F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
|
|
- Ludvig Andersson
- för 6 år sedan
- Visningar:
Transkript
1 F4 Matematirep Summatece Summatecet Potesräig Logaritmer Kombiatori Säg att vi har styce tal x,, x Summa av dessa tal (alltså x + + x ) srivs ortfattat med hjälp av summatece: x i i summa x i då i går fr.o.m. t.o.m. Summatece, forts. Summatece, forts. Vad betyder följade? i x i i x i i i i i c cx i ( x i y i ) x i y i Ex. Atag att x = 3, x = -, x 3 = 5, x 4 = 3 Beräa: 4 i x ; Medelvärde: Varias: i x ; Stadardavvielse: 4 4 j x j ; i ; i0 3x i x x... x xi x i i x x s i s s
2 Summatece, forts. Övig: Utvecla (dvs. lista termera). i jx i a b = a a a a b ac = a (b+c) Potesräig b ggr. 3. jx i jx i j (a b ) c = a (bc) a b = / a b a 0 = a /b = b a E omboövig Logaritmer Beräa följade för = 0,,, 3 0 Obs! a,b > 0 och a Atag att vi har följade: a b = c Vi vet a och c och söer b Svar: = 0; 0 = = ; 0 + = + = 3 = ; = = 7 = 3; = ¹⁹ b = log a c Ex. 0 x = 0000 x = log = log0000 = lg0000 = 4 Det tal som vi upphöjer a till för att få c Några olia betecigar för 0-logaritme Ex. e x = 80 x = l80 = log e 80 = 4,3807 Naturliga logaritme
3 Logaritmer, forts. Logaritmer, forts. e = base för de aturliga logaritme =, Räeregler: l(x y) = lx + ly l(x/y) = lx ly l x = lx l = 0 l e = Obs! x, y > 0 e lx = x l(e x ) = x Ex. Bevisa första räeregel: Vi defiierar a, b och c. e a = x a = l x. e b = y b = l y 3. e c = (x y) c = l(x y) el. defiitioe av logaritmfutioe. Vi har alltså x y = e a e b = e a+b l(x y) = a + b = l x + l y Eligt defiitioe för logaritmfutioe Eligt regel för poteser Eligt defiitioe ova Logaritmer, forts. Kombiatori Övigar: l = l 3 + l 4 l 0,5 = l(/4) = l l4 = l4 l 64 = l 6 = 6 l l(3/9) = l3 l9 = l 5 l3 = 5l l3 Att räa ut hur måga sätt ågot a göras. Ex. Matsedel med tre förrätter, fyra huvudrätter och två efterrätter. På hur måga olia sätt a e trerätters måltid ompoeras? Svar: Illustratio: Träddiagram 3
4 Kombiatori, forts. Kombiatori, forts. Multipliatiospricipe Ett experimet har m möjliga utfall Ett aat efterföljade experimet har m möjliga utfall Vi gör först det ea seda det adra experimetet Totalt fis det m m möjliga utfall. Exempel Påse med umrerade ulor,, Vi drar e ula slumpmässigt och oterar dess ummer Hur måga möjliga utfall? Vi drar e ula till slumpmässigt och oterar dess ummer Hur måga möjliga utfall? Kombiatori, forts. Kombiatori, forts. Exempel, forts Samma påse med ulor,, Vi har de totala hädelse (ula s ummer, ula s ummer) Hur måga möjliga utfall? Uta återläggig: Med återläggig: Exempel, forts Spelar ordige ågo roll? Dvs. siljer vi t.ex. på (,3) och (3,) eller betratar vi det som samma sa? Två fall som uppstår: Ordige spelar roll Ordige spelar ige roll 4
5 Kombiatori, forts. Kombiatori, forts. Ordad Vi drar ett atal ulor slumpmässigt och oterar deras ummer Ordige spelar roll, dvs. vi siljer t.ex. på (,,5), (,5,), (,,5), (,5,), (5,,) och (5,,) Ej ordad Vi drar ett atal ulor slumpmässigt och oterar deras ummer Ordige spelar ige roll, utfalle ova betratas som samma utfall Om vi har dragit olia ummer av möjliga, hur måga sätt a de ordas på? Permutatioer Ett arragemag av olia objet i e bestämd ordig allas för e permutatio av objete. Hur måga olia permutatioer a ma bilda av olia objet? Atalet olia permutatioer av olia objet är:! = 3 (-) -faultet; (eg. factorial) Kombiatori, forts. Kombiatori, forts. Permutatioer Ex. På hur måga olia sätt a vi permutera de tre objete A, B, C? Svar: 3! = 3 = 6 olia sätt, ämlige ABC, ACB, BAC, BCA, CAB, CBA. OBS! Vi defiierar 0! = Dragig uta återläggig Vi drar e ula slumpmässigt och oterar dess ummer och lägger ite tillbas de iför ästa dragig Vi a bara få ett ummer e gåg Dragig med återläggig Vi drar e ula slumpmässigt och oterar dess ummer och lägger tillbas de iför ästa dragig Vi a dra samma ummer flera gåger i e seves av dragigar 5
6 Kombiatori, forts. Kombiatori, forts. På hur måga sätt a vi välja ut objet frå objet ( ), ifall vi bryr oss om ordige? Och uta återläggig? Svar:! (- )! Ex. = 5, = 5! (5-)! Kombiatioer På hur måga sätt a vi välja ut objet frå objet ( ), ifall vi ite bryr oss om ordige? Uta återläggig? Svar:!! (- )! över, biomialoefficiet Obs! Vi defiierar Kombiatori, forts. Kombiatori, forts. Ordat med återläggig Dra styce ur möjliga. :a ula möjligheter, :a ula möjligheter, osv. Multipliatiospricipe ger... Ordat uta återläggig Dra styce ur möjliga. :a ula möjligheter, :a ula (-) möjligheter, osv. Multipliatiospricipe ger ( )... ( ) ( ) styce fatorer... ( ) ( )... ( )...! ( - )! 6
7 Kombiatori, forts. Kombiatori, forts. Atag att vi har = 5 objet A, B, C, D, E och att vi slumpmässigt väljer = 3. Vi a få!/(-)! = 5! / (5-3)! = 60 olia utfall om vi tar häsy till ordige. Av alla dessa 60 utfall, hur måga iehåller objete A, B och C? Svar: Vi a lista dem: ABC, ACB, BAC, BCA, CAB, CBA; 6 utfall Eller ise att de objete a ordas på! = 3! = 6 sätt Ej ordat uta återläggig Dra styce ur möjliga. :a ula möjligheter, :a ula (-) möjligheter, osv. Ger! ( - )! Justera seda för att ordige ite spelar roll geom att dela med atal möjliga permutatioer av objet!!( - )! Kombiatori, forts. Kombiatori, forts. Kombiatioer Välja ut objet frå objet där, och struta i ordige!! (- )! - över, biomialoefficiet Pascals triagel :te oeffeiciete i (a+b) Kombiatioer Några särsilda resultat:!! 0!( - )!!0! 0 0 0! 0!0! Ex. På hur måga sätt a ma dra fem ort ur e valig ortle? 5 5 5! 5!47!
8 Kombiatori, forts. Exempel Sammafattig Hur måga olia urval av storle = 4 a vi dra frå = 0 persoer? Med återläggig Uta återläggig Ordad! (- )! Itressat sambad? e 0! 0!! Ej ordad - ( -)!!( )!! 3!!!( )!... 4! Uta återl. Med återl. Uta återl. Med återl. Ej ordad Ordad 0! 5040 (0-4)!
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n
Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)
Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
Multiplikationsprincipen
Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter
Statistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Vad vi ska gå igenom Mängdlära Absolutbelopp Summatecknet Potensräkning Logaritmer och exponentialfunktionen Kombinatorik 2013-09-03 Michael
TATM79: Föreläsning 2 Absolutbelopp, olikheter och binomialkoefficienter
TATM79: Föreläsig Absolutbelopp, oliheter och biomialoefficieter Joha Thim augusti 018 1 Absolutbelopp Absolutbelopp Defiitio. För varje reellt x defiieras absolutbeloppet x eligt { x, x 0 x x, x < 0.
= (1 1) + (1 1) + (1 1) +... = = 0
TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd
Kombinatorik. Torbjörn Tambour 21 mars 2015
Kombiatori Torbjör Tambour mars 05 Kombiatori är de del av matematie som sysslar med frågor av type På hur måga sätt a ma? Några gasa typisa exempel är följade: På hur måga olia sätt a åtta persoer bilda
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Stokastiska variabler
TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,
Binomialsatsen och lite kombinatorik
Biomialsatse och lite ombiatori Sammafattig Aders Källé MatematiCetrum LTH adersalle@gmail.com Här disuteras e del grudläggade ombiatori, som utgår ifrå biomialoefficieteras ombiatorisa betydelse. Vi härleder
KOMBINATORIK. Matematiska institutionen Stockholms universitet Första upplagan 2005 Eftertryck förbjudes eftertryckligen
KOMBINATORIK Torbjör Tambour Matematisa istitutioe Stocholms uiversitet Första upplaga 005 Eftertryc förbjudes eftertryclige Postadress Matematisa istitutioe Stocholms uiversitet 06 9 Stocholm Besösadress
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad
Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska
Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus
Kotrollsrivig till Disret Matemati SF60, för CINTE, vt 09 Eamiator: Armi Halilovic Datum: To 09-04-5 Versio B Resultat: Σ p P/F Etra Bous Iga hjälpmedel tillåta Mist 8 poäg ger godät Godäd KS r medför
TATM79: Föreläsning 3 Binomialsatsen och komplexa tal
TATM79: Föreläsig 3 Biomialsatse och omplexa tal Joha Thim augusti 016 1 Biomialsatse Ett miestric för att omma ihåg biomialoefficieter (åtmistoe för rimligt små är Pascals triagel: 0 1 1 1 1 1 1 3 1 3
Betygsgränser: För (betyg Fx).
Tetame TEN, HF2, 4 jui 2 Matematis statisti Kursod HF2 Srivtid: 3:-7: : Lärare och examiator : Armi Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile ty
Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.
Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Cartesisk produkt. Multiplikationsprincipen Ï Ï Ï
Kombiatorik Kombiatorik hadlar oftast om att räka hur måga arragemag det fis av e viss typ. Sådaa kalkyler uderlättas om ma ka hitta relevata represetatioer av de ibladade arragemage ågot som illustreras
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Följande begrepp används ofta vid beskrivning av ett statistiskt material:
Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL
Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a
Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1
Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar
H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Bertrands postulat. Kjell Elfström
F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
Analys av polynomfunktioner
Aals av polomfutioer Aals36 (Grudurs) Istuderigsuppgifter Dessa övigar är det tät du sa göra i aslutig till att du läser huvudtete. De flesta av övigara har, om ite lösigar, så i varje fall avisigar till
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
. Om man har n stycken valsituationer med k valmöjligheter var, är det totala antalet valmöjligheter k.
. Saolihetslära. Kombiatori Vad är saolihetslära? Ma a allmät säga att iom saolihetslära försöer ma beräa chaser eller riser. Det a seda vara fråga om chase att via på lotto eller rise att bli sju i e
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET
EGENRUM, ALGEBRAISK- OCH GEOMETRISK MULTIPLICITET INLEDNING Ett polyom ( i variabel λ ) av grad är ett uttryc på forme P( λ) a λ + aλ + aλ + a, där a Polyomets ollställe är lösigar ( rötter) till evatioe
Inklusion och exklusion Dennie G 2003
Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras
Inledande kombinatorik LCB 2001
Iledade kombiatorik LCB 2001 Ersätter Grimaldi 1.1 1.4, 3.1 (delvis) 1 Additios- och multiplikatiospricipera Kombiatorik hadlar om koste att räka atalet av saker och tig. Hur måga gåger geomlöpes e viss
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
b 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level
Matematisk statistik
Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Tentamen i Envariabelanalys 1
Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL
Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade
Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Kompletterande kurslitteratur om serier
KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du
Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg
Universitetet: ER-diagram e-namn
Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?
Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Ekvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp.
VÅGEKVATIONEN Vi betratar följade PDE u( u( x t, där > är e ostat, x, t (ev) Evatioe (ev) a besriva vågutbredig, trasversella svägigar i e sträg och adra fysialisa förlopp Radvärdesproblemet består av
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Jag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Visst kan man faktorisera x 4 + 1
Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp
Universitetet: ER-diagram e-namn
Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig
Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan
Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle
Tentamen i Sannolikhetsteori III 13 januari 2000
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),
Av Henrik 01denburg\ Radikaler. För att lösa ekv.: x n = a (n helt, pos. tal) konstruerar man kurvan
Av Herik 01deburg\ Eligt gymasiets kurspla skall av lära om poteser medtagas huvudsaklige vad som är behövligt för viade av e säker isikt i lära om logaritmer. Alla torde vara ese därom, att det är syerlige
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
LINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Räkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Datastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor
Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.
a VEKTORRUMMET R, - dimesioella etorer.. STANDARDBASEN i R. LINJÄRA KOMBINATIONER AV VEKTORER LINJÄRT BEROENDE OCH OBEROENDE VEKTORER LINJÄRT HÖLJE (LINJÄRT SPAN) -----------------------------------------------------------------
DIAGONALISERING AV EN MATRIS
Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr
Föreläsning G70 Statistik A
Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i
TAMS15: SS1 Markovprocesser
TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska
Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.
Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Trigonometriska polynom
Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.
3-fastransformatorn 1
-fastrasformator TRANSFORMATORN (-fas) A B C N φa φb φc rimärsida N E -fastrasformator består i pricip av st -fastrasformatorer som är sammaopplade. Seudärsida N YNy trafo. a b c KOLNGSSÄTT rimärsida a
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN
Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Björkduge (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 1-2 22% 3-4 50% 5-6
Kundundersökning Kommuninfo/ Kuntainfo: Enkät om kommunens informationsverksamhet
Kududersökig 2017 Kommuifo/ Kutaifo: Ekät om kommues iformatiosverksamhet 1. Udersökiges bakgrud och syfte Eligt Larsmos budget för år 2017 skall kommue årlige rikta e ekät till kuder eller kommuivåare
F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde