Introduktion till statistik för statsvetare

Storlek: px
Starta visningen från sidan:

Download "Introduktion till statistik för statsvetare"

Transkript

1 "Det fis iget så praktiskt som e bra teori" November 2011

2 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

3 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

4 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

5 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

6 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

7 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

8 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

9 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

10 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

11 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

12 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

13 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

14 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

15 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

16 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

17 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

18 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

19 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

20 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

21 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

22 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

23 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

24 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

25 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

26 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

27 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

28 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

29 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

30 Bakgrud Stadardiserig E saolikhetsekvatio De väsetliga fråga Så återstår de ite oväsetliga fråga Hur hittar ma a och b? Vars svar är att det ka bara göra frå fall till fall

31 Bakgrud Stadardiserig E saolikhetsekvatio De väsetliga fråga Så återstår de ite oväsetliga fråga Hur hittar ma a och b? Vars svar är att det ka bara göra frå fall till fall

32 Bakgrud Stadardiserig E saolikhetsekvatio De väsetliga fråga Så återstår de ite oväsetliga fråga Hur hittar ma a och b? Vars svar är att det ka bara göra frå fall till fall

33 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet Vi vet att X i N ( µ, σ 2) samt att slumpvariablera X i är oberoede varav följer X i N ( µ, σ 2) Me detta ger att (visa detta) X i µ σ 2 N (0, 1) Vi ka u sätta upp följade ekvatio ( ) P 1.96 < X i µ < 1.96 = 0.95 σ 2

34 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet Vi vet att X i N ( µ, σ 2) samt att slumpvariablera X i är oberoede varav följer X i N ( µ, σ 2) Me detta ger att (visa detta) X i µ σ 2 N (0, 1) Vi ka u sätta upp följade ekvatio ( ) P 1.96 < X i µ < 1.96 = 0.95 σ 2

35 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet Vi vet att X i N ( µ, σ 2) samt att slumpvariablera X i är oberoede varav följer X i N ( µ, σ 2) Me detta ger att (visa detta) X i µ σ 2 N (0, 1) Vi ka u sätta upp följade ekvatio ( ) P 1.96 < X i µ < 1.96 = 0.95 σ 2

36 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) I ett första steg omskrives dea till ( P 1.96σ < X i µ < 1.96σ ) = 0.95 Vi har u två olikheter 1.96σ < X i µ och X i µ < 1.96σ Byt plats mella µ och 1.96σ µ < X i σ och X i 1.96σ < µ

37 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) I ett första steg omskrives dea till ( P 1.96σ < X i µ < 1.96σ ) = 0.95 Vi har u två olikheter 1.96σ < X i µ och X i µ < 1.96σ Byt plats mella µ och 1.96σ µ < X i σ och X i 1.96σ < µ

38 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) I ett första steg omskrives dea till ( P 1.96σ < X i µ < 1.96σ ) = 0.95 Vi har u två olikheter 1.96σ < X i µ och X i µ < 1.96σ Byt plats mella µ och 1.96σ µ < X i σ och X i 1.96σ < µ

39 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

40 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

41 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

42 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

43 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

44 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

45 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

46 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

47 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för µ är σ okät och med kofidesgrad 95% ka u skrivas ( x t ( 1) s, x + t ( 1) s ) Diskutera rut t-fördelige

48 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för µ är σ okät och med kofidesgrad 95% ka u skrivas ( x t ( 1) s, x + t ( 1) s ) Diskutera rut t-fördelige

49 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Example För skogsområdet upmättes E köpare vill via ett 95 procetigt symmetriskt kofidesitervall beräka de största mägd timmer dee rimlige ka erhålla för att med hjälp av de övre gräse kua beräka de högsta acceptabla iköpskostade per volymsehet. Beräka ett sådat kofidesitervall.

50 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Solutio Vi har tidigare fuit att x = s = så ett 95%-igt kofidesitervall för µ är σ okät blir ( , ) som ger oss att varje ruta iehåller mella 9.14 och 14.6 m 3 skog. Så köpare räkar med att få högst 14.6 m 3 skog per ruta. Me äve skattige σ är behäftad med osäkerhet. Vi behöver därför ett kofidesitervall för σ.

