) gör det eelt att härleda behövliga trigoometrisa formler. Sätter vi, till exempel, w = iϕ, z = iθ i ( ) får vi cos(ϕ + θ) + i si(ϕ + θ) = e i(ϕ+θ) = e iϕ e iθ = (cos ϕ + i si ϕ)(cos θ + i si θ) = = (cos ϕ cos θ si ϕ si θ) + i(cos ϕ si θ + si ϕ cos θ) Idetifiatio av real- och imagiärdelar ger och cos(ϕ + θ) = cos ϕ cos θ si ϕ si θ si(ϕ + θ) = cos ϕ si θ + si ϕ cos θ För att göra dessa härledigar behöver vi äve ua biomialformel (se eda) och Eulers formler cos θ = 2 (eiθ + e iθ ), si θ = 2i (eiθ e iθ ) Problem. Sriv f (x) = 8 cos x cos 2x cos 3x som e summa av termer av type a cos ωx. Lösig. Med hjälp av expoetiallage och Eulers formler får vi f (x) = (2 cos x)(2 cos 2x)(2 cos 3x) = (e ix + e ix )(e 2ix + e 2ix )(e 3ix + e 3ix ) = (e 3ix + e 3ix + e ix + e ix )(e 3ix + e 3ix ) = + + e 2ix + e 2ix + e 4ix + e 4ix + e 6ix + e 6ix = cos 2x + 2 cos 4x + 2 cos 6x Problem. Sriv g(x) = si 5 x som e summa av termer av type a si ωx. Lösig. Med hjälp av expoetialformel, biomialformel och Eulers formler får vi 32i g(x) = (e ix e ix) 5 = e 5ix 5 e 4ix e ix + 0 e 3ix e 2ix 0 e 2ix e 3ix + 5 e ix e 4ix e 5ix = e 5ix e 5ix 5 e 3ix + 5 e 3ix + 0 e ix 0 e ix = 2i si 5x 0i si 3x + 20i si x Detta ger g(x) = 5 8 si x 5 6 si 3x + 6 si 5x Polär represetatio av omplexa tal. Varje omplext tal z = x + yi har e polär framställig z = x + yi = r cos θ + ir si θ = r e iθ, där r = z och θ är viel som z, sett som e frå origo emaerade vetor, bildar tillsammas med positiva reella axel. 3

4 z = x + iy θ r = z z = x + iy = r e iθ. Komplexa expoetialfutioe. Dea defiieras, för varje omplext tal w = u + iv, geom e w = e u+iv = e u (cos v + i si v) Sätter vi här u = x, v = 0 så får vi e x = e x+0i = e x (cos 0 + i si 0) = e x ( + 0i) = e x () = e x Ovaståede defiitio ger alltså, för reella variabelvärde, samma resultat som de tidigare defiierade expoetialfutioe. ar vi i stället u = 0, v = θ får vi e iθ = e 0+iθ = e 0 (cos θ + i si θ) = cos θ + i si θ För dessa tal har vi e iθ = cos 2 θ + si 2 θ = (trigoometrisa etta). De omplexa tale e iθ, för reella θ, svarar alltså mot puter på ehetscirel (och omvät svarar varje put på ehetscirel mot ett sådat tal). För varje ollsilt omplext tal z gäller att z/ z har absolutbeloppet ett. Alltså a vi fia θ så att z z = eiθ alltså z = z e iθ vilet ju är de polära represetatioe. De polära represetatioe är ite ui. För varje heltal gäller att z = z e i(θ+2π) För de omplexa expoetialfutioe gäller formel (de så allade expoetiallage). Av ( ) följer diret att (Z betecar heltale). Biomialformel och Pascals triagel. ( + z) = ( + z)... ( + z) = = =0 = ( + z) = + e w e z = e w+z för alla w, z C ( ) (e z ) = e z för alla z C, Z ( 0 ) + ( ) z = ( + z)( + z) ( = =0 (( ) z ) ( + ( ) z + + )) z + z ( ) z + + ( ) z 4

