Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
|
|
- Sten Lindberg
- för 6 år sedan
- Visningar:
Transkript
1 Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig av e okäd storhet? Hur vet ma att de är bra? Itervallskattig Gissa i stället två tal som tillsammas täcker de okäda storhete med e give (stor) saolikhet. Hypotestest Om gissige blev 7., ka rätt värde på de okäda storhete ädå vara 6.5? Vad är saolikhete att vi ljuger om vi påstår att de ite är 6.5? Regressio Sambadsaalys. Tillämpig av ovaståede. F1 1 F Ett stickprov frå ågo fördelig Statistikteori, grudläggade begrepp Ett stickprov, x 1, x,..., x, är observatioer av s.v. X 1,..., X frå ågo fördelig X i F (θ) där θ är e okäd parameter. Täthet.4.. E skattig av θ, θ (x 1,..., x ) är e observatio av de s.v θ (X 1,..., X ). Båda beteckas oftast bara med θ. Bra egeskaper för e skattig Observatioer E(θ ) θ, Vätevärdesriktig, iget systematiskt fel. V (θ ) lite. Skattige skall vara effektiv. F1 F1 4 Variatio i observatioer ger variatio i skattige.8.6 Observatioeras fördelig Observatioer, x jk µ x j Skattigaras fördelig F1 5 F1 6 E skattig θ är ett tal, e s.v. och e fuktio Tal x1 x θ (x1,..., x) θ Modell för mätig med slumpmässigt mätfel Atag att vi vill mäta e storhet µ. Om ma tar upp st mätvärde, x 1,..., x är dessa observatioer av X i µ + ε i Rätt värde + Mätfel där ε i är ett slumpmässigt mätfel. Ofta atas att de är oberoede av varadra och S.V. X1 X θ (X) ε i N(, σ) Detta ger att våra observatioer blir Xi F (θ) θ Fuktio X i N(µ, σ) Vi ser att vätevärdet är de storhet vi försöker mäta upp. F1 7 F1 8
2 Maximum likelihood-metode, ML ML-skattige av θ fås geom att maximera likelihood-fuktioe L(θ; x 1,..., x ) map θ. L(θ) f X (x 1 )... f X (x ) (kot) L(θ) p X (x 1 )... p X (x ) (diskr) I det diskreta fallet ager L-fuktioe: Saolikhete att få det stickprov vi fått. Sätt upp L(θ) Logaritmera (l L(θ) maximeras av samma θ som L(θ)). Derivera, sätt lika med oll och lös m.a.p θ. Det θ som maximerar L(θ) är ML-skattige θml. Mista kvadrat-metode, MK E(X i ) µ i (θ) MK-skattige av θ fås geom att miimera förlustfuktioe Q(θ) map θ. Q(θ) (x i µ i (θ)) Normalfördelig Om x 1,..., x är observatioer av X i N(µ, σ) blir ML- och MK-skattige av µ och e korrigerad ML-skattig av σ µ x (σ ) s 1 1 (x i x) Dessa aväds äve för att skatta vätevärde och varias vid okäd fördelig F1 9 F1 1 Medelfel Om stadardavvikelse, D(θ ), för e skattig iehåller okäda parametrar ka ma ite räka ut ett ummeriskt värde på de. Om vi stoppar i skattigar på de okäda parametrara fås medelfelet d(θ ). Ex. p X, där X Bi(, p) (V (X) pq) V (p ) V ( X ) 1 V (X) 1 pq pq d(p p q ) Ex. µ X, där X N(µ, σ), σ okäd V (µ ) σ, d(µ ) s, där s 1 1 (x i x) F1 11
3 Föreläsig 7: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 7: KAPITEL 11: PUNKTSKATTNING Vi har X i hastighete hos bilist i N ( Ñ, ) där Xi är oberoede för i 1,..., där. PUNKTSKATTNINGAR INFERENSTEORI KONSTEN ATT DRA SLUTSATSER Vi har skaffat oss ett stickprov av oberoede observatioer x 1,..., x av de s.v. X (eller frå X 1,..., X ) geom experimet. Fördelige för X är helt eller delvis okäd me vi vill utyttja stickprovet till att uttala oss om ågo egeskap (i regel ågo parameter ) hos fördelige för X. Exempel (Växjökorsig): Uppskatta medelhastighete hos hela populatioe bilar ( Ñ E(X )) som passerar korsige (ite bara för de vi mätt)? Hur osäker är vår uppskattig? Hur stor är de förvätade adele fortkörare ( p P(X > 5)) och hur osäker är vår uppskattig? X i hastighet hos bil i, Y atal fortkörare. Observatioer: x 1, x,..., x 65, 5,..., 56 resp. y 41 LÄMPLIG PROCEDUR ATT ALLTID FÖLJA Steg 1: Vad är slumpmäsigt och vilke fördelig ka det ha? Iför beteckigar och sätt upp e