Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)
|
|
- Ann-Marie Ström
- för 8 år sedan
- Visningar:
Transkript
1 Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel = summa av måga oberoede felkällor som är av samma storleksordig Saolikhet och statistik Normalfördelige HT 008 Uwe.Mezel@math.uu.se uwe/ Figur: Approximativt ormalfördelad Täthetsfuktio, vätevärde och varias för N µ, f x = X E X = V X = Z x µ / e π Z + + x Täthetsfuktio för N µ, för olika µ och <x < x µ / e π x µ Figur: 0 D-Mark dx = µ x µ / e π dx = D X = Figur: Normalfördelige
2 Fördeligsfuktio för N µ, Låt X vara ormalfördelad: X N µ,. Låt Y = X µ /. Vilke fördeligsfuktio har Y? X är ormalfördelad: X N µ,. f X x = F X x = F X x = π e x µ / x Tyvärr ige aalytisk lösig f X t dt x π e t µ / dt F Y y = P Y y = P X µ y = P X µ + y = F X µ + y = = µ+y π y π e u / du e t µ / dt subst. u = t µ / Det är fördeligsfuktioe för N 0,, alltså Y N 0, Fördeligsfuktioe för N 0, kallas Φ x X N µ, Φ X x = ϕ X x = x π e t / dt π e x / X µ / N 0, Figur: Stadardiserad ormalfördelig
3 Stadardiserad ormalfördelig: Tabell över Φ x Beräkig av F X x för godtyckliga x, µ och : Om X N µ, F X x = P X x X µ = P x µ = P Y x µ x µ = Φ Vi behöver Φ helst för hela R Φ x för egativa argumet ϕ x = ϕ x Φ x = Φ x Beräkig av slh. för allmä ormalfördelig x µ X N µ, F X x = Φ Exempel : X N 4, Vad är P X 3?? P X 3 = 3 4 F X 3 = Φ = Φ 0.5 = Φ 0.5 = = Exempel : X N 4, Vad är P X 5?? Figur: N 0, P X 5 = P X < 5 = P X = F X 5 = Φ = Φ 0.5 = =
4 Saolikhete att X ligger mella två värde Sammafattig av alla 3 exempel b µ a µ P a < X b = F X b F X a = Φ Φ Exempel: X N 4, Vad är P 3 X 5?? P 3 X 5 = F X 5 F X = Φ Φ = Φ 0.5 Φ 0.5 = Φ 0.5 [ Φ 0.5] = Φ 0.5 = = Figur: P X < 3 + P 3 X < 5 + P X 5 = Saolikhet iom µ ±, µ ±, µ ± 3 Saolikhet iom µ ±, µ ±, µ ± 3 b µ a µ P a < X b = F X b F X a = Φ Φ P µ < X µ + = F X µ + F X µ µ + µ µ µ = Φ Φ = Φ Φ = Samma med och 3: Figur: k itervaller P µ X µ + = 0.68 P µ X µ + = P µ 3 X µ + 3 = 0.997
5 Kvatiler för de stadardiserade ormalfördelige Kvatiler för de stadardiserade ormalfördelige Deitio kvatil λ α : P X > λ α = α eller Φ λ α = α Figur: Kvatiler för N 0, Figur: Kvatiler för N 0, α λ α Saolikhet iom µ ± λ α/ för allmä ormalfördelig Saolikhet iom µ ± λ α/ för allmä ormalfördelig b µ a µ P a < X b = F X b F X a = Φ Φ P µ λα/ < X µ + λ α/ = α P α = P µ λα/ < X µ + λ α/ = F X µ + λα/ F X µ λα/ µ + λα/ µ µ λα/ µ = Φ Φ = Φ λ α/ Φ λα/ = Φ [ ] λ α/ Φ λα/ = Φ λ α/ = [ α/] = α Sätt α = 0.05, 0.00, P µ.96 < X µ +.96 = 0.95 P µ.58 < X µ +.58 = 0.99 P µ 3.9 < X µ = Ex: α = 0.05, α/ = 0.05, λ α/ =.96, α = 0.95 Låt X N 3, = P < X 5 95%
6 Summa och dieres av oberoede ormalfördelade s.v. med olika µ och : Om X N µ X, X och Y N µ Y, Y = X + Y N µ X + µ Y, + X Y X Y N µ X µ Y, + X Y Summor diereser av oberoede N är också N, äve om igåede kompoeter har olika vätevärde och variaser. Figur: µ = 3; µ = 5 ; µ = 8; = 3; = 4; = 5 Summa av era ormalfördelade s.v. med olika µ och X i oberoede X i N µ i, i = a i X i + b N a i µ i + b, a i i Figur: t = t + t + t 3 + t 4