5 Potese z, för 0, fås geom att ma i produte ( + z)... ( + z) väljer z frå ( av ) paretesera och ur de resterade paretesera. Ett sådat val a göras på olia sätt, vilet ger oss oefficiete framför z. Vi ser ocså att ( ) ( ) ( ) = + för 0 < <. Detta sambad ger oss Pascals triagel som är avädbar vid beräig av (a + b), för ite alltför stora. Exempelvis eori för partialbråsuppdelig. (a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 (a + b) 5 = a 5 + 5a 4 b + 0a 3 b 2 + 0a 2 b 3 + 5ab 4 + b 5 Sats. Om (x), N(x) = N (x) (x) är polyom, sådaa att har lägre grad ä N och N, saar gemesamma ollställe, så fis polyom, 2 sådaa att N = N = N + 2 där har lägre grad ä N och 2 har lägre grad ä. Bevis. Eftersom N, saar gemesamma ollställe fis, eligt Eulides algoritm (se eda), polyom P, P 2 sådaa att P (x) (x) + P 2 (x)n (x) =, för alla x R. Det följer att N = P + P 2 N N = P N + P 2 Här a det häda att P ej har lägre grad ä N eller att P 2 ej har lägre grad ä. Geom polyomdivisio (se eda) får vi då N = P N + P 2 = Q + N + Q där Q, Q 2,, 2 är polyom, har lägre grad ä N och 2 har lägre grad ä. Här måste Q + Q 2 vara ollpolyomet, för aars följer, om vi multiplicerar lede med N, att har högre grad ä sig själv. 5

6 Sats. Om N(x) = M(x) m, där m >, och har lägre grad ä N så fis polyom R,..., R m, som alla har lägre grad ä M, sådaa att N = M m = R M + R 2 M R m M m ( ) Bevis. Med polyomdivisio får vi M m = M m M = M m ( ) Rm M + Q m = R m M m + Q m M m där R m har lägre grad ä M och Q m har lägre grad ä M m. Geom upprepig (med Q m i stället för och m i stället för m o.s.v) fås ( ). Polyomdivisio. Då polyomet (x) divideras med ett aat polyom N(x) får ma e vot Q(x) och e rest R(x): (x) R(x) = Q(x) + N(x) N(x) (x) = Q(x)N(x) + R(x) Om (x) har lägre grad ä N(x) blir vote oll och R(x) = (x). Uder alla omstädigheter har R(x) lägre grad ä N(x). Divisioe går jämt ut, d.v.s (x) är delbart med N(x), om och edast om R(x) = 0. Exempel. Utför polyomdivisioe i fallet då (x) = 2x 5 3x 4 + 2x 3 x 2 + 2x och N(x) = x 4 2x 3 + 2x 2 2x +. Lösig. E valig divisiosuppställig med liggade stol ger: 2x + 2x 5 3x 4 + 2x 3 x 2 + 2x x 4 2x 3 + 2x 2 2x + 2x 5 + 4x 4 4x 3 + 4x 2 2x x 4 2x 3 + 3x 2 x 4 + 2x 3 2x 2 + 2x x 2 + 2x Vi avläser att Q(x) = 2x + och R(x) = x 2 + 2x. Eulides algoritm. Största gemesamma delare till två polyom N (x), (x) defiieras som det moisa polyomet S(x) (ledade oefficiete är ) av högsta möjliga gradtal som delar både N (x) och (x). Varje polyom som delar både N (x) och (x) måste dela S(x). Av detta följer att de största gemesamma delare är ui. Atag att vi gör polyomdivisioe N (x)/ (x) med resultatet N (x) = Q 2 (x) (x) + N 3 (x) Av detta följer att ett polyom S(x) delar både N (x) och (x) om och edast om S(x) delar både (x) och N 3 (x). Pare N (x), (x) och (x), N 3 (x) har alltså 6

7 samma största gemesamma delare. Eulides algoritm iebär att ma gör e upprepad polyomdivisio eligt schemat: N (x) = Q 2 (x) (x) + N 3 (x) (x) = Q 3 (x)n 3 (x) + N 4 (x). N 2 (x) = Q (x)n (x) + N (x) N (x) = Q (x)n (x) Ma avbryter då divisioe går jämt ut. De största gemesamma delare S(x) är det moisa polyom som fås då N (x) delas med si ledade oefficiet. Av schemat a ma äve utläsa att det fis polyom P (x), P 2 (x) sådaa att S(x) = P (x) (x) + P 2 (x)n (x) De största gemesamma delare är om och edast om N (x) och (x) saar gemesamma omplexa ollställe. I ett sådat fall gäller alltså att det fis polyom P 2 (x), P (x) sådaa att = P (x) (x) + P 2 (x)n (x) 7

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P( Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a

H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio

Läs mer

EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET

EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET INLEDNING Ett polyom ( i variabel λ ) av grad är ett uttryc på forme P( λ) a λ + aλ + aλ + a, där a Polyomets ollställe är lösigar ( rötter) till evatioe

Läs mer

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal TATM79: Föreläsig 3 Biomialsatse och omplexa tal Joha Thim augusti 016 1 Biomialsatse Ett miestric för att omma ihåg biomialoefficieter (åtmistoe för rimligt små är Pascals triagel: 0 1 1 1 1 1 1 3 1 3

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista

Läs mer

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2 Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Stokastiska variabler

Stokastiska variabler TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,

Läs mer

Svar till tentan

Svar till tentan UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Prov i matematik ES, K, KadKemi, STS, X ENVARIABELANALYS 0-03- Svar till teta 0-03-. Del A ( x Bestäm e ekvatio för tagete till kurva y = f (x =

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Analys av polynomfunktioner

Analys av polynomfunktioner Aals av polomfutioer Aals36 (Grudurs) Istuderigsuppgifter Dessa övigar är det tät du sa göra i aslutig till att du läser huvudtete. De flesta av övigara har, om ite lösigar, så i varje fall avisigar till

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

1.1 Den komplexa exponentialfunktionen

1.1 Den komplexa exponentialfunktionen TATM79: Föreläsning 8 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim augusti 07 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Föreläsning 10: Kombinatorik

Föreläsning 10: Kombinatorik DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd

Läs mer

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6 SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.

Läs mer

Om komplexa tal och funktioner

Om komplexa tal och funktioner Om komplexa tal och fuktioer Aalys60 (Grudkurs) Istuderigsuppgifter Dessa övigar är det täkt du ska göra i aslutig till att du läser huvudtexte. De flesta av övigara har, om ite lösigar, så i varje fall

Läs mer

Ett system är asymptotiskt stabilt om det efter en övergående störning återgår till sitt begynnelsetillstånd.

Ett system är asymptotiskt stabilt om det efter en övergående störning återgår till sitt begynnelsetillstånd. 6. Stabilitet Såsom framgått i de två iledade apitle förutsätter e lycad regulatordesig ompromisser mella prestada ( sabbhet ) och stabilitet. Ett system som oreglerat är stabilt a bli istabilt geom för

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac Uppsala Universitet Matematiska institutionen Isac Hedén isac [email protected] Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med

Läs mer

EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterpolatio och approimatio av Elhoussaie Ifoudie 8 - No 5 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 69 STOCKHOLM Iterpolatio

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Inklusion och exklusion Dennie G 2003

Inklusion och exklusion Dennie G 2003 Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska

Läs mer

RESTARITMETIKER. Avsnitt 4. När man adderar eller multiplicerar två tal som t ex

RESTARITMETIKER. Avsnitt 4. När man adderar eller multiplicerar två tal som t ex Avsitt 4 RESTARITMETIKER När ma adderar eller multiplicerar två tal som t ex 128 + 39..7 128 43..4 så bestämmer ma först de sista siffra. De operatioer som leder till resultatet kallas additio och multiplikatio

