Föreläsning G70 Statistik A
|
|
- Jan-Olof Hellström
- för 8 år sedan
- Visningar:
Transkript
1 Föreläsig 5 732G70 Statistik A
2 Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive i allmähet är okäda skattas de med s respektive p. Exempel stickprovssumma: Flygbolag räkar med att medelvikte på e passagerare är 80 kg med e stadardavvikelse om 5 kg. E viss flygplastyp rymmer 290 passagerare. Totalvikte blad dessa 290 passagerare är exempel på e stickprovssumma. 2
3 De stora tales lag Ju större stickprov vi drar, desto mer lika blir stickprovsstatistikora populatiosparametrara 3
4 Percet Sampligfördelig Hur ofta kommer vårt stickprovsmedelvärde att överesstämma med populatiosmedelvärdet, om vi skulle dra måga OSU ur samma populatio? Exempel: Vi studerar ett företag med 100 aställda, och vi är itresserade av medelikomste blad de aställda. Företagets aställda utgör alltså vår populatio, och med hjälp av företagets ekoomiavdelig ka vi faktiskt plocka fram löeivå för samtliga 100 aställda vid e viss tidpukt. Vi åskådliggör löefördelige vid företaget i ett histogram: Ur löestatistike bestäms medellöe vid företaget till = kr Histogrammet visar tydligt att populatioe lö för de aställda vid företaget ite ka betraktas som ormalfördelad! Ikomst (tkr) Vilke medellö skulle ett stickprov ge? 4
5 Sampligfördelig (forts) Låt oss u göra ett teoretiskt experimet: vi drar 50 oberoede stickprov om storleke = 10, beräkar de 50 stickprovsmedelvärdea och åskådliggör stickprovsmedelvärdea i ett histogram. Följade resultat erhålles. x kr Notera beteckige för medelvärde av medelvärde Medelvärde Ikomst i stickprovet (tkr) (tkr)
6 Sampligfördelig (forts) Experimetet upprepas för 50 oberoede stickprov om storleke = 20: x kr Medelvärde Ikomst i stickprovet (tkr) (tkr)
7 Sampligfördelig (forts) Slutlige upprepas experimetet för 50 oberoede stickprov om storleke = 30: x kr Medelvärde Ikomst i stickprovet (tkr) (tkr)
8 Sampligfördelig (forts) Fördelige för stickprovsmedelvärdea kallas för e urvalsfördelig. Urvalsfördelige är alltså e förteckig över vilka värde vi ka förväta oss få i vårt urval, och hur ofta de ka förvätas förekomma. Vi ka betrakta urvalsfördelige som e uppskattig av de fördelig som skulle fås om vi åskådliggjorde stickprovsmedelvärdea för samtliga möjliga stickprov av e viss storlek ur populatioe, vilket kallas för e sampligfördelig. 8
9 Cetrala gräsvärdessatse sampligfördelige blir mer och mer lik e ormalfördelig (trots att populatioe som stickprove drogs ur ite alls var ormalfördelad!) är stickprovsstorleke ökar sampligfördeliges medelvärde hamar allt ärmare populatiosmedelvärdet är stickprovsstorleke ökar Cetrala gräsvärdessatse säger Sampligfördelige för summor eller medelvärde av oberoede slumpvariabler med samma fördelig är approximativt ormalfördelad om är tillräckligt stort Valig tumregel: 30 9
10 Fördelig för lijära variabeltrasformatioer Lijära variabeltrasformatioer av ormalfördelade slumpvariabler är också ormalfördelade Iebörde i detta är att sampligfördelige för medelvärde, summor och adelar beräkade på observatioer som följer ormalfördelige, geom att de dragits ur e populatio som är ormalfördelad, också är ormalfördelade, och detta oavsett stickprovets storlek. 10
11 Stickprovsstatistikors fördelig Om 30 gäller, tack vare cetrala gräsvärdessatse oavsett vilke fördelig populatioe som stickprovet dragits ur har, att Stickprovsmedelvärdet X N ; X X Stickprovssumma X N X ; X Om < 30 krävs att populatioe som stickprovet dragits ur är ormalfördelad. Då gäller fortfarade ovaståede formler eftersom lijära variabeltrasformatioer av ormalfördelade slumpvariabler också är ormalfördelade. 11
12 Stickprovsstatistikors fördelig (forts) För e stickprovsadel där X = atalet eheter i stickprovet med studerad egeskap gäller, givet att p(1-p) > 5, att P N P ; P 1 P Detta motiveras eligt följade: X beteckar atalet eheter i stickprovet med studerad egeskap, eller med adra ord atalet lyckade delförsök blad de totalt delförsök som stickprovet utgör. Givet att populatioe som stickprovet har dragits ur är tillräckligt stor gäller då att X är biomialfördelad. Frå kapitel 4 käer vi att biomialfördelige kovergerar mot ormalfördelige är är tillräckligt stor, och att ormalfördeligsapproximatio av biomialfördelige är möjlig om 1 5 Vi skattar de okäda populatiosadele med P, och sätter alltså som tumregel att sampligfördelige för e stickprovsadel går att betrakta som approximativt ormalfördelad om p 1 p 5 X 12
13 Exempel E grossist importerar 500-grams påsar med ris i partier om påsar. Grossiste kotrollerar de leveraser om påsar ma mottar geom att kotrollväga ett slumpmässigt urval om 50 påsar ur varje parti. Vid e viss leveras uppmäts geomsittsvikte till gram blad 50 slumpmässigt utvalda påsar. Beräka saolikhete att få e geomsittsvikt blad 50 slumpmässigt valda påsar som är gram eller lägre, givet att det är sat att geomsittsvikte per påse i hela partiet är 500 gram och stadardavvikelse mella påsar är 10.0 gram, vilket leveratöre hävdar. Vad är saolikhete för att de sammalagda vikte blad de 50 slumpmässigt valda påsara överstiger 25.2 kg, givet att det är sat att geomsittsvikte per påse i hela partiet är 500 gram och stadardavvikelse mella påsar är 10.0 gram? 13
14 Kapitel 6 Iferes om e populatio Sid
15 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde Puktskattig: att aväda e stickprovsstatistika som e uppskattig av motsvarade populatiosparameter Dock: stickprovsstatistikor är slumpvariabler och atar olika värde för varje stickprov. Hur ska vi hatera de osäkerhete? Vi börjar med att göra två atagade: 1. stickprovet är draget som ett OSU. Detta garaterar oberoede mella observatioera, vilket är de egeskap vi eftersöker här. 2. sampligfördelige för stickprovsmedelvärdet ka betraktas som ormalfördelad Om stickprovet är stort (eligt tumregel beståede av mist 30 eheter) ka vi tillämpa cetrala gräsvärdessatse (kapitel 5), vilke säger att sampligfördelige för summor eller medelvärde av oberoede slumpvariabler med samma fördelig är approximativt ormalfördelad om är tillräckligt stort. Om stickprovet är litet, eligt tumregel färre ä 30 eheter, krävs att populatioe som stickprovet dragits ur ka betraktas som ormalfördelad. Ett OSU draget ur e ormalfördelad populatio ger, som vi har lärt oss i kapitel 5, att sampligfördelige för stickprovsmedelvärdet också blir ormalfördelad, och detta oavsett stickprovets storlek. 15
16 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde Om krave är uppfyllda ka vi bilda ett kofidesitervall för populatiosmedelvärdet: vi lägger ett osäkerhetsitervall krig puktskattige vilket tillåter oss att med e viss säkerhet säga att de okäda populatiosparameter täcks av itervallet. 16
17 Dubbelsidigt kofidesitervall för populatiosmedelvärde är σ är okäd Givet att stickprovet är draget som ett OSU sampligfördelige för stickprovsstatistika ka betraktas som ormalfördelad bildas ett dubbelsidigt kofidesitervall för populatiosmedelvärdet µ eligt x t 1;1 / 2 s där värdet på t hämtas ur t-fördelige (Appedix B) 17
18 t-fördelige t-fördelige aväds för att lösa likade typer av problem som ormalfördelige, me lämpar sig är stickprovet är relativt litet och populatiosstadardavvikelse är okäd. t-fördelige är precis som ormalfördelige symmetrisk. t-fördelige defiieras av atalet frihetsgrader, eller eklare uttryckt atalet oberoede bitar av iformatio. Atalet frihetsgrader bestäms av hur mycket data ma har och hur måga bitar av iformatio som de statistiska metodik ma aväder sig av kräver. E viktig egeskap hos t-fördelige är att de ärmar sig (kovergerar mot) ormalfördelige är atalet frihetsgrader ökar. E valig tumregel är att betrakta t-fördelige som approximativt ormalfördelad om stickprovet består av 30 eheter eller fler. Frihetsgrader
19 Exempel Ett slumpmässigt urval om 40 studeter vid Liköpigs uiversitet ger medelålder 21.2 år och stadardavvikelse 4.4 år. Bestäm ett itervall som med 95 procets säkerhet täcker de saa medelålder blad studerade vid Liköpigs uiversitet. 19
20 Ekelsidiga kofidesitervall för populatiosmedelvärde är är okäd Nedåt begräsat kofidesitervall: Uppåt begräsat kofidesitervall: 1 x t 1; 1 x t 1; Exempel: Styrelse i e bostadsrättsföreig får i klagomål på att golvvärme i badrumme är för låg. Ma drar ett OSU om 30 badrum blad de omkrig 400 badrum som fis i föreiges fastigheter och mäter golvvärme där. Medeltemperature beräkas till 21 grader och stadardavvikelse till 1.6 grader. Eergimydighete rekommederar att golvvärme ska ligga på mist 20 grader för att ma ska udkomma problem med fuktskador. Föreligger risk för fuktskador i föreiges badrum? s s 20
21 Kofidesitervall för populatiosadel Givet att 1. stickprovet är draget som ett OSU 2. det gäller att p(1-p) > 5 bildas dubbelsidigt kofidesitervall för populatiosadele π eligt p 1 p p z1 / 2 där värdet på z hämtas ur ormalfördeligstabelle (Appedix B) Nedåt begräsat kofidesitervall: p1 p p z1 Uppåt begräsat kofidesitervall: p z 1 p 1 p 21
22 Exempel I e hälsoekät tillfrågades 100 slumpmässigt utvalda aställda vid ett stort företag om huruvida ma regelbudet motioerar eller ej. Svar erhölls frå 84 aställda och av dessa svarade 65 ja. Bestäm ett 95-procetigt kofidesitervall för adele av de aställda vid det stora företaget som regelbudet motioerar. 22
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
Läs merFöreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde
Läs merFöreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Läs mer732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann
73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 06 Kapitel Populatioer, stickprov och variabler
Läs mer732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann
73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 07 Kapitel Populatioer, stickprov och variabler
Läs mer732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann
73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 08 Kapitel Populatio, stickprov och variabler
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Läs merF10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Läs mer4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
Läs merStatistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Läs merGrundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Läs merF19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
Läs merFör att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
Läs merF3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
Läs merAntalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Läs merFöreläsning G70 Statistik A
Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d
Läs merMinsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Läs merIntervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Läs mer(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Läs merFöreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Läs merFöreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
Läs merθx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Läs merFöreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
Läs merSkattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Läs merTentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Läs merNormalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)
Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Läs merUppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik
Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1
Läs merSannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
Läs merS0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Läs merHögskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
Läs merLycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merStat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Läs merTENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Läs merTMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar
TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:
Läs merStatistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten
Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys
Läs mer1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med
Läs merTentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl
Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig
Läs merIntroduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Läs mer1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Läs merLaboration 5: Konfidensintervall viktiga statistiska fördelningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboratio 5: Kofidesitervall viktiga statistiska fördeligar Syfte I dea laboratio
Läs merZ-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
Läs merLÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Läs merSannolikhetslära statistisk inferens F10 ESTIMATION (NCT )
Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:
Läs merTentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
Läs mer================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Läs merFormelblad Sannolikhetsteori 1
Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla
Läs mera) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator
Läs merFöreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
Läs merBorel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Läs merTENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
Läs mer2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Läs merVid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Läs merF6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt
01-10-19 F6 Uppskattig Statistikes gruder dagtid HT 01 Vi skattar populatiosparametrar (modellparametrar med olika statistikor: E. stickprovs- -medelvärdet X skattar μ -variase S skattar -adele P skattar
Läs merSAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Läs merStatistik för ingenjörer 1MS008
Statistik för igejörer MS8 Föreläsig Kursmål: För godkät betyg på kurse skall studete käa till ett flertal metoder och tekiker för visualiserig av datamaterial; kua geomföra ekla beräkigar av saolikheter;
Läs merÖvningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg
Läs merTentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
Läs merFORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)
Läs merMA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas
Läs merKonsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor
Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.
Läs merViktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt
Läs merFöljande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Läs merFöreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Läs merIntervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser
Matematisk statistik ör STS vt 004 004-05 - 04 Begt Rosé Itervallskattigar, syoymt koidesitervall eller statistiska osäkerhetsgräser Allmät om koidesitervall För att börja kokret återväder vi till det
Läs merb 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Läs merb) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
Läs merSAMMANFATTNING TAMS65
SAMMANFATTNING TAMS65 Matematisk statistik, fortsättigskurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, VT 016 Seast reviderad: 016-06-01 Författare: Viktor Cheg Iehållsförteckig
Läs merF12 Stickprovsteori, forts
F12 Stickprovsteori, forts 5.4 Cetrala gräsvärdessatse IsistaexempletvidF10hadeviefördelig fx i )=1/3, x i =1,2,3 Eobservatiofrådeakasessomettstickprovav storlek=1. Vi såg geom att studera alla möjliga
Läs merMA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23
1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg
Läs merSANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Läs merMatematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
Läs merAnmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Läs merNågra grundläggande begrepp och termer i statistikteorin
Matematisk statistik för STS vt 004 004-05 - 03 Begt Rosé Några grudläggade begrepp och termer i statistikteori Om matematisk statistik Som tidigare ämts brukar matematisk statistik delas upp i huvudområdea
Läs merÖvningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas
Läs merP (A) = k A P (A ) = 1 P (A) P (A B) P (B) P (M i ) = 1 P (A) P (X = k) = p X (k) p X (k) = 1 P (A B) p X (k)
SVERIGES LANTBRUKSUNIVERSITET Istitutioe för eergi och tekik Uwe Mezel e-post: uwe.mezel@matstat.de Formelsamlig Grudläggade matematiskt statistik 2080822 Saolikhetslära Klassisk saolikhetsdeitio: P A
Läs merMatematisk statistik
Matematisk statistik (Corelia Schiebold) Iehåll:. Saolikhetsteori 2. Diskreta stokastiska variabler 3. Kotiuerliga stokastiska variabler 4. Oberoedemått, summor av stokastiska variabler och cetrala gräsvärdessatse
Läs merId: statistik.tex :48:29Z joa
UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI PUNKT- OCH INTERVALLSKATTNINGAR SAMT HYPOTESTEST MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Iehåll 1 Puktskattigar
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:
Läs merTAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
Läs merTentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs merE ( X ) = (här ska ni skriva en viss bokstav! Vilken? Varför)
STOCKHOLMS UNIVERSITET HT 2005 Statistiska istitutioe 2005-09-9 MC Istruktioer till DATORÖVNING Fortsättigskurs i statistik, momet, Statistisk Teori, 0 poäg. Saolikhetsteori - Cetrala gräsvärdessatse.
Läs mera. Nej, eftersom alla utfall inte har samma sannolikhet. Förutsättningarna enligt första stycket på sida 12 är inte uppfyllda.
Seaste uppdaterig, stressad och med risk för slarvfel October, 007 Det här är ite superkotrollerat och bör INTE betraktas som kompletta demostratioslösigar uta sarare som ett försök att ge er hjälp och
Läs merMS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel
Läs merSannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Läs merNågra grundläggande begrepp och termer i statistikteorin
Statistikteori för F vt 004 004-0 - Begt Rosé Några grudläggade begrepp och termer i statistikteori Om matematisk statistik Matematisk statistik omfattar delområdea saolikhetsteori och statistikteori,
Läs merTentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Läs mer95%-igt konfidensintervall för andel kalsongbärare i populationen: Slutsats: Med 95% säkerhet finns andelen kalsongbärare i intervallet 38-48%
UPPGIFT 1 Vi slumpmässigt urval har varje iivi e kä saolikhet att komma me i urvalet Resultatet går att geeralisera till populatioe är ma gjort slumpmässigt urval UPPGIFT A) Kostatterme: De som ite får
Läs mer