1. Test av anpassning.
|
|
- Astrid Nyberg
- för 6 år sedan
- Visningar:
Transkript
1 χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler är oberoede av varadra. 1. Test av apassig. Data: observatioer klassificerade i K olika kategorier: Kategori Atal obs. 1 O 1 O K O K O i = observatioer i kategori i (i = 1,,, K K Låt P i = saolikhete att få e observatio i kategori i ( i 1 Pi 1. Kategori Atal obs. Saolikhet Förvätat obs. 1 O 1 P 1 P 1 O P P K O K P K P K 1 Saolikhetera P 1, P,, P K är u okäda, och vi vill pröva ollhypotese att de har vissa bestämda umeriska värde: H 0 : P 1 =P 10, P =P 0,, P K =P K0 Mothypotese är att H 0 ite gäller, dvs. att ite alla saolikhetera har de i H 0 giva värdea. Vi aväder ett -test med testvariabel: K ( Oi i i1 i, där O i = observerat i kategori i i = P i0 = förvätat uder H 0 När H 0 är sa, så är testvariabel approximativt -fördelad med K-1 fg, ifall et observatioer är tillräckligt stort. Det förvätade et, i = P i0, måste vara 5 för alla kategorier. Om så ite är fallet, brukar ma iblad slå ihop kategorier. 1
2 Stora skillader mella observerat och förvätat ger höga värde på testvariabel. Vi förkastar därför H 0, om (och edast om vi får extremt höga värde på testvariabel. Kritiskt värde bestäms av öskad sigifikasivå och av frihetsgrader. xempel 1: produkt tillverkas i fyra färger. Ma vill udersöka om vissa av färgera föredras framför de övriga. tt slumpmässigt urval av 80 presumtiva kosumeter tillfrågas om vilke färg de föredrar, och följade data erhålls: Färg Atal Nollhypotese är att alla färgera är lika populära, dvs. att vi har lika stor slh att i urvalet få e perso som föredrar färg 1 som att få e perso som föredrar färg etc. Dvs. Hypoteser: H 0 : P 1 = P = P 3 = P 4 = 0,5 H 1 : j alla saolikheter lika med 0,5 Sig.-ivå: 5% Testvariabel: ( Oi i (K-1 = 3 fg Beslutsregel: H 0 förkastas om obs > 0,05 (3 =7,81. Resultat: i Färg Obs. Saolikhet el. H 0 Förv. el. H ,5 800,5 = ,5 800,5 = ,5 800,5 = ,5 800,5 = (1 0 (40 0 (8 0 (0 0 obs = 30,400 >7, H 0 förkastas på 5% sigifikasivå (Sigifikat skillad i popularitet mella olika färger. xempel : A, B och C är tre kokurrerade produkter av samma typ. Uder e lägre tid har 30% av kudera efterfrågat produkt A, 50% produkt B, och 0% produkt C. Nylige har produkt C geomgått e förädrig, och ma vill veta om produkteras markadsadelar därigeom har förädrats. Vid e markadsudersökig av 00 kuder fa ma att 48 u sade sig föredra produkt A, 98 produkt B, och 54 produkt C. Vilke slutsats ka vi dra? Hypoteser: H 0 : P A = 0,3; P B = 0,5; P C = 0, H 1 : Det gäller ite att P A = 0,3; P B = 0,5; P C = 0, Sig.-ivå: 5%
3 ( Oi i Testvariabel: (K-1 = fg Beslutsregel: H 0 förkastas om obs > 0,05 ( =5,99. Resultat: i Prod. Obs. Saolikhet el. H 0 Förv. el. H 0 A 48 0,3 000,3 = 60 B 98 0,5 000,5 = 100 C 54 0, 000, = 40 Tot. 00 1,0 00 (48 60 ( (54 40 obs =,40 + 0,04 + 4,90 = 7,34 > 5, H 0 förkastas på 5% sigifikasivå, dvs vi tror att förädrige av produkt C medfört e ädrig av markadsadelara. OBS 1. Avruda ite de förvätade e. Om de förvätade e ite blir heltal, så ta med ågo eller ågra decimaler i beräkigara. OBS. O i och i står för observerat och förvätat, ite procettal.. Test av apassig: fördelig med skattade parametrar Säg att vi vill testa om våra data ka ses som ett stickprov frå e viss typ av fördelig, t.ex. e Poissofördelig, uta att vi i förväg har specificerat ågot bestämt parametervärde. Vi måste beräka ett skattat parametervärde utifrå våra data. Med hjälp av detta får vi seda det förvätade et observatioer (uder H 0 i olika kategorier. Atalet frihetsgrader är u K-m-1, där K = et kategorier m = et skattade parametrar xempel 3: Vi har 6 textblock (ugefär lika låga frå ett visst dokumet. För varje textblock räkar vi hur måga gåger ordet may förekommer. Data: Atal förekomster eller fler Obs Vi vill testa om et förekomster av ordet may i ett textblock följer e Poissofördelig. Poissofördeliges saolikhetsfuktio är x e P( x (x = 0, 1,, x! 3
4 och dess medelvärde är: =. Detta medelvärde skattas u med stickprovets medelvärde, och vi får ˆ x1 x x6 x 0,6. 6 Vi sätter seda i detta skattade parametervärde i saolikhetsfuktioe ova. Hypoteser: H 0 : Stickprovet kommer frå e Poissofördelig. H 1 : Stickprovet kommer ite frå e Poissofördelig. Sig.-ivå: 5% Testvariabel: ( Oi i Frihetsgrader: K-m-1 = = i Beslutsregel: H 0 förkastas om vi får obs > 0,05 ( =5,99. Resultat: Atal förekomster Obs. P(x =0,6 Förv , , , ,4 9 0,1034 7,1 3 el. fler 14 0,05 6,6 6 1,0000 6,0 obs ( ,9 140,9 (63 87,4 87,4 (9 7,1 7,1 (14 6,6 6,6 16,86 5,99. Nollhypotese, att stickprovet kommer frå e Poissofördelig, förkastas på 5% sigifikasivå. 3. Test av oberoede i korstabell Problemet i fortsättige är följade: Vi har ett slumpmässigt stickprov av elemet, för vilka vi observerat två kvalitativa variabler. Stickprovsdata = korstabell, med observatioer i varje cell. Vi frågar: Råder det oberoede mella de två kvalitativa variablera i populatioe? 4
5 xempel 4: Dispoibel ikomst och bostadskostad för 500 epersoshushåll. Bostadskostad Ikomst Låg Mella Hög Låg Mella Hög Fis det ett sambad mella ikomst och bostadskostad? Hur skulle det ha sett ut om det helt sakades sambad mella ikomst och bostadskostad? Dvs. om det rådde fullstädigt oberoede mella ikomst och bostadskostad? Vid fullstädigt oberoede skulle vi ha haft följade förvätade epersoshushåll: Bostadskostad Ikomst Låg Mella Hög Låg Mella Hög Iformatio om ikomst skulle vid oberoede ite vara till hjälp, ifall vi ville försöka gissa hushållets bostadskostad. Stickprovsdata: Korstabell med r rader och c kolumer: 1 c 1 O 11 O 1 O 1c R 1 O 1 O O c R r O r1 O r O rc R r C 1 C C c där c R i O ij, i=1,,r; j 1 C r j O ij i 1, j=1,, c. 5
6 H 0 : Oberoede mella de båda ideligsgrudera. H 1 : j oberoede Testas med testvariabel: r c ( Oij ij i1j1 ij där ij = Förvätat uder H 0 = Ri C j Ri C j 1 c c R 1 1 c R r r1 r rc R r C 1 C C c ij -värde beräkade på detta sätt har egeskape att: de relativa fördelige i varje kolum blir desamma som margialfördelige till höger, de relativa fördelige i varje rad blir desamma som margialfördelige lägst er. Det är ju vad vi vätar oss vid oberoede. När H 0 är sa, så är testvariabel approximativt -fördelad med (r-1(c-1 fg, ifall stickprovet är tillräckligt stort. Tumregel: ij måste vara mist lika med 5 i mer ä 0% av cellera. Iblad måste ma slå ihop kategorier för att uppå detta. H 0 förkastas är vi får höga värde på testvariabel. Kritiskt värde bestäms på valigt sätt frå tabell med ledig av öskad sigifikasivå och frihetsgrader. x.(forts.: H 0 : Oberoede mella dispoibel ikomst och bostadskostad. H 1 : j oberoede. Sigifikasivå: 5% Testvariabel: r c ( Oij ij i1j1 ij Frihetsgrader: (3-1(3-1 = 4 fg Beslutsregel: H 0 förkastas om obs > 0,05(4 =9,49. 6
7 Resultat: Förvätat, uder H 0, står iom paretes uder observerade et i varje cell. Bostadskostad Ikomst Låg Mella Hög Låg (0 (50 (30 Mella (40 (100 (60 Hög (40 (100 ( (35 0 ( obs = 93,63 > 9, H 0 förkastas på 5% sig.-ivå, dvs. att vi tror att det fis ett sambad mella dispoibel ikomst och bostadskostad. 7
χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:
Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n
Läs merStatistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Läs merStat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Läs merF19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
Läs merFöreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Läs merTMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar
TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:
Läs merFöreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde
Läs merVid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Läs merAntalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Läs merS0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Läs merF10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Läs merFör att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
Läs merStatistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten
Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys
Läs merLÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Läs mer(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Läs merIntervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Läs merZ-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
Läs merb) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
Läs mera) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med
Läs merMinsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Läs merGrundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Läs merLösningsförslag 081106
Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:
Läs merTentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
Läs merKOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Läs merSannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
Läs merUppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik
Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1
Läs merLösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007
STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra
Läs merHögskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
Läs merTentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Läs merViktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt
Läs merFöreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 5
Fiasiell Statistik (GN, 7,5 hp,, HT 8) Föreläsig 5 HYPOTESPRÖVNING (LLL Kap 11) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course, 7,5 ECTS,
Läs mer95%-igt konfidensintervall för andel kalsongbärare i populationen: Slutsats: Med 95% säkerhet finns andelen kalsongbärare i intervallet 38-48%
UPPGIFT 1 Vi slumpmässigt urval har varje iivi e kä saolikhet att komma me i urvalet Resultatet går att geeralisera till populatioe är ma gjort slumpmässigt urval UPPGIFT A) Kostatterme: De som ite får
Läs mer1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Läs merx 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg
Läs mer2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Läs merθx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Läs merHöftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
Läs merMatematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
Läs merFöreläsning G70 Statistik A
Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d
Läs merLycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merFöreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
Läs merFöreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
Läs mer4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Läs merÖvningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Läs mer. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Läs mer================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Läs merStudentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.
KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso
Läs merJag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Läs merBorel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Läs merArmin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
Läs merENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas
Läs merTentamen Metod C vid Uppsala universitet, , kl
Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark
Läs merIntroduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:
Läs merFöljande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Läs merTENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Läs merStatistik för bioteknik SF1911 // KTH Matematisk statistik // Formler och tabeller. 1 Numeriska sammanfattningar (statistikor)
Statistik för biotekik SF9 // KTH Matematisk statistik // Formler och tabeller Ht 206 Numeriska sammafattigar (statistikor) För ett datamaterial x, x 2,..., x beräkas Stickprovsmedelvärde x = i= x i =
Läs merFöreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
Läs merSANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator
Läs merMA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23
1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Läs merTAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Läs merb 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Läs merF6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt
01-10-19 F6 Uppskattig Statistikes gruder dagtid HT 01 Vi skattar populatiosparametrar (modellparametrar med olika statistikor: E. stickprovs- -medelvärdet X skattar μ -variase S skattar -adele P skattar
Läs merSkattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Läs merFormelblad Sannolikhetsteori 1
Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla
Läs merMS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
Läs merTentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
Läs merTAMS15: SS1 Markovprocesser
TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik
Läs merSannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Läs merÖvningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Läs merFORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det
Läs merSAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
Läs merJag läser kursen på. Halvfart Helfart
KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig
Läs merSTATISTIK FÖR LÄKARSTUDENTER
2015-04-05 STATISTIK FÖR LÄKARSTUDENTER Nils Karlsso läkarstudet.se INDEX INTRODUKTION...2 Att skriva saolikheter...2 Saolikhetslagar...2 Fakulteter...3 Odds och oddskvot...3 Typer av data...4 Diagram...5
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av
Läs merF3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
Läs merTentamentsskrivning: Tillämpad Statistik 1MS026 1
Tetametsskrivig: Tillämpad Statistik 1MS026 1 Tetamesskrivig i Tillämpad Statistik 1MS026 Tid: de 7 mars, 2012 kl 8:00-13:00 Examiator och jour: Erik Broma, mob. 073 7320791, Hjälpmedel: miiräkare, formelsamlig
Läs merSannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-00 Saolikhetsteori Kap : Saolikhetsteoris gruder Följade gäller för saolikheter: 0
Läs mer