DEL I. Matematiska Institutionen KTH
|
|
- Ludvig Göransson
- för 6 år sedan
- Visningar:
Transkript
1 1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl DEL I 1. (3p) Bestäm e lösig till de diofatiska ekvatioe 373x + 83y = 1. Lösig: Euklides algoritm ger Ur dea erhåller vi 373 = = x = 2 och y = 9 till exempel. 1 = = 83 2( ) = (3p) Avgör om edaståede två tal är lika eller olika: ( ) k resp k ( ) 1. k 1 Lösig: Vi fier att k ( ) = k k! k! ( k)! = ( 1)! (k 1)!( k)!, samt att ( ) 1 ( 1)! = k 1 (k 1)! ( 1 (k 1))! = ( 1)! (k 1)!( k)!, dvs de bägge tale är lika vilket blir vårt SVAR. 3. (3p) Ka talet a bestämmas så att det fis ett träd T med 27 oder med vales 1, a oder med vales 2, 11 oder med vales 3, och 11 oder med vales 4. Lösig: Atalet kater e i grafe T fås ur sambadet mella oderas valeser och atalet kater eligt eda Atalet oder v blir ju e = 1 ( a ) = 52 + a. 2 v = 27 + a = 49 + a. I varje träd gäller att v = e + 1. Dea ekvatio är omöjlig att uppfylla för giva idata, så vi får Nej
2 2 4. (3p) Bestäm samtliga lösigar i rige Z 12 till ekvatiossystemet { 2x + 5y = 3 3y = 0 Lösig: Ekvatioe 3y = 0 har lösigara y = 0, 4 eller 8, vilket vi fa medelst prövig. Med dessa värde på y får vi följade möjligheter för de första ekvatioe Me, e ekel kotroll visar att 2x = 3, 2x + 8 = 3, 2x + 4 = 3. {2x + k 4 x Z 12 } = {0, 2, 4, 6, 8, 10}, för k = 0, 1, 2, så de första ekvatioe blir omöjlig att uppfylla för ågot värde på x om y = 0, 4, eller (3p) Är matchige M = {(x 1, y 1 ), (x 3, y 2 ), (x 4, y 3 ), (x 5, y 5 )} i de bipartita grafe G med odmägde V = {x 1, x 2,..., x 5, y 1, y 2,..., y 5 }, och katmägde E eda {(x 1, y 1 ), (x 1, y 2 ), (x 2, y 1 ), (x 2, y 2 ), (x 3, y 2 ), (x 3, y 3 ), (x 3, y 5 ), (x 4, y 2 ), (x 4, y 3 ), (x 5, y 4 ), (x 5, y 5 )}, e maximal matchig. Lösig: Om vi ritar grafe och markerar matchige ser vi lätt att följde av oder x 2 y 2 x 3 y 5 x 5 y 4 bildar e altererade stig till de giva matchge. Till e maximal matchig fis aldrig altererade stigar. Alltså ka de giva matchige ite vara maximal, vilket blir vårt SVAR. DEL II 6. (3p) Bestäm atalet tal mella 1 och 100, dvs 1 100, som är relativt prima till talet 50. Lösig: Talet 50 ka faktoriseras i e produkt av primtal eligt 50 = Talet och talet 50 är relativt prima om de sakar gemesamma delare förutom talet 1, dvs precis då sakar delare d sådaa att 2 d eller 5 d. Vi skall alltså söka atalet tal sådaa att 2 och 5. Vi gör detta med hjälp av pricipe om iklusio exklusio. Atalet tal 100 såda att de ite delas av två, dvs vart aat tal, är lika med 50. Vart femte tal är ite delbart med 5 och vart tiode ej delbart med varke 2 eller 5. Totalt är atalet tal som ej är delbara med 2 eller 5 mella 1 och hudra lika med ( ) + 10 = 40.