7 Fördelig för summa och medelvärdet av era ormalfördelade s.v. med samma µ och Exempel: Fördelig för X Summa av oberoede, ormalfördelade s.v. med samma vätevärde och stadardavvikelse: Låt E X i = µ och D X i =. Om Y = Om X = X i så gäller Y N i= X i så gäller X N i= µ, µ, OBS!!: Vi förutsätter här att kompoetera X, X,... X är ormalfördelade satse gäller exakt. Exempel: Ett mätfel X är fördelad N 0, 0. Hur stor är slh. att felet är begräsad till 3, 3?? P 3 < X < 3 = F X 3 F X = Φ Φ 0 0 = Φ 0.3 Φ 0.3 = Φ Saolikhete är 3% att absolutbeloppet av felet är 3. Exempel: Fortsättig Exempel: Ett mätfel X är fördelad N 0, 0. Hur stor är slh. att felets medelvärde över 5 mätigar är begräsad till 3, 3?? 0 X N 0, 0 X N 0, = N 0, 5 P 3 < X < 3 = F X 3 F X = Φ Φ = Φ.5 Φ.5 = Φ Saolikhete är 87% att absolutbeloppet av felets medelvärde blir midre ä 3. Mycket bättre! Dieres av två medelvärde frå N med olika µ,, Vi har sett hur medelvärdet av N's är fördelad, och vi har sett hur summa dierese av N's är fördelad. Om ma kombierar dessa formler, ser ma t. ex. hur e dieres av medelvärde är fördelad: Låt X och Ȳ vara två sådaa medelvärde: X N X µ X, X X Ȳ N och = Ȳ N Y µ Y, Y µ X µ Y, X / X + Y / Y
8 Cetrala gräsvärdessatse Cetrala gräsvärdessatse Kom ihåg vart experimet där vi kastade tärigar: Vi har sett att summor av oberoede ormalfördelade s.v. är också ormalfördelade. Äve summor av godtycklig fördelade, oberoede och likafördelade slumpvariabler är i regel ugefär ormalfördelad, bara atalet kompoeter i summa är tillräckligt stort. = Normalfördelige har ett stort avädigsområde Figur: Poägsumma av tärigskast, = Nytt experimet: Vi kastar tärigar Cetrala gräsvärdessatse Summa av oberoede, likafördelade s.v. är approximativt ormalfördelad om atalet kompoeter är tillräckligt stort. Låt E X i = µ och D X i =. Om Y = Om X = X i så gäller Y AsN i= X i så gäller X AsN i= µ, µ, Figur: Poägsumma av tärigskast, = atalet tärigar OBS!!: Vi förutsätter här INTE att kompoetera X, X,... X är ormalfördelade satse gäller approximativt
9 Cetrala gräsvärdessatse Sammafattig summa och medelvärde Y = X i = Y AsN i= µ, Kompoetera måste vara oberoede och likafördelade samma µ och. Y µ N 0, ormalfördelad godtycklig fördelad Cetrala gräsvärdessatse Om X, X,... är e oädlig följd av oberoede likafördelade s.v. med vätevärdet µ och stadardavvikelse, så gäller för Y = X + X... X att P a < Y µ b Φ b Φ a om Y = i= X i Y N µ, Y N µ, X = i= X i X N µ, exakt X N µ, asymptotiskt I ex. mätfel var vi alltså ite tvuga att förutsätta X i N
4.2.3 Normalfördelningen
4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett
P (A) = k A P (A ) = 1 P (A) P (A B) P (B) P (M i ) = 1 P (A) P (X = k) = p X (k) p X (k) = 1 P (A B) p X (k)
SVERIGES LANTBRUKSUNIVERSITET Istitutioe för eergi och tekik Uwe Mezel e-post: uwe.mezel@matstat.de Formelsamlig Grudläggade matematiskt statistik 2080822 Saolikhetslära Klassisk saolikhetsdeitio: P A
SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs
SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg
θx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)
Grundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ
1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:
LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,
Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik
Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-00 Saolikhetsteori Kap : Saolikhetsteoris gruder Följade gäller för saolikheter: 0
Formelblad Sannolikhetsteori 1
Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla
TENTAMEN I MATEMATISK STATISTIK
TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:
F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.
F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1917/SF1918/SF1919 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 8 JANUARI 2019 KL 8.00 13.00. Examiator för SF1917/1919: Jörge Säve-Söderbergh, 08-790 65 85. Examiator
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z
Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad
1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k
LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig
Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten
Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Föreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Tentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
TAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl
Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,
Linjär regression - kalibrering av en våg
Lijär regressio Saolikhet och statistik Regressiosaalys HT 2008 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Samba mella två storheter ofta av itresse:... solarium hucacer... BN växelkurs... rökaet
b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 1: Matematik 7.5 hp
Tetame i Tillämpad Matematik och statistik för IT-foresik. Del 1: Matematik 7.5 hp 1 jui, 2017 Maxpoäg: 30p. Betygsgräser: 12p: betyg 3, 18p: betyg 4, 24p: betyg 5. Hjälpmedel: Typgodkäd miiräkare samt
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet
Id: statistik.tex :48:29Z joa
UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI PUNKT- OCH INTERVALLSKATTNINGAR SAMT HYPOTESTEST MATEMATISK STATISTIK AK FÖR F, E, D, I, C, È; FMS 012 JOAKIM LÜBECK, SEPTEMBER 2008 Iehåll 1 Puktskattigar
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Formler och tabeller i statistik
KTH STH, Campus Hage Formler och tabeller statstk Arm Hallovc Formler och tabeller statstk Medelvärde och varas = = = ( ) = = = Medelvärde och varas för ett frekvesdelat materal = k = f = k = f ( ) Vätevärde
Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
SAMMANFATTNING TAMS65
SAMMANFATTNING TAMS65 Matematisk statistik, fortsättigskurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, VT 016 Seast reviderad: 016-06-01 Författare: Viktor Cheg Iehållsförteckig
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg
Matematisk statistik
Matematisk statistik (Corelia Schiebold) Iehåll:. Saolikhetsteori 2. Diskreta stokastiska variabler 3. Kotiuerliga stokastiska variabler 4. Oberoedemått, summor av stokastiska variabler och cetrala gräsvärdessatse
Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR CDEFI, NANO OCH PI, MAS233, 2004 FMS 012, FMS 022, FMS 121 OCH MAS233
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR CDEFI, NANO OCH PI, MAS233, 2004 FMS 012, FMS 022, FMS 121 OCH MAS233 Saolikhetsteori Kap 2: Saolikhetsteoris
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde
Föreläsning 2: Punktskattningar
Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt
Tentamen i Krypteringsmetoder och Säkring av Datasystem 7.5 hp
Tetame i Krypterigsmetoder och Säkrig av Datasystem 7.5 hp 2 jui, 2017 Maxpoäg: 30p. Betygsgräser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miiräkare samt formelsamlig som medföljer tetamestexte. Kursasvarig:
F6 Uppskattning. Statistikens grunder 2 dagtid. Beteckningar, symboler, notation. Grekiskt-romerskt
01-10-19 F6 Uppskattig Statistikes gruder dagtid HT 01 Vi skattar populatiosparametrar (modellparametrar med olika statistikor: E. stickprovs- -medelvärdet X skattar μ -variase S skattar -adele P skattar
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Tentamen i matematisk statistik
MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På
Statistik för bioteknik SF1911 // KTH Matematisk statistik // Formler och tabeller. 1 Numeriska sammanfattningar (statistikor)
Statistik för biotekik SF9 // KTH Matematisk statistik // Formler och tabeller Ht 206 Numeriska sammafattigar (statistikor) För ett datamaterial x, x 2,..., x beräkas Stickprovsmedelvärde x = i= x i =
Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning och exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig och exempel, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet MS-A0509 Grudkurs i saolikhetskalkyl
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik
Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.
Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,
Laboration 5: Konfidensintervall viktiga statistiska fördelningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboratio 5: Kofidesitervall viktiga statistiska fördeligar Syfte I dea laboratio
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:
a. Nej, eftersom alla utfall inte har samma sannolikhet. Förutsättningarna enligt första stycket på sida 12 är inte uppfyllda.
Seaste uppdaterig, stressad och med risk för slarvfel October, 007 Det här är ite superkotrollerat och bör INTE betraktas som kompletta demostratioslösigar uta sarare som ett försök att ge er hjälp och
TAMS15: SS1 Markovprocesser
TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska
Tentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning och exempel, del II
MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig och exempel, del II Stickprov Två yttiga fördeligar Estimerig G. Gripeberg 3 Kofidesitervall Aalto-uiversitetet 3 februari 05 4 Hypotesprövig
F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA2018 Tillämpad Matematik III-Statistik, 3.hp, 2018-08- Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 20 frågor! Edast Svarsblakette ska lämas
TENTAMEN Datum: 16 okt 09
TENTAMEN Datum: 6 okt 09 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF00 TEN (Matematisk statistik ) Te i kurse HF00 ( Tidigare k 6H0), KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse HF00, 6H000, 6L000 MATEMATIK
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 019-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
4.2.3 Normalfördelningen
4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå
KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar
KTH/ICT IX50:F7 IX305:F Göra Adero goera@th.e Statiti: Sattigar Statiti Vi all u tudera obervatioer av toatia variabler. Vad blev det för värde? Dea obervatioer alla ett ticprov (ample). Iom tatitie fi
b 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA08 Tillämpad Matematik III-Statistik, 3.5hp, 08-05-3 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann
73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 06 Kapitel Populatioer, stickprov och variabler
732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann
73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 07 Kapitel Populatioer, stickprov och variabler
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )
Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:
MA2018 Tillämpad Matematik III-Statistik, 3.5hp,
MA018 Tillämpad Matematik III-Statistik,.hp, 018-0-1 Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas i!
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Intervallskattningar, synonymt konfidensintervall eller statistiska osäkerhetsgränser
Matematisk statistik ör STS vt 004 004-05 - 04 Begt Rosé Itervallskattigar, syoymt koidesitervall eller statistiska osäkerhetsgräser Allmät om koidesitervall För att börja kokret återväder vi till det
Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n
Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)
S0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik
732G70 Statistik A. Föreläsningsunderlag skapad av Karl Wahlin Föreläsningsslides uppdaterade av Bertil Wegmann
73G70 Statistik A Föreläsigsuderlag skapad av Karl Wahli Föreläsigsslides uppdaterade av Bertil Wegma Istitutioe för dataveteskap (IDA) Liköpigs uiversitet vt 08 Kapitel Populatio, stickprov och variabler
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt