Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av
|
|
- Erika Pettersson
- för 5 år sedan
- Visningar:
Transkript
1 Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av dä k vilket ge B k,0 0 3,5 B,0 0 T 0,5 Tm/A, 3,5 A och 0,5 m 4,67 0 Fältets gå unt ledaen och HHR ge oss iktnin. Tummen i stömmens iktning, esten av fingana unt ledaen och fältet ha då en sådan iktning att det komme ut u fingetoppana, d.v.s. in i pappeet i. Sva: 4,7 μt in i pappeet 6 T Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
2 .3 Stoleken på kaften på ledaen ges av F Bl dä B 35 mt,,0 A och l 0,50 m vilket ge F 0,035,0 0,50 0,035 Kaftens iktning få m.h.a. HHR: Tummen i stömmens iktning, esten av fingana i fältets iktning, kaften komme ut u handflatan d.v.s. uppåt i figuen. Sva: 35 m uppåt i figuen..4 Kaften på ledana ges av F k vilket ge oss den sökta stömmen som F k l l dä F 5 6 0,, m k,0 0 Tm/A, vilket ge Sva: 43 A 3,5 A och l m 5 0,0 0 6, A 4,9 A 3,5.5 Stoleken på den magnetiska kaften på patikeln ges av F BQv dä vilket ge dä k B k F k,0 Qv 0 Tm/A, 3,0, Q 6,5 6 0 C, v 8 m/s och 50 mm 3,0 6 vilket ge F,0 0 6, Kaftens iktning fås m.h.a. HHR och HHR.,8 0 HHR ge oss fältet iktning dä laddnin befinne sig. 9 Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
3 Tummen i stömmens iktning, fingana unt ledaen. Fältet gå unt ledaen och ha en sådan iktning att det komme ut u fingetoppana. Det ge att fältet dä Q befinne sig ä iktat ut u pappeet. HHR ge oss kaftens iktning: Tummen i stömmens iktning (samma iktning som positiv laddnings hastighet), esten av fingana i fältets iktning (ut u pappeet), kaften komme ut u handflatan d.v.s. bot fån ledaen. Sva:, n bot fån ledaen..6 Den magnetiska flödestätheten 0 cm vänste om den vänsta ledaen fås som summan av fälten fån de två ledana. HHR ge att fältet fån den vänsta ledaen ä iktat in i pappeet i punkten och fältet fån den höga ledaen ä iktat ut u pappeet i punkten. n i pappeet väljs som positiv iktning. Detta ge B B vänste Bhöge k vänste k höge k vänste höge dä k,0 0 Tm/A, 5,0 A, vänste 0,0 m och höge 0,30 m Detta ge fältet i punkten som B,0 0 5,0 T,67 0 0,0 0,30 Sva:, 7μT i positiv iktning, d.v.s. in i pappeet. 6 T Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
4 .7 Det veka två kafte på den mellesta ledaen. Kaften p.g.a. den vänsta ledaen: Stolek l l k k F v Riktning HHR ge magnetfältet in i pappeet dä mellesta ledaen ä. HHR ge kaft på mellesta ledaen åt vänste. Kaften p.g.a. den höga ledaen: Stolek 3l l k 6k F h Riktning HHR ge magnetfältet u u pappeet dä mellesta ledaen ä. HHR ge kaft på mellesta ledaen åt höge. Summan av kaftena få som åt höge. Sva: Åt höge F F F h v l l l 6 k k 4k.8 Det totala magnetfältet kan vaa noll endast dä fälten ä motiktade. Det ä de till vänste om ledae och till höge om ledae. Då > kan det totala magnetfältet vaa noll endast till höge om. Avståndet fån till den sökta punkten få heta x. Då fås B B k,5 + x x k,5 0,80 k k,5 + x x u vilket den sökta stäckan få enligt Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
5 ,5 0,80,5 + x x,5 (, ) x 0, x,5x,5 0,80 + 0, 80x,5x 0,80x,5 0,80,5x 0,80x,5 0,80,5 0,80 x m,8 m,5 0,80 Sva:, m till höge om den höga ledaen. Röelse av elektisk laddning i magnetiskt fält.9 HHR ge att kaften på laddnin ä vinkelät mot laddnins hastighet. Ett magnetiskt fält kan däfö endast föända iktnin på laddnins hastighet, aldig dess stolek. Om laddnins hastighet inte ä vinkelät mot magnetfältet kan hastigheten ses som summan av två hastighete: En paallell med fältet och en vinkelät mot detsamma. Den paallella delen påvekas inte av fältet. Den vinkeläta ä den del som påvekas och som används då kaftens stolek beäknas enligt F BQv och den som används i HHR. Sva: Sant.0 Den magnetiska kaften beäknas enligt F BQv vilket bli noll om hastigheten ä noll. Sva: 0. Den delen av hastigheten som ä paallell med magnetfältet påvekas inte av fältet. Hä ä hela hastigheten paallell med fältet och dämed ä den magnetiska kaften på potonen noll. Sva: 0 Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
6 . HHR ge att stömmen ä iktad åt höge. Laddnin ö sig åt vänste, d.v.s. dess hastighet ä motiktad stömmen. Detta ä fallet fö en negativ laddning. Sva: egativ.3 Elektonen utfö en centalöelse. Dess centipetalacceleation ges av v a 6 dä v 5,0 0 m/s Ett uttyck fö fås fån att den esulteande kaften iktad mot cikelns centum och dess stolek ä mv Fes Den esulteande kaften ges också av F es BQv Detta ge mv BQv elle mv BQv mv BQ vilket ge oss centipetalacceleationen som v a mv BQ BQv m dä 3 B,5 0 T,, Q C, v 6 5,0 0 m/s och m 9, kg Detta ge oss acceleationen,5 0 a 3,60 0 9, ,0 0 6 m s,0 0 5 m s Sva:, 0 5 m s Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
7 nduktion.4 Den induceade spännin i en slinga ä popotionell mot föändin av det magnetiska flödet i slingan. Sva: Falskt.5 Den induceade spännin beäknas enligt φ t Flödet föändas fån 0 till 4,0 mwb på 5,0 ms. Detta ge Sva: 0,8 V φ 4,0 0 V 0,8 V t 5,0.6 Stömmens stolek fås med Ohms lag som R dä spännin fås enligt φ t φ vilket ge R t Hä ända sig det magnetiska flödet däfö att den magnetiska flödestätheten ända sig. Detta ge dä A B R t A π Stömmen fås nu som π B R t dä 3,0 cm, B,0 0,4 T 0,6 T R 0 mω och Stömmen beäknas nu till t, s Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
8 π 0,030 0,6 A 0,43 A 3 0 0, Sva: 0,4 A Se bokens Sva till övninga fö stömmens iktning..7 Stoleken på ledaens hastighet fås fån som dä Detta ge Blv v Bl 0, V, B 3 mt och l 0,90 m v 0, m/s 5,80 m/s ,90 Riktnin på ledaens hastighet fås enligt: och med att ledaens nede del ä positiv ä den magnetiska kaften på de negativa laddningana, p.g.a. stavens öelse, iktad mot ledaens öve del. Det få vi om stömmen använd i HHR ä iktad åt vänste. Stömmens iktning ä motsatt negativ laddnings hastighet, alltså ö sig staven åt höge. Sva. 5,8 m/s åt höge.8 a) Det magnetiska flödet beäknas som φ BA dä B 0,55 T och A 7 cm m 4 vilket ge φ 0, Wb 9, Wb b) Den induceade spännin ges av φ t u vilket den sökta tiden fås som φ t dä 35,,5 V och φ 9, Wb vilket ge 9,35 0 t 35,5 4 s 0,03 s Sva: a) 9,4 0 4 Wb och b) 3 ms Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
9