3 3 7. (4p) Tio persoer skall dela på tre taxibilar till e fest. På hur måga olika sätt ka de tio fördela sig på de tre bilara om ige bil får ha mer ä fyra passagerare. Lösig: Atige kommer fyra persoer att fias i två av bilara och två persoer i e bil, eller så kommer e bil ha fyra persoer och två bilar att ha tre persoer vardera. Bilara är olika, så de tio olika persoera skall fördelas i tre etiktterade delmägder, med atal elemet eligt utredige ova. Svaret ges då av multiomialkoefficieter och vi får, eftersom det fis tre möjliga val av bil med två passagerare, resp i adra fallet tre val av bil med fyra passagerare, ( ) ( ) , 4, 2 4, 3, 3 Am: Om bilara ases oetiketterade skall multiomialkoefficietera ova multipliceras med 1/2 istället för med tre, vilket också gav full poäg på uppgifte. 8. (4p) Bestäm t ex med hjälp av kiesiska restsatse och så kallad sabb aritmetik samtliga lösigar i rige Z 630 till ekvatioe z 2 3z + 2 = 0. Lösig: Rige Z 630 är isomorf med de direkta produkte av rigara Z 7, Z 9 och Z 10 eftersom 630 = samt pga att tale 7, 9 och 10 är parvis relativt prima. Elemete i rigara korrespoderar då till varadra eligt x Z 630 (x 1, x 2, x 3 ) Z 630, where x 1 = x(mod 7), x 2 = x(mod 9) och x 3 = x(mod 10). Om elemetet x satisfierar de giva ekvatioe så kommer x 2 1 3x = 0, x 2 1 3x = 0, x 2 1 3x = 0, att gälla och alla tripplar (x 1, x 2, x 3 ) som satisfierar dessa ekvatioer kommer, eligt kiesiska restsatse, att ge ett elemet x Z 630 som satisfierar giva ekvatioe. Geom prövig fier vi för x 1 Z 7 att x 2 1 3x = 0 x 1 {1, 2}, för x 2 Z 9 att och för x 3 Z 10 att x 2 2 3x = 0 x 2 {1, 2}, x 2 3 3x = 0 x 3 {1, 2, 6, 7}. Allmäa lösigsformel för ett system av kogrueser ger att kogruesekvatioera x 7 x 1, x 9 x 2, x 10 x 3, har lösige x = x x x (mod 630). Det fis totalt = 16 möjliga taltripplar att kombiera ihop. x = 90x x x 3 (mod 630), där x 1 {1, 2}, x 2 {1, 2} och x 3 {1, 2, 6, 7}.
4 4 DEL III Om du i dea del aväder eller hävisar till satser frå läroboke skall dessa citeras, ej ödvädigvis ordagrat, där de aväds i lösige. 9. Låt S betecka mägde av alla permutatioer av elemete i mägde {1, 2,..., }. (a) (1p) Betrakta S 6 och permutatioe ϕ = ( ). Bestäm ϕ 2 samt bestäm e permutatio x S 7 såda att x 2 = ( ), eller visa att e såda permutatio x ej fis. Lösig: Vi fier att ϕ 2 = ( )( ) = (1 3 5)(2 4 6). Kvadererar vi cykel x = (a 1 a 2 a 3 a 4 a 5 a 6 a 7 ) får vi cykel x 2 = (a 1 a 3 a 5 a 7 a 2 a 4 a 6 ). Så vi idetifierar a 1 med 1, a 3 med 2 etc och får x = ( ). (b) (2p) Härled e formel för atalet lösigar i S till ekvatioe x 2 = (1)(2)... (). Lösig: Vi asätter e lösig x som e produkt av disjukta cykler x = ψ 1 ψ 2... ψ k, och får x 2 = ψ 2 1ψ ψ 2 k. För att detta skall vara lika med idetitespermutatioe krävs att ψt 2 = id för t = 1, 2,..., k. Detta iträffar bara om dessa permutatioer är 2-cykler, eller 1-cykler. Atalet lösigar till de giva ekvatioe ges alltså av atalet sätt att välja ut ett atal t parvis disjukta 2-delmägder, för t 1 och 2t. Eftersom 2-delmägdera är oetiketterade har vi 2 t=1 ( ) 1 ( 2t t! 2t 2, 2,..., 2 (c) (1p) Låt ϕ och ψ vara permutatioer i S av samma typ. Kommer ekvatioera x 2 = ϕ och x 2 = ψ då alltid att ha lika måga lösigar i S. Lösig: Om ϕ och ψ är av samma typ är de kojugerade och det fis e permutatio τ såda att ϕ = τψτ 1. Vidare ser vi att om x 2 = ψ så kommer ). (τxτ 1 ) 2 = τxτ 1 τxτ 1 = τx 2 τ 1 = τψτ 1 = ϕ, dvs y = τxτ 1 är e lösig till ekvatioe y 2 = ϕ. På samma sätt ser ma att om y är e lösig till y 2 = ϕ så kommer permutatioe x = τ 1 yτ att vara e lösig till ekvatioe x 2 = ψ. Relatioe x τxτ 1, ger alltså e bijektio mella mägde av lösigar till ekvatioe x 2 = ψ och mägde av lösigar til ekvatioe y 2 = ϕ, så de bägge ekvatioeras lösigsmägder är lika stora.
