TMS136: Dataanalys och statistik Tentamen med lösningar
|
|
- Kristina Bengtsson
- för 9 år sedan
- Visningar:
Transkript
1 TMS36: Dataaalys och statistik Tetame med lösigar Examiator och jour: Mattias Sude, tel Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser: För betyg 3 krävs 4 poäg, för 4 krävs 0 poäg och för betyg 5 krävs 7 poäg. Totalt fis 35 poäg. Om du vill att jag skall mejla dig resultatet är jag rättat klart di teta ka du skriva di mejladress på det sista pappret du lämar i. Skriv i så fall gära läsligt. Observera att teta i detta fall kaske ite blir aoym, så struta i det om det käs viktigt. Fullstädiga och välmotiverade lösigar skall ges till varje uppgift!. Defiiera följade begrepp: a) Bias. p) Lösig: Om ˆθ är e skattare ) ite skattig) för parameter θ ges skattares bias av E ˆθ θ. Bias är alltså ett mått hur stor e evetuell systematisk avvikelse är i medeltal. b) Styrka. p) Lösig: Saolikhete att förkasta e falsk ollhypotes. Ett mått på ett hypotestests förmåga att upptäcka avvikelser frå ollhypotese. c) Typ I-fel. p) Lösig: Att förkasta e sa ollhypotes. d) Kofidesgrad för ett tvåsidigt kofidesitervall. p) Lösig: Om ett tvåsidigt kofidesitervall har kofidesgrade α)00% kommer upprepade observatioer kofidesitervallet täcka de aktuella populatiosparameter i α)00% av falle.. I e mörk garderob ligger olika par skor huller om buller. Du sträcker i hade och tar två skor på måfå. Lös följade både för fixt och då : a) Saolikhete att få ett sammahörade par? p)
2 Lösig: Att välja två skor blad skor ka göras på ) sätt så det fis ) möjliga utfall. Det fis precis sammahörade par så ett sammahaörade par ka väljas på precis sätt. Alltså är atalet gysamma utfall. Det följer att saolikhete för att få ett sammahörade par är ) )!! )! ) 0, 0. Så för ett fixt är saolikhete då växer. och saolikhete går mot 0 b) Saolikhete att få e högersko och e västersko? p) Det fis västerskor och högerskor så atalet möjligheter att välja e av varje är. Det fis alltså gysamma utfall. Det följer att de sökta saolikhete är ) )!! )! ), 0. Så för ett fixt är saolikhete då växer. och saolikhete går mot 3. Före e opiiosudersökig krig hur ma skulle rösta om det vore val idag förmodar ma att 36% skulle rösta på Socialdemokratera, 5% skulle rösta på Moderatera, % skulle rösta på Folkpartiet och resterade skulle rösta på de midre partiera eller blakt. Det visade sig blad 0000 tillfrågade att 377 persoer skulle rösta på Socialdemokratera, 48 skulle rösta på Moderatera, 3 skulle rösta på Folkpartiet och att resterade skulle rösta på de midre partiera eller blakt. Fis det aledig att ädra de förmodade fördelige? 4p) Lösig: Här är det lämpligt att göra ett Goodess-of-fit-test då det hadlar om hur måga eheter som hamar i olika kategorier. Då det är 0000 som till frågats följer att de förvätade frekvesera är 3600, 500, 00 och 700 för Socialdemokratera, Moderatera, Folkpartiet respektive övriga partier eller blakt. Vi får då att de observerade testfuktioe O E) E ) ) 3 00) ) Eftersom vi ite skattat ågra parametrar är atalet frihetsgrader 3. Eligt chi-två-tabell är det kritsiska värdet på 0.05-ivå 7.85 så på de ivå skulle vi förkasta ollhypotese om att de förmade fördelige stämmer och har således skäl att ädra de förmodade fördelige. Skulle vi exemplevis välja att göra testet på sigifikasivå 0.0 skulle det kritiska värdet vara.345 och då skulle ma ite förkasta ollhypotese.
3 4. När ma överför iformatio i form av ettor och ollor på e brusig kaal häder iblad att skickade ollor tas emot som ettor och skickade ettor tas emot som ollor. Saolikhete att e skickad olla tas emot som e etta är δ och saolikhete att e skickad etta tas emot som e olla är ǫ. Ma skickar ugefär lika måga ollor som ettor. Låt X vara det som säds och Y vara det som tas emot. a) Bestäm massfuktioe för Y 3p) Lösig: Ur texte fås PY X 0) δ, PY 0 X ) ǫ och PX ) PX 0). Eligt defiitioe av betigad saolikhet följer att PY ) PY X 0)PX 0)+PY X )PX ) Vi får då att δ + ǫ) ǫ + δ. PY 0) PY ) δ + ǫ, och det följer att massfuktioe för Y är ) y ǫ + δ δ + ǫ fy) b) Bestäm korrelatioe mella X och Y 3p) Lösig: Korrelatioe mella X och Y ges av EXY ) EX)EY ) V X)V Y ). ) y Vi har att EXY ) PX,Y ) PY X )PX ) ǫ, och att EX), EY ) ǫ + δ, V X) E X ) EX)) 4 4 V Y ) E Y ) EY )) ǫ + δ Det följer att korrelatioe mella X och Y är ǫ ǫ+δ ǫ+δ 4 ǫ+δ ) ǫ + δ. ) ) ǫ δ ǫ δ) 3
4 5. Tidera mella kuders akomster till kassa 8 på ICA Maxi är oberoede och expoetialfördelade med vätevärde 45 sekuder. Atag att e kud just kom till kassa. Vad är saolikhete att det uder uder ästkommade fyra timmar kommer åtmistoe 330 kuder till kassa? 4p) Lösig: Att tidera mella kuderas akomster är oberoede och expoetialfördelade med vätevärde 45 sekuder betyder att atalet kuder som kommer till kassa uder 45 sekuder är Poissofördelade med vätevärde λ. Det följer att atalet kuder som kommer till kassa uder fyra timmar är Poissofördelat med vätevärde λ / Vi har då med hjälp av CGS, om X är atalet kuder uder fyra timmar, att ) PX 330) P Z Φ0.56) Saolikhete att åtmistoe 330 kuder kommer till kassa uder fyra timmar är alltså ugefär 9 procet. 6. Frå två oberoede grupper av bilar har bräsleförbrukige i liter per mil mätts upp med följade stickprovsresultat a) 0.9,.0, 0.86, 0.95,.03,., 0.9, 0.86 b) 0.7, 0.67, 0.7, 0.63, 0.58, 0.65, 0.59, 0.7, 0.57 Är detta tillräckligt för att på sigifikasivå 0.05 och uder atagade om lika populatiosvariaser säga att de ormalfördelade gruppb) har lägre förvätad bräsleförbrukig ä de ormalfördelade gruppa)? 4p) Lösig: Vi låter idexet betecka gruppe frå vilke stickprovet av storlek 8 kommer och betecka gruppe frå vilke stickprovet av storlek 9 kommer. Vi ska testa hypotesera H 0 : µ µ 0 H : µ µ > 0. Då vi ka ata att populatiosvariasera är lika aväder vi testfuktioe X X 0, S p + där X är medelvärdet för stickrpovet frå grupp, X är medelvärdet för stickrpovet frå grupp, 0 är ollhypoteses värde på skillade i populatiosmedelvärde µ µ och S p är de poolade stickprovsstadardavvikelse som ges av S p ) S + ) S. + Vi observerar x 0.96, x 0.65, s och s så s p 0.075, 5 4
5 vilket, med 0 0 ger de observerade testfuktioe De kritiska värdet är t 0.05,5.753 så vi ka förkasta ollhypotese. Så bilgruppe varifrå stickprovet av storlek io kommer har alltså e sigifikat lägre medelförbrukig ä bilgruppe varifrå stickprovet av storlek åtta kommer. 7. I VLE-uppgiftera har vi sett att ma givet ett stickprov X,...,X frå e likformig fördelig på itervallet [0,b] ka skatta ett okät b med exempelvis ML-skattare maxx,...,x ) eller mometskattare X. Fi ett argumet som talar för att aväda mometskattare över ML-skattare. Fi mist två argumet som talar för att aväda ML-skattare över mometskattare. Argumete måste motiveras väl. 5p) Lösig: Mometskattare är ubiased eftersom E X ) E X) E X i ) b b. i ML-skattare är ite ubiased eftersom E maxx,...,x )) b b x b + där vi fått täthete, fx) x b för 0 < x < b och 0 aars, för MLskattare som derivata m.a.p. x av dess fördeligsfuktio Fx) PmaxX,...,X ) x) PX x,...,x x) PX i x)) x ),0 < x < b b och Fx) 0 aars. Så ur biassypukt är mometskattare bättre ä ML-skattare. ML-skattare är bättre ä mometskattre eftersom som de aldrig ka ge de orimliga skattige att b skulle vara midre ä e av stickprovsmedlemmara. ML-skattare är bättre ä mometskattare eftersom MSE för ML-skattare är E maxx,...,x ) b) ) E maxx,...,x )) ) b b + + b, där E maxx,...,x )) ) b b så MSE för ML-skattare blir 0 0 x b +, b + b + + b b + ) + ), meda MSE för mometskattare är ) ) ) E X b 4E X) be X ) + b 5
6 4V X) + 4 E X)) b + b 4 b + 4b 4 b b 3 så kvote av MSE för ML-skattare och MSE för mometskattare blir 6,,,... + ) + ) med likhet för, och olikhet för > så i alla praktiskt relevata situatioer har ML-skattare lägre MSE ä mometskattare. 8. Låt X,...,X vara ett stickprov frå e fördelig med täthetsfuktioe fx) x θ e x /θ), x 0, θ > 0. a) Bestäm ML-skattare för θ. p) Lösig: Likelihood-fuktioe ges av Lθ) x i θ e x i i /θ) i x i θ e θ P i x i. Det är behädigare att maximera log-likelikelihood-fuktioe istället så vi tar fram de; lθ) llθ) lx i l θ θ i Vi deriverar lθ) och får ekvatioe θ + θ x i 0, i och det följer att ML-skattare är ˆθ i X i. och V X i) 4 π θ. Vad blir ML- b) Ma ka visa att EX i ) skattares bias? p) Lösig: Vi har att E i X i ) θπ x i. i i V X i ) + E X i )) ) så ML-skattare är ubiased. Lycka till! E Xi ) E Xi ) 4 π θ + θπ ) θ, 6
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Läs mer1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Läs merTentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Läs mer(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Läs merFöreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Läs merb) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
Läs merθx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Läs merLÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Läs merFöreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde
Läs mer1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med
Läs merS0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Läs merMinsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Läs merIntervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Läs merBorel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Läs merLycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Läs mera) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merMatematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
Läs merStat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Läs merIntroduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Läs merF19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
Läs merTentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet
Läs merTENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Läs merJag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Läs merTentamen i matematisk statistik
Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Läs merFöreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
Läs mer2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg
Läs merGrundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Läs merFör att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
Läs merZ-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
Läs merLösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007
STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra
Läs merStatistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten
Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys
Läs merSkattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Läs merÖvningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Läs merHöftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
Läs merx 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas
Läs merVid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Läs merSannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-00 Saolikhetsteori Kap : Saolikhetsteoris gruder Följade gäller för saolikheter: 0
Läs merKOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi
Läs merTENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
Läs merAntalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Läs merFöreläsning G70 Statistik A
Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d
Läs merF10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Läs merTMS136: Dataanalys och statistik Tentamen
TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:
Läs merFöreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Läs merFöreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
Läs merÖvningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas
Läs merSAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
Läs merStudentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.
KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso
Läs merSANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Läs mer================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Läs merMA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23
1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Läs merFöljande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Läs merF3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik
Läs merUppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik
Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Läs merTentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator
Läs mer4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
Läs merViktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt
Läs merTentamen Metod C vid Uppsala universitet, , kl
Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark
Läs merF6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt
01-10-19 F6 Uppskattig Statistikes gruder dagtid HT 01 Vi skattar populatiosparametrar (modellparametrar med olika statistikor: E. stickprovs- -medelvärdet X skattar μ -variase S skattar -adele P skattar
Läs merSannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:
Läs merSannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Läs merMatematisk statistik
Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 019-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Läs merJag läser kursen på. Halvfart Helfart
KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig
Läs merTentamentsskrivning: Tillämpad Statistik 1MS026 1
Tetametsskrivig: Tillämpad Statistik 1MS026 1 Tetamesskrivig i Tillämpad Statistik 1MS026 Tid: de 7 mars, 2012 kl 8:00-13:00 Examiator och jour: Erik Broma, mob. 073 7320791, Hjälpmedel: miiräkare, formelsamlig
Läs merTENTAMEN Datum: 16 okt 09
TENTAMEN Datum: 6 okt 09 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF00 TEN (Matematisk statistik ) Te i kurse HF00 ( Tidigare k 6H0), KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse HF00, 6H000, 6L000 MATEMATIK
Läs merFORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)
Läs merHögskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
Läs merFöreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning och exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig och exempel, del II Stickprov Två yttiga fördeligar Estimerig G. Gripeberg 3 Kofidesitervall Aalto-uiversitetet 3 februari 05 4 Hypotesprövig
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning och exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig och exempel, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet MS-A0509 Grudkurs i saolikhetskalkyl
Läs merMS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
Läs merTentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl
Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig
Läs merTENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng
UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad
Läs merGenomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Läs merESS011: Matematisk statistik och signalbehandling Tid: 14:00-18:00, Datum:
ESS0: Matematisk statistik och signalbehandling Tid: 4:00-8:00, Datum: 20-0-2 Examinatorer: José Sánchez och Bill Karlström Jour: Bill Karlström, tel. 070 624 44 88. José Sánchez, tel. 03 772 53 77. Hjälpmedel:
Läs merFormelblad Sannolikhetsteori 1
Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla
Läs merStatistik för bioteknik SF1911 // KTH Matematisk statistik // Formler och tabeller. 1 Numeriska sammanfattningar (statistikor)
Statistik för biotekik SF9 // KTH Matematisk statistik // Formler och tabeller Ht 206 Numeriska sammafattigar (statistikor) För ett datamaterial x, x 2,..., x beräkas Stickprovsmedelvärde x = i= x i =
Läs merHandbok i materialstyrning - Del F Prognostisering
Hadbok i materialstyrig - Del F Progostiserig F 71 Absoluta mått på progosfel I lagerstyrigssammahag ka progostiserig allmät defiieras som e bedömig av framtida efterfråga frå kuder. Eftersom det är e
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 5
Fiasiell Statistik (GN, 7,5 hp,, HT 8) Föreläsig 5 HYPOTESPRÖVNING (LLL Kap 11) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course, 7,5 ECTS,
Läs merTentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Läs mer