lämplig modell. Steg : Vilke parameter är vi itresserade av, vad är det som är okät och hur skattar vi det? Steg : Vad har skattige för egeskaper? Behöver och ka vi ormalapproximera de? Steg 4: Behöver vi skatta ågot mer, t.ex. std.avv.? Steg 5: Utyttja skattige och dess egeskaper för att svara på fråga. Vi skattar fördeligsparameter med hjälp av ågo lämplig fuktio (x) av stickprovet x (x 1,..., x ). kallas e skattig av. Fuktioe (X) av motsvarade stokastiska variabler X (X 1,..., X ) är också e stokastisk variabel med t.ex. fördelig, vätevärde och varias. Fördelige för talar om vad skattige kude blivit istället, om vi gjort om försöket, t.ex. mätt ya bilister. LÖSNING STEG : SKATTA PARAMETRAR Vi vill skatta de okäda medelhastighete (vätevärdet av hastighete), Ñ med hjälp av stickprovet x 1,... x. Vi väljer mella de tre alterative (taga ur lufte): Ñ1 x 1 + x, Ñ x 1 + x och Ñ x 1 x i. Sätt i observatiosvärdea: Ñ 1 x 1 + x Ñ x 1 + x Ñ x x km/h, km/h, 51.7 km/h. Tre sätt att skatta samma sak ger tre olika resultat. Vilket är rätt? (iget!) Vilket är bäst? (det beror på vad vi mear med bra ). LÖSNING STEG 1: MODELL Vi har X i hastighete hos bilist i där E(X i ) Ñ och V(X i ) och alla X i är oberoede och likafördelade för i 1,..., där. Am.: Om vi dessutom atar att X i är ormalfördelade ska det också ages: ÖNSKVÄRDA EGENSKAPER E skattig bör vara Vätevärdesriktig, dvs E( (X)) och Effektiv, dvs V( (X)) så lite som möjligt. 1
4 Föreläsig 7: Matstat AK för M, HT-8 LÖSNING STEG : SKATTNINGENS EGENSKAPER gäller, eligt CGS, att Ñ N (Ñ, ) Vätevärdesriktig (skattar de rätt sak?): E(Ñ1) E( X 1 + X ) Ñ + Ñ Ñ E(Ñ) E( X 1 + X ) Ñ + Ñ Ñ E(Ñ) E( X X ) Ñ Ñ Ñ Alterativ Ñ 1 är ite bra eftersom de blir 5 % för stor i medeltal. De adra två blir rätt i medeltal. Variase (hur osäker är de?): V(Ñ1 ) V(X 1 + X ) V(Ñ ) V(X 1 + X ) V(Ñ ) V(X X ) Alterativ Ñ 1 är ite bra eftersom de har större varias ä e eskild observatio. Alterativ Ñ har midre varias ä e eskild observatio me variase är lika stor oavsett hur stort stickprovet är, det är ieffektivt. Alterativ Ñ har e varias som avtar med ökade stickprovsstorlek, det är bra. Alterativ Ñ 1 är varke vätevärdesriktig eller effektiv. Alterativ Ñ är vätevärdesriktig me ite effektiv. Alterativ Ñ är både vätevärdesriktig och effektiv (bevis för effektivitete igår ej i dea kurs). Alltså är Ñ bäst. Fördelig (hur varierar de?): Om X i N ( Ñ, ) så är alla tre skattigara ormalfördelade eftersom de är lijärkombiatioer av ormalfördeligar. Vätevärde och stadardavvikelser (m.h.a. variasera) ova: ( ) ( ) 5 5 Ñ1 N Ñ,, Ñ N Ñ, och 4 9 ( Ñ N Ñ, ). Approximativa fördeligar: Om vi ite vet mer om fördelige för X i ä att E(X i ) Ñ och D(X i ) ka vi iget säga om fördelige för Ñ 1 och Ñ! Me, eftersom är stort, MEDELFEL FÖR EN SKATTNING Om D( (X)) V( (X)) iehåller okäda parametrar måste de också skattas. Dea skattig d( ) D ( ) kallas medelfelet för. LÖSNING STEG 4: MEDELFEL Eftersom, som igår i alla tre variasera, är okäd måste de också skattas, t.ex. med stickprovsstadardavvikelse s 1 (x i x) km/h så att 5 5 d(ñ1) s km/h, d(ñ ) s 5.1 km/h, 9 d(ñ ) s. km/h. LÖSNING STEG 5: SVARA PÅ FRÅGAN Vi uppskattar medelhastighete till 51.7 km/h med e osäkerhet (stadardavvikelse) i skattige på.8 km/h. SKATTNINGEN ÄR EN STOKASTISK VARIABEL! Skilj på som är e kostat parameter, dvs ett (i regel okät) tal, och som är dess skattig. Skattige varierar med stickprovet, det gör ite. Varig för förvirrig! ka vara ett tal, dvs skattige uträkad med hjälp av ett visst stickprov ( 51.7 km/h) eller, ka vara stickprovsfuktioe (x) som talar om hur ma ska beräka skattige ( x), eller, ka vara e s.v., (X), dvs fuktioe av de s.v. som stickprovet är observatioer av ( X ).
5 Föreläsig 7: Matstat AK för M, HT-8 Fördelige för X : Mät måga bilar och gör histogram över bilaras hastighet. MAXIMUM-LIKELIHOOD-METODEN (ML) Fördelige för X i Ett sätt att hitta garaterat bra skattigar. Förutsätter käd fördeligstyp. Idé: Välj det värde på de okäda parameter som maximerar saolikhete att få de observatioer ma faktiskt fick Fördelige för Ñ : Gå varje dag ut och mät bilar och räka ut dages Ñ. Upprepa uder måga dagar och gör histogram över Ñ. Likelihoodfuktioe L( ; x) skall maximeras med avseede på : p Xi (x i ) X i diskreta L( ; x) P(X 1 x 1,..., X x ) f Xi (x i ) X i kotiuerliga Fördelige för θ * 1 (X 1 +X )/ Fördelig Ñ 1 X 1 + X för Logaritmera, derivera m.a.p., sätt till oll och lös ut. ML-metode ger alltid de skattig som har mist varias. De är ite ödvädigtvis vätevärdesriktig me E( ML ) är...1 Exempel (medelhastighet): Vi har observerat hastighetera hos bilister, x 1,..., x där X i N ( Ñ, ). Skatta medelhastighete Ñ Fördelige för θ * (X 1 +X )/ Fördelige för θ * (X X )/ Fördelig Ñ X 1 + X Fördelig Ñ X för för Steg 1 (modell): Ober. X i N ( Ñ, ) där i 1,..., och. Steg (skatta parametrar): Vi vill skatta Ñ. Likelihoodfuktioe L(Ñ; x) f X (x i ) f X (x 1 )... f X (x ) 1 e (x i Ñ) / ( Ô) e 1 Ô Logaritmera: 1 l L(Ñ) l( Ô) Derivera och sätt till oll: d l L(Ñ) d Ñ (x i Ñ) Lös ut Ñ: x i (x i Ñ) Ñ Ñ Ñ 1 P (x i Ñ) ML-skattige av Ñ blir Ñ x 51.7 km/h. x i x.
6 Föreläsig 7: Matstat AK för M, HT-8 Exempel (fortkörare): Vi har bara observerat att 41 av de var fortkörare. Skatta adele fortkörare i hela populatioe. Steg 1 (modell): Vi har e observatio y 41 frå Y atal fortkörare Bi(, p) där. Steg (skatta parametrar): Vi vill skatta p. Likelihoodfuktioe: L(p) p Y (y) p Y (41) Logaritmera: l L(p) l ( 41 ( ) p 41 (1 p) ) + 41 l p + ( 41) l(1 p). Förlustfuktioe Q(p; x) skall miimeras med avseede på där E(X i ) är e fuktio av : Q( ; x) (x i E(X i ; )). MK-metode ger ite alltid samma resultat som ML-metode. Lösig (ige, fortkörare): Vi har att E(Y ) p p. Q(p) (y E(Y )) (48 p) ; dq(p) (48 p) p 41 dp Derivera och sätt till oll: d l L(p) dp 41 p 41 1 p. Lös ut p: p % Allmät: p y. Steg (egeskaper): E(p ) E( Y ) p p, vätevärdesriktig! V(p ) V( Y p(1 p) ) D(p ) p(1 p) V(p ). p(1 p), avtar med. Eftersom( p (1 p ) 19.4 > 1 så gäller, eligt CGS, att Y N p, ) p(1 p) och alltså att p Y ) p(1 p) (p, N. Steg 4 (medelfel): p d(p ) (1 p ).56(1.56) 5.6 %. Steg 5 (svar): Adele fortkörare uppskattas till 5.6 % med e osäkerhet (stadardavvikelse) för skattige på 5.6 %. MINSTA-KVADRAT-METODEN (MK) Ett sätt att hitta bra skattigar av parametrar som igår i vätevärdet om ma ite vet vilke typ av fördelig ma har. Idé: Välj det värde på de okäda parameter som miimerar de kvadratiska avvikelse frå vätevärdet. Dvs, ugefär: miimera variase. 4
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Föreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-00 Saolikhetsteori Kap : Saolikhetsteoris gruder Följade gäller för saolikheter: 0
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik
Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1
4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
θx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten
Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys
Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR CDEFI, NANO OCH PI, MAS233, 2004 FMS 012, FMS 022, FMS 121 OCH MAS233
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR CDEFI, NANO OCH PI, MAS233, 2004 FMS 012, FMS 022, FMS 121 OCH MAS233 Saolikhetsteori Kap 2: Saolikhetsteoris
Id: statistik.tex :48:29Z joa
UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI PUNKT- OCH INTERVALLSKATTNINGAR SAMT HYPOTESTEST MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Iehåll 1 Puktskattigar
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
SAMMANFATTNING TAMS65
SAMMANFATTNING TAMS65 Matematisk statistik, fortsättigskurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, VT 016 Seast reviderad: 016-06-01 Författare: Viktor Cheg Iehållsförteckig
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Föreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)
Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =
F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Formelblad Sannolikhetsteori 1
Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla
P (A) = k A P (A ) = 1 P (A) P (A B) P (B) P (M i ) = 1 P (A) P (X = k) = p X (k) p X (k) = 1 P (A B) p X (k)
SVERIGES LANTBRUKSUNIVERSITET Istitutioe för eergi och tekik Uwe Mezel e-post: uwe.mezel@matstat.de Formelsamlig Grudläggade matematiskt statistik 2080822 Saolikhetslära Klassisk saolikhetsdeitio: P A
SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Tentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar
TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:
Tentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematik tatitik KTH Formelamlig i matematik tatitik Vårtermie 07 Kombiatorik! = k k! ( k)!. Tolkig: mägd med elemet. = atalet delmägder av torlek k ur e k Stokatika variabler V (X) = E X (E (X)) C (X;
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:
TAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg
Intervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser
Matematisk statistik ör STS vt 004 004-05 - 04 Begt Rosé Itervallskattigar, syoymt koidesitervall eller statistiska osäkerhetsgräser Allmät om koidesitervall För att börja kokret återväder vi till det
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )
Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:
Laboration 5: Konfidensintervall viktiga statistiska fördelningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboratio 5: Kofidesitervall viktiga statistiska fördeligar Syfte I dea laboratio
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 019-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Föreläsning 11, FMSF45 Konfidensintervall
Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, FMSF45 Konfidensintervall Stas Volkov 2017-11-7 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F11: Konfidensintervall
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik
Lösningsförslag 081106
Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:
Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas
Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007
STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett
Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden
Tentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
F6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt
01-10-19 F6 Uppskattig Statistikes gruder dagtid HT 01 Vi skattar populatiosparametrar (modellparametrar med olika statistikor: E. stickprovs- -medelvärdet X skattar μ -variase S skattar -adele P skattar
Statistik för bioteknik SF1911 // KTH Matematisk statistik // Formler och tabeller. 1 Numeriska sammanfattningar (statistikor)
Statistik för biotekik SF9 // KTH Matematisk statistik // Formler och tabeller Ht 206 Numeriska sammafattigar (statistikor) För ett datamaterial x, x 2,..., x beräkas Stickprovsmedelvärde x = i= x i =
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning och exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig och exempel, del II Stickprov Två yttiga fördeligar Estimerig G. Gripeberg 3 Kofidesitervall Aalto-uiversitetet 3 februari 05 4 Hypotesprövig
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning och exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig och exempel, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet MS-A0509 Grudkurs i saolikhetskalkyl
MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23
1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Matematisk statistik
Matematisk statistik (Corelia Schiebold) Iehåll:. Saolikhetsteori 2. Diskreta stokastiska variabler 3. Kotiuerliga stokastiska variabler 4. Oberoedemått, summor av stokastiska variabler och cetrala gräsvärdessatse
Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl
Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014
Föreläsning 1. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 Varför tillämpad statistik? Användningsområden i medicin, naturvetenskap