5 5 (d) (2p) Går det att formulera ågo geerell sats med vars hjälp ma ekelt ka avgöra om ekvatioe x 2 = ψ är lösbar i S för ågo give permutatio ψ. Lösig: Om e cykel av jäm lägd kvadreras uppstår två cykler eligt eda: (a 1 b 1 a 2 b 2... a t b t )(a 1 b 1 a 2 b 2... a t b t ) = (a 1 a 2... a t )(b 1 b 2... b t ), och omvät, eligt formel ova, e produkt av två disjukta cykler av samma lägd t är kvadrate av e cykel av lägd 2t. Om e cykel av udda lägd t kvadreras så får vi e cykel med samma lägd t och varje cykel av udda lägd t är kvadrate av e cykel med samma lägd t, jämför lösige av deluppgift (a). Kvadrerar vi e permutatio så blir resultatet alltså e permutatio beståede av e produkt av disjukta cykler där för varje jämt tal 2t atalet cykler av lägd 2t är jämt. Vi observerar också att produkte av två lika låga cykler, eligt formel ova, är kvadrate av e permutatio. Låt c t (ϕ) betecka atalet cykler av lägd t i e framställig av ϕ som e produkt av disjukta cykler. Våra diskussioer ova leder till följade Sats. E permutatio ϕ är e kvadrat om och edast om c 2t (ϕ) är ett jämt tal för alla värde på talet t. 10. Låt N betecka mägde {1, 2,..., }. Vi betraktar par (f, g) av fuktioer sådaa att f är e fuktio frå N s till N t och g är e fuktio frå N t till N u. Låt I(s, t, u) betecka atalet sådaa par med egeskape att sammasättige g f är e ijektiv fuktio frå N s till N u och låt S(s, t, u) betecka atalet sådaa par med egeskape att sammasättige g f är e surjektiv fuktio frå N s till N u (a) (2p) Härled e formel för I(s, t, u). Lösig: Låt A betecka delmägde {f(x) x N s } till mägde N t. Kravet att sammasättige av f och g är ijektiv ger att x x g(f(x)) g(f(x )) f(x) f(x ). Så vi iser att f måste vara e ijektiv fuktio samt att restriktioe av g till mägde A också måste vara ijektiv. Omvät gäller att om g:s restriktio till A och f är ijektiva fuktioer så kommer deras sammasättig också att vara ijektiv. Atalet ijektiva fuktioer frå N s till A är s!, eftersom A = s om f är ijektiv. Atalet ijektiva fuktioer frå A till N u är lika med u (u 1) (u 2)... (u A + 1) och atalet sätt att välja fuktiosvärde g(y) där y Z t \ A är lika med u t A. Eftersom A = s får vi eligt multiplikatiospricipe I(s, t, u) = s! u t s u! s! = ut s u!. (b) (2p) Härled e fomel för S(s, t, u). Lösig: Låt A betecka samma delmägd som i föregåede uppgift. Sammasättige g f är surjektiv precis då g:s restriktio till A är e surjektiv fuktio frå A till N u. Så atalet elemet i A är mist lika måga som atalet elemet i N u, dvs u. Varje surjektio går att uikt beskriva med hjälp av följade val: op 1. Välj delmägd A till N t : atal möjligheter är 1 = ( t A ), op 2. Välj surjektio frå N s till A: atal sätt är 2 = A!S(s, A ). op 3. Välj surjektio frå A till N u : atalet sätt är 3 = u!s( A, u) op 4. Välj fuktiosvärde f(y), för y N t \ A: atal sätt 4 = u s A. Multiplikatiospricipe ger u med = A, t ( ) s! S(s, ) u! S(, u) u s. =u
(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?
Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
, S(6, 2). = = = =
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
RESTARITMETIKER. Avsnitt 4. När man adderar eller multiplicerar två tal som t ex
Avsitt 4 RESTARITMETIKER När ma adderar eller multiplicerar två tal som t ex 128 + 39..7 128 43..4 så bestämmer ma först de sista siffra. De operatioer som leder till resultatet kallas additio och multiplikatio
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
b 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering
Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad
DEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd
Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret
Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:
Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
H1009, Introduktionskurs i matematik Armin Halilovic. använder vi oftast induktionsbevis.
MATEMATISK INDUKTION För att bevisa att ett påståede P() är sat för alla heltal 0 aväder vi oftast iduktiosbevis Iduktiossatse Låt P() vara ett påståede vars saigsvärde beror av heltalet 0 där 0 är ett
Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering
Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad
Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Inledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana:
TATA79/TEN3 Tetame, 08-04-06 Iledade matematisk aalys. Utred med bevis vilket eller vilka av följade påståede är saa: (a) Om x 7 är x(x 3) 5; (b) Om (x )(x 6) 0 är x 6; (c) (x + 6)(x ) > 0 om x > 6. Solutio:
Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus
Kotrollsrivig till Disret Matemati SF60, för CINTE, vt 09 Eamiator: Armi Halilovic Datum: To 09-04-5 Versio B Resultat: Σ p P/F Etra Bous Iga hjälpmedel tillåta Mist 8 poäg ger godät Godäd KS r medför
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Cartesisk produkt. Multiplikationsprincipen Ï Ï Ï
Kombiatorik Kombiatorik hadlar oftast om att räka hur måga arragemag det fis av e viss typ. Sådaa kalkyler uderlättas om ma ka hitta relevata represetatioer av de ibladade arragemage ågot som illustreras
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN
Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i
Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Föreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.
Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att
Databaser - Design och programmering. Databasdesign. Funktioner. Relationsmodellen. Relationsmodellen. Funktion = avbildning (mappning) Y=X 2
Databaser Desig och programmerig Relatiosmodelle Databasdesig Förstudie, behovsaalys defiitioer ER-modell -> relatiosmodell ycklar Relatiosmodelle Itroducerades av Edward Codd 1970 Mycket valig Stödjer
Kompletterande kurslitteratur om serier
KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du
Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
1. (3p) Bestäm den minsta positiva resten vid division av talet med talet 31.
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 7 juni 2011 kl 08.00-13.00. Examinator: Olof Heden, tel. 0730547891.
Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan
Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle
Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 10 januari 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF131 och SF130, den 10 januari 2011 kl 14.00-19.00. Examinator: Olof Heden, tel. 0730547891.
Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl
1 Matematiska Institutionen KTH Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel
Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den 2 juni 2015, kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den juni 015, kl 1.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n
Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Bertrands postulat. Kjell Elfström
F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
DEL I. Matematiska Institutionen KTH
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF63, den 25 maj 2 kl 8.-3.. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning...
Iehåll Grafräkare och diskret matematik...1 Vad hadlar diskret matematik om?...1 Permutatioer och kombiatioer...3 Något om heltalsräkig...4 Modulusoperator...4 Faktoriserig i primfaktorer...5 Talföljder...7
Visst kan man faktorisera x 4 + 1
Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
TENTAMEN Datum: 16 okt 09
TENTAMEN Datum: 6 okt 09 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF00 TEN (Matematisk statistik ) Te i kurse HF00 ( Tidigare k 6H0), KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse HF00, 6H000, 6L000 MATEMATIK
Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Inledande kombinatorik LCB 2001
Iledade kombiatorik LCB 2001 Ersätter Grimaldi 1.1 1.4, 3.1 (delvis) 1 Additios- och multiplikatiospricipera Kombiatorik hadlar om koste att räka atalet av saker och tig. Hur måga gåger geomlöpes e viss
Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel:
DEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.
Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.
UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt
Tentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Binomialsatsen och lite kombinatorik
Biomialsatse och lite ombiatori Sammafattig Aders Källé MatematiCetrum LTH adersalle@gmail.com Här disuteras e del grudläggade ombiatori, som utgår ifrå biomialoefficieteras ombiatorisa betydelse. Vi härleder
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10
KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade
Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.
Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie
Följande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.
ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst
Resultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken.
Kommetarer till Christer Nybergs bok: Mekaik Statik Kommetarer kapitel 2 Sida 27 Resultatet av kryssprodukte i exempel 2.9 ska vara följade: F1 ( d cos β + h si β ) e z Det vill säga att lika med tecket
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Andra ordningens lineära differensekvationer
Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom
Räkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Tentamen i Flervariabelanalys F/TM, MVE035
Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg
Jag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen
Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl
1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta
TNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor
Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.
Systemdesign fortsättningskurs
Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =
θx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.