Föreläsning G70 Statistik A

Storlek: px
Starta visningen från sidan:

Download "Föreläsning G70 Statistik A"

Transkript

1 Föreläsig 5 732G70 Statistik A

2 Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive i allmähet är okäda skattas de med s respektive p. Exempel stickprovssumma: Flygbolag räkar med att medelvikte på e passagerare är 80 kg med e stadardavvikelse om 5 kg. E viss flygplastyp rymmer 290 passagerare. Totalvikte blad dessa 290 passagerare är exempel på e stickprovssumma. 2

3 De stora tales lag Ju större stickprov vi drar, desto mer lika blir stickprovsstatistikora populatiosparametrara 3

4 Percet Sampligfördelig Hur ofta kommer vårt stickprovsmedelvärde att överesstämma med populatiosmedelvärdet, om vi skulle dra måga OSU ur samma populatio? Exempel: Vi studerar ett företag med 100 aställda, och vi är itresserade av medelikomste blad de aställda. Företagets aställda utgör alltså vår populatio, och med hjälp av företagets ekoomiavdelig ka vi faktiskt plocka fram löeivå för samtliga 100 aställda vid e viss tidpukt. Vi åskådliggör löefördelige vid företaget i ett histogram: Ur löestatistike bestäms medellöe vid företaget till = kr Histogrammet visar tydligt att populatioe lö för de aställda vid företaget ite ka betraktas som ormalfördelad! Ikomst (tkr) Vilke medellö skulle ett stickprov ge? 4

5 Sampligfördelig (forts) Låt oss u göra ett teoretiskt experimet: vi drar 50 oberoede stickprov om storleke = 10, beräkar de 50 stickprovsmedelvärdea och åskådliggör stickprovsmedelvärdea i ett histogram. Följade resultat erhålles. x kr Notera beteckige för medelvärde av medelvärde Medelvärde Ikomst i stickprovet (tkr) (tkr)

6 Sampligfördelig (forts) Experimetet upprepas för 50 oberoede stickprov om storleke = 20: x kr Medelvärde Ikomst i stickprovet (tkr) (tkr)

7 Sampligfördelig (forts) Slutlige upprepas experimetet för 50 oberoede stickprov om storleke = 30: x kr Medelvärde Ikomst i stickprovet (tkr) (tkr)

8 Sampligfördelig (forts) Fördelige för stickprovsmedelvärdea kallas för e urvalsfördelig. Urvalsfördelige är alltså e förteckig över vilka värde vi ka förväta oss få i vårt urval, och hur ofta de ka förvätas förekomma. Vi ka betrakta urvalsfördelige som e uppskattig av de fördelig som skulle fås om vi åskådliggjorde stickprovsmedelvärdea för samtliga möjliga stickprov av e viss storlek ur populatioe, vilket kallas för e sampligfördelig. 8

9 Cetrala gräsvärdessatse sampligfördelige blir mer och mer lik e ormalfördelig (trots att populatioe som stickprove drogs ur ite alls var ormalfördelad!) är stickprovsstorleke ökar sampligfördeliges medelvärde hamar allt ärmare populatiosmedelvärdet är stickprovsstorleke ökar Cetrala gräsvärdessatse säger Sampligfördelige för summor eller medelvärde av oberoede slumpvariabler med samma fördelig är approximativt ormalfördelad om är tillräckligt stort Valig tumregel: 30 9

10 Fördelig för lijära variabeltrasformatioer Lijära variabeltrasformatioer av ormalfördelade slumpvariabler är också ormalfördelade Iebörde i detta är att sampligfördelige för medelvärde, summor och adelar beräkade på observatioer som följer ormalfördelige, geom att de dragits ur e populatio som är ormalfördelad, också är ormalfördelade, och detta oavsett stickprovets storlek. 10

11 Stickprovsstatistikors fördelig Om 30 gäller, tack vare cetrala gräsvärdessatse oavsett vilke fördelig populatioe som stickprovet dragits ur har, att Stickprovsmedelvärdet X N ; X X Stickprovssumma X N X ; X Om < 30 krävs att populatioe som stickprovet dragits ur är ormalfördelad. Då gäller fortfarade ovaståede formler eftersom lijära variabeltrasformatioer av ormalfördelade slumpvariabler också är ormalfördelade. 11

12 Stickprovsstatistikors fördelig (forts) För e stickprovsadel där X = atalet eheter i stickprovet med studerad egeskap gäller, givet att p(1-p) > 5, att P N P ; P 1 P Detta motiveras eligt följade: X beteckar atalet eheter i stickprovet med studerad egeskap, eller med adra ord atalet lyckade delförsök blad de totalt delförsök som stickprovet utgör. Givet att populatioe som stickprovet har dragits ur är tillräckligt stor gäller då att X är biomialfördelad. Frå kapitel 4 käer vi att biomialfördelige kovergerar mot ormalfördelige är är tillräckligt stor, och att ormalfördeligsapproximatio av biomialfördelige är möjlig om 1 5 Vi skattar de okäda populatiosadele med P, och sätter alltså som tumregel att sampligfördelige för e stickprovsadel går att betrakta som approximativt ormalfördelad om p 1 p 5 X 12

13 Exempel E grossist importerar 500-grams påsar med ris i partier om påsar. Grossiste kotrollerar de leveraser om påsar ma mottar geom att kotrollväga ett slumpmässigt urval om 50 påsar ur varje parti. Vid e viss leveras uppmäts geomsittsvikte till gram blad 50 slumpmässigt utvalda påsar. Beräka saolikhete att få e geomsittsvikt blad 50 slumpmässigt valda påsar som är gram eller lägre, givet att det är sat att geomsittsvikte per påse i hela partiet är 500 gram och stadardavvikelse mella påsar är 10.0 gram, vilket leveratöre hävdar. Vad är saolikhete för att de sammalagda vikte blad de 50 slumpmässigt valda påsara överstiger 25.2 kg, givet att det är sat att geomsittsvikte per påse i hela partiet är 500 gram och stadardavvikelse mella påsar är 10.0 gram? 13

14 Kapitel 6 Iferes om e populatio Sid

15 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde Puktskattig: att aväda e stickprovsstatistika som e uppskattig av motsvarade populatiosparameter Dock: stickprovsstatistikor är slumpvariabler och atar olika värde för varje stickprov. Hur ska vi hatera de osäkerhete? Vi börjar med att göra två atagade: 1. stickprovet är draget som ett OSU. Detta garaterar oberoede mella observatioera, vilket är de egeskap vi eftersöker här. 2. sampligfördelige för stickprovsmedelvärdet ka betraktas som ormalfördelad Om stickprovet är stort (eligt tumregel beståede av mist 30 eheter) ka vi tillämpa cetrala gräsvärdessatse (kapitel 5), vilke säger att sampligfördelige för summor eller medelvärde av oberoede slumpvariabler med samma fördelig är approximativt ormalfördelad om är tillräckligt stort. Om stickprovet är litet, eligt tumregel färre ä 30 eheter, krävs att populatioe som stickprovet dragits ur ka betraktas som ormalfördelad. Ett OSU draget ur e ormalfördelad populatio ger, som vi har lärt oss i kapitel 5, att sampligfördelige för stickprovsmedelvärdet också blir ormalfördelad, och detta oavsett stickprovets storlek. 15

16 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde Om krave är uppfyllda ka vi bilda ett kofidesitervall för populatiosmedelvärdet: vi lägger ett osäkerhetsitervall krig puktskattige vilket tillåter oss att med e viss säkerhet säga att de okäda populatiosparameter täcks av itervallet. 16

17 Dubbelsidigt kofidesitervall för populatiosmedelvärde är σ är okäd Givet att stickprovet är draget som ett OSU sampligfördelige för stickprovsstatistika ka betraktas som ormalfördelad bildas ett dubbelsidigt kofidesitervall för populatiosmedelvärdet µ eligt x t 1;1 / 2 s där värdet på t hämtas ur t-fördelige (Appedix B) 17

18 t-fördelige t-fördelige aväds för att lösa likade typer av problem som ormalfördelige, me lämpar sig är stickprovet är relativt litet och populatiosstadardavvikelse är okäd. t-fördelige är precis som ormalfördelige symmetrisk. t-fördelige defiieras av atalet frihetsgrader, eller eklare uttryckt atalet oberoede bitar av iformatio. Atalet frihetsgrader bestäms av hur mycket data ma har och hur måga bitar av iformatio som de statistiska metodik ma aväder sig av kräver. E viktig egeskap hos t-fördelige är att de ärmar sig (kovergerar mot) ormalfördelige är atalet frihetsgrader ökar. E valig tumregel är att betrakta t-fördelige som approximativt ormalfördelad om stickprovet består av 30 eheter eller fler. Frihetsgrader

19 Exempel Ett slumpmässigt urval om 40 studeter vid Liköpigs uiversitet ger medelålder 21.2 år och stadardavvikelse 4.4 år. Bestäm ett itervall som med 95 procets säkerhet täcker de saa medelålder blad studerade vid Liköpigs uiversitet. 19

20 Ekelsidiga kofidesitervall för populatiosmedelvärde är är okäd Nedåt begräsat kofidesitervall: Uppåt begräsat kofidesitervall: 1 x t 1; 1 x t 1; Exempel: Styrelse i e bostadsrättsföreig får i klagomål på att golvvärme i badrumme är för låg. Ma drar ett OSU om 30 badrum blad de omkrig 400 badrum som fis i föreiges fastigheter och mäter golvvärme där. Medeltemperature beräkas till 21 grader och stadardavvikelse till 1.6 grader. Eergimydighete rekommederar att golvvärme ska ligga på mist 20 grader för att ma ska udkomma problem med fuktskador. Föreligger risk för fuktskador i föreiges badrum? s s 20

21 Kofidesitervall för populatiosadel Givet att 1. stickprovet är draget som ett OSU 2. det gäller att p(1-p) > 5 bildas dubbelsidigt kofidesitervall för populatiosadele π eligt p 1 p p z1 / 2 där värdet på z hämtas ur ormalfördeligstabelle (Appedix B) Nedåt begräsat kofidesitervall: p1 p p z1 Uppåt begräsat kofidesitervall: p z 1 p 1 p 21

22 Exempel I e hälsoekät tillfrågades 100 slumpmässigt utvalda aställda vid ett stort företag om huruvida ma regelbudet motioerar eller ej. Svar erhölls frå 84 aställda och av dessa svarade 65 ja. Bestäm ett 95-procetigt kofidesitervall för adele av de aställda vid det stora företaget som regelbudet motioerar. 22

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann 73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 06 Kapitel Populatioer, stickprov och variabler

Läs mer

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann 73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 07 Kapitel Populatioer, stickprov och variabler

Läs mer

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann

732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann 73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 08 Kapitel Populatio, stickprov och variabler

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ 1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av

Läs mer

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index. F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d

Läs mer

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna. 1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.

Läs mer

Föreläsning 5. Kapitel 6, sid Inferens om en population

Föreläsning 5. Kapitel 6, sid Inferens om en population Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

θx θ 1 om 0 x 1 f(x) = 0 annars

θx θ 1 om 0 x 1 f(x) = 0 annars Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas? Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1 Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar

Läs mer

S0005M V18, Föreläsning 10

S0005M V18, Föreläsning 10 S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är

Läs mer

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609

Läs mer

Lycka till! I(X i t) 1 om A 0 annars I(A) =

Lycka till! I(X i t) 1 om A 0 annars I(A) = Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys

Läs mer

1. Test av anpassning.

1. Test av anpassning. χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:

Läs mer

Laboration 5: Konfidensintervall viktiga statistiska fördelningar

Laboration 5: Konfidensintervall viktiga statistiska fördelningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboratio 5: Kofidesitervall viktiga statistiska fördeligar Syfte I dea laboratio

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT ) Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

================================================

================================================ rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,

Läs mer

Formelblad Sannolikhetsteori 1

Formelblad Sannolikhetsteori 1 Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla

Läs mer

a) Beräkna E (W ). (2 p)

a) Beräkna E (W ). (2 p) Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator

Läs mer

Föreläsning 2: Punktskattningar

Föreläsning 2: Punktskattningar Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då

Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har

Läs mer

F6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt

F6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt 01-10-19 F6 Uppskattig Statistikes gruder dagtid HT 01 Vi skattar populatiosparametrar (modellparametrar med olika statistikor: E. stickprovs- -medelvärdet X skattar μ -variase S skattar -adele P skattar

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara

Läs mer

Statistik för ingenjörer 1MS008

Statistik för ingenjörer 1MS008 Statistik för igejörer MS8 Föreläsig Kursmål: För godkät betyg på kurse skall studete käa till ett flertal metoder och tekiker för visualiserig av datamaterial; kua geomföra ekla beräkigar av saolikheter;

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På

Läs mer

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,

Läs mer

Intervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser

Intervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser Matematisk statistik ör STS vt 004 004-05 - 04 Begt Rosé Itervallskattigar, syoymt koidesitervall eller statistiska osäkerhetsgräser Allmät om koidesitervall För att börja kokret återväder vi till det

Läs mer

b 1 och har för olika värden på den reella konstanten a.

b 1 och har för olika värden på den reella konstanten a. Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras

Läs mer

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p) Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:

Läs mer

SAMMANFATTNING TAMS65

SAMMANFATTNING TAMS65 SAMMANFATTNING TAMS65 Matematisk statistik, fortsättigskurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, VT 016 Seast reviderad: 016-06-01 Författare: Viktor Cheg Iehållsförteckig

Läs mer

F12 Stickprovsteori, forts

F12 Stickprovsteori, forts F12 Stickprovsteori, forts 5.4 Cetrala gräsvärdessatse IsistaexempletvidF10hadeviefördelig fx i )=1/3, x i =1,2,3 Eobservatiofrådeakasessomettstickprovav storlek=1. Vi såg geom att studera alla möjliga

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,

Läs mer

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b]. MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella

Läs mer

Några grundläggande begrepp och termer i statistikteorin

Några grundläggande begrepp och termer i statistikteorin Matematisk statistik för STS vt 004 004-05 - 03 Begt Rosé Några grudläggade begrepp och termer i statistikteori Om matematisk statistik Som tidigare ämts brukar matematisk statistik delas upp i huvudområdea

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas

Läs mer

P (A) = k A P (A ) = 1 P (A) P (A B) P (B) P (M i ) = 1 P (A) P (X = k) = p X (k) p X (k) = 1 P (A B) p X (k)

P (A) = k A P (A ) = 1 P (A) P (A B) P (B) P (M i ) = 1 P (A) P (X = k) = p X (k) p X (k) = 1 P (A B) p X (k) SVERIGES LANTBRUKSUNIVERSITET Istitutioe för eergi och tekik Uwe Mezel e-post: uwe.mezel@matstat.de Formelsamlig Grudläggade matematiskt statistik 2080822 Saolikhetslära Klassisk saolikhetsdeitio: P A

Läs mer

Matematisk statistik

Matematisk statistik Matematisk statistik (Corelia Schiebold) Iehåll:. Saolikhetsteori 2. Diskreta stokastiska variabler 3. Kotiuerliga stokastiska variabler 4. Oberoedemått, summor av stokastiska variabler och cetrala gräsvärdessatse

Läs mer

Id: statistik.tex :48:29Z joa

Id: statistik.tex :48:29Z joa UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI PUNKT- OCH INTERVALLSKATTNINGAR SAMT HYPOTESTEST MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Iehåll 1 Puktskattigar

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:

Läs mer

TAMS79: Föreläsning 9 Approximationer och stokastiska processer

TAMS79: Föreläsning 9 Approximationer och stokastiska processer TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

E ( X ) = (här ska ni skriva en viss bokstav! Vilken? Varför)

E ( X ) = (här ska ni skriva en viss bokstav! Vilken? Varför) STOCKHOLMS UNIVERSITET HT 2005 Statistiska istitutioe 2005-09-9 MC Istruktioer till DATORÖVNING Fortsättigskurs i statistik, momet, Statistisk Teori, 0 poäg. Saolikhetsteori - Cetrala gräsvärdessatse.

Läs mer

a. Nej, eftersom alla utfall inte har samma sannolikhet. Förutsättningarna enligt första stycket på sida 12 är inte uppfyllda.

a. Nej, eftersom alla utfall inte har samma sannolikhet. Förutsättningarna enligt första stycket på sida 12 är inte uppfyllda. Seaste uppdaterig, stressad och med risk för slarvfel October, 007 Det här är ite superkotrollerat och bör INTE betraktas som kompletta demostratioslösigar uta sarare som ett försök att ge er hjälp och

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11 rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm

Läs mer

Några grundläggande begrepp och termer i statistikteorin

Några grundläggande begrepp och termer i statistikteorin Statistikteori för F vt 004 004-0 - Begt Rosé Några grudläggade begrepp och termer i statistikteori Om matematisk statistik Matematisk statistik omfattar delområdea saolikhetsteori och statistikteori,

Läs mer

Tentamen i Sannolikhetsteori III 13 januari 2000

Tentamen i Sannolikhetsteori III 13 januari 2000 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),

Läs mer

95%-igt konfidensintervall för andel kalsongbärare i populationen: Slutsats: Med 95% säkerhet finns andelen kalsongbärare i intervallet 38-48%

95%-igt konfidensintervall för andel kalsongbärare i populationen: Slutsats: Med 95% säkerhet finns andelen kalsongbärare i intervallet 38-48% UPPGIFT 1 Vi slumpmässigt urval har varje iivi e kä saolikhet att komma me i urvalet Resultatet går att geeralisera till populatioe är ma gjort slumpmässigt urval UPPGIFT A) Kostatterme: De som ite får

Läs mer