Läs mer

Binomialsatsen och lite kombinatorik

Binomialsatsen och lite kombinatorik Biomialsatse och lite ombiatori Sammafattig Aders Källé MatematiCetrum LTH [email protected] Här disuteras e del grudläggade ombiatori, som utgår ifrå biomialoefficieteras ombiatorisa betydelse. Vi härleder

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =

Läs mer

Visst kan man faktorisera x 4 + 1

Visst kan man faktorisera x 4 + 1 Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp

Läs mer

TNA001 Matematisk grundkurs Övningsuppgifter

TNA001 Matematisk grundkurs Övningsuppgifter TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas

Läs mer

Något om funktionsföljder/funktionsserier

Något om funktionsföljder/funktionsserier mtemtis metoder E, del D, FF Något om futiosföljder/futiosserier. Putvis och liformig overges Vi etrtr reellvärd futioer med gemesm defiitiosmägd D IR, M D. Me (äst) llt går helt logt för omplevärd futioer

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

Kryssproblem (redovisningsuppgifter).

Kryssproblem (redovisningsuppgifter). Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska

Läs mer

Euklides algoritm för polynom

Euklides algoritm för polynom Uppsala Universitet Matematiska institutionen Isac Hedén isac [email protected] Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma

Läs mer

Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus

Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus Kotrollsrivig till Disret Matemati SF60, för CINTE, vt 09 Eamiator: Armi Halilovic Datum: To 09-04-5 Versio B Resultat: Σ p P/F Etra Bous Iga hjälpmedel tillåta Mist 8 poäg ger godät Godäd KS r medför

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Potensserier och potensserieutvecklingar av funktioner

Potensserier och potensserieutvecklingar av funktioner Analys 36 En webbaserad analysurs Analysens grunder Potensserier och potensserieutveclingar av funtioner Anders Källén MatematiCentrum LTH [email protected] Potensserier och potensserieutveclingar

Läs mer

Förslag till övningsuppgifter FN = Forsling/Neymark, K = Kompendiet Vektorer, linjer och plan, ÖT = Övningstentamen

Förslag till övningsuppgifter FN = Forsling/Neymark, K = Kompendiet Vektorer, linjer och plan, ÖT = Övningstentamen TNA00 Förslag till övigsugiter FN = Forslig/Neymar, K = Komediet Vetorer, lijer och la, ÖT = Övigstetame Vetorer, lijer och la ÖT:4,, K, K och Ugitera, och eda Ugit x Lije y t, t R z a) Beräa avstådet

Läs mer

3 Samplade system. 3. Samplade system. Vad är ett samplat system? I ett tidskontinuerligt system är alla variabler x (t), y (t)

3 Samplade system. 3. Samplade system. Vad är ett samplat system? I ett tidskontinuerligt system är alla variabler x (t), y (t) 3. Samplade system 3 Samplade system Vad är ett samplat system? I ett tidsotiuerligt system är alla variabler x (t), y (t) och u (t) otiuerliga (futioer) i tide i de meige att de är defiierade för alla

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. använder vi oftast induktionsbevis.

H1009, Introduktionskurs i matematik Armin Halilovic. använder vi oftast induktionsbevis. MATEMATISK INDUKTION För att bevisa att ett påståede P() är sat för alla heltal 0 aväder vi oftast iduktiosbevis Iduktiossatse Låt P() vara ett påståede vars saigsvärde beror av heltalet 0 där 0 är ett

Läs mer

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10 KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade

Läs mer

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING Avdelningen för ämnesdidaktik och matematik (DMA) Avdelningen för kvalitetsteknik, maskinteknik och matematik (KMM) MATEMATISK FORMELSAMLING UPPLAGA (Utkast aug, 0) Innehåll Notation, mängdlära och logik........................

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

12. Numeriska serier NUMERISKA SERIER

12. Numeriska serier NUMERISKA SERIER 122 12 NUMERISKA SERIER 12. Numerisa serier Vi har tidigare i avsnitt 10.9 sett ett samband mellan summor och integraler. Vi har ocså i avsnitt 11 definierat begreppet generaliserade integraler och för

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel

Läs mer