51 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

52 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

53 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

54 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

55 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Betrakta u S 2 σ 2 = ( Xi µ Högerledet är e summa av kvadrerade N (0, 1)-variabler. Tidigare har kostaterats att e såda summa är χ 2 ()-fördelad. Därför är saolikhetsekvatioe P (a < S 2 ) < b = 0.95 σ 2 σ ) 2 meigsfull. Vi leds till att betrakta (diskutera χ och χ ) P (χ < S 2 ) σ 2 < χ = 0.95

56 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Betrakta u S 2 σ 2 = ( Xi µ Högerledet är e summa av kvadrerade N (0, 1)-variabler. Tidigare har kostaterats att e såda summa är χ 2 ()-fördelad. Därför är saolikhetsekvatioe P (a < S 2 ) < b = 0.95 σ 2 σ ) 2 meigsfull. Vi leds till att betrakta (diskutera χ och χ ) P (χ < S 2 ) σ 2 < χ = 0.95

57 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Betrakta u S 2 σ 2 = ( Xi µ Högerledet är e summa av kvadrerade N (0, 1)-variabler. Tidigare har kostaterats att e såda summa är χ 2 ()-fördelad. Därför är saolikhetsekvatioe P (a < S 2 ) < b = 0.95 σ 2 σ ) 2 meigsfull. Vi leds till att betrakta (diskutera χ och χ ) P (χ < S 2 ) σ 2 < χ = 0.95

58 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Vi löser u de två olikhetera med avseede på σ 2. Lösige blir χ < S 2 σ 2 och S 2 σ 2 < χ σ 2 < S 2 χ och S 2 χ < σ 2 varför ( S 2 P χ < σ 2 < S 2 ) χ 2 =

59 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Vi löser u de två olikhetera med avseede på σ 2. Lösige blir χ < S 2 σ 2 och S 2 σ 2 < χ σ 2 < S 2 χ och S 2 χ < σ 2 varför ( S 2 P χ < σ 2 < S 2 ) χ 2 =

60 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Vi löser u de två olikhetera med avseede på σ 2. Lösige blir χ < S 2 σ 2 och S 2 σ 2 < χ σ 2 < S 2 χ och S 2 χ < σ 2 varför ( S 2 P χ < σ 2 < S 2 ) χ 2 =

61 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för σ är µ är käd och med kofidesgrad 0.95 ka u skrivas ( ) S 2 S, 2 χ χ Tyvärr kräver dea lösig kuskap om µ.

62 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för σ är µ är käd och med kofidesgrad 0.95 ka u skrivas ( ) S 2 S, 2 χ χ Tyvärr kräver dea lösig kuskap om µ.

63 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

64 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

65 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

66 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

67 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Example (forts) För skogsområdet gällde att kofidesitervallet (9.14, 14.6) för det förvätade ihållet. För stadardavvikelse har vi itervallet ( ) ( 1) S 2 ( 1) S χ 2, χ vilket ger ( ) (49 1) (49 1) , = (8.3, 12.5)

68 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Köpare har därför e ä större osäkerhet ( , ) = (9.6, 14.4) eller ( , ) = (8.4, 15.6) Vilket av de tre framräkade tale, 14.1, 14.6 och 15.6, skall dee välja?

69 Åkerareal Åkerareal Frå SCBs statistikdatabas fier vi de totala åkerareale i Uppsala A-regio för e följd av år Bestäm e approximatio av geomsittlig aväda areal uder agive tid samt ge ett 95%-igt kofidesitervall. Vi skapar följade modell X i = åkerareal Uppsala A-regio år i i = 1981, 1985,..., 2007 med atagadet att X i N (µ, σ) (oberoedekravet dubiöst här).

70 Åkerareal Åkerareal Frå SCBs statistikdatabas fier vi de totala åkerareale i Uppsala A-regio för e följd av år Bestäm e approximatio av geomsittlig aväda areal uder agive tid samt ge ett 95%-igt kofidesitervall. Vi skapar följade modell X i = åkerareal Uppsala A-regio år i i = 1981, 1985,..., 2007 med atagadet att X i N (µ, σ) (oberoedekravet dubiöst här).

71 Åkerareal Åkerareal Frå SCBs statistikdatabas fier vi de totala åkerareale i Uppsala A-regio för e följd av år Bestäm e approximatio av geomsittlig aväda areal uder agive tid samt ge ett 95%-igt kofidesitervall. Vi skapar följade modell X i = åkerareal Uppsala A-regio år i i = 1981, 1985,..., 2007 med atagadet att X i N (µ, σ) (oberoedekravet dubiöst här).

72 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

73 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

74 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

75 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ 1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

θx θ 1 om 0 x 1 f(x) = 0 annars

θx θ 1 om 0 x 1 f(x) = 0 annars Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.

Läs mer

Lycka till! I(X i t) 1 om A 0 annars I(A) =

Lycka till! I(X i t) 1 om A 0 annars I(A) = Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig

Läs mer

S0005M V18, Föreläsning 10

S0005M V18, Föreläsning 10 S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är

Läs mer

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p) Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give

Läs mer

================================================

================================================ rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara

Läs mer

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna. 1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index. F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

a) Beräkna E (W ). (2 p)

a) Beräkna E (W ). (2 p) Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då

Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har

Läs mer

Tentamen i Sannolikhetsteori III 13 januari 2000

Tentamen i Sannolikhetsteori III 13 januari 2000 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),

Läs mer

b 1 och har för olika värden på den reella konstanten a.

b 1 och har för olika värden på den reella konstanten a. Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609

Läs mer

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas? Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har

Läs mer

Föreläsning 2: Punktskattningar

Föreläsning 2: Punktskattningar Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,

Läs mer

TAMS79: Föreläsning 9 Approximationer och stokastiska processer

TAMS79: Föreläsning 9 Approximationer och stokastiska processer TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 7 73G70 Statistik A Hypotesprövig för jämförelse av populatiosadelar Krav: vi har dragit två OSU p( p) > 5 för båda stickprove Steg : Välj sigifikasivå och formulera hypoteser H 0 : π - π = d

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa

Läs mer

Uppgifter 3: Talföljder och induktionsbevis

Uppgifter 3: Talföljder och induktionsbevis Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x

x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

1. Test av anpassning.

1. Test av anpassning. χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler

Läs mer

Trigonometriska polynom

Trigonometriska polynom Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:

Läs mer

Intervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser

Intervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser Matematisk statistik ör STS vt 004 004-05 - 04 Begt Rosé Itervallskattigar, syoymt koidesitervall eller statistiska osäkerhetsgräser Allmät om koidesitervall För att börja kokret återväder vi till det

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

Formelblad Sannolikhetsteori 1

Formelblad Sannolikhetsteori 1 Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )

Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT ) Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

F6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt

F6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt 01-10-19 F6 Uppskattig Statistikes gruder dagtid HT 01 Vi skattar populatiosparametrar (modellparametrar med olika statistikor: E. stickprovs- -medelvärdet X skattar μ -variase S skattar -adele P skattar

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!

Läs mer

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!! Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi

Läs mer

Andra ordningens lineära differensekvationer

Andra ordningens lineära differensekvationer Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet. Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje

Läs mer

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b]. MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:

Läs mer

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1 duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a

Läs mer

Laboration 5: Konfidensintervall viktiga statistiska fördelningar

Laboration 5: Konfidensintervall viktiga statistiska fördelningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboratio 5: Kofidesitervall viktiga statistiska fördeligar Syfte I dea laboratio

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 3.5hp,

MA2018 Tillämpad Matematik III-Statistik, 3.5hp, MA018 Tillämpad Matematik III-Statistik,.hp, 019-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!

Läs mer

Stokastiska variabler

Stokastiska variabler TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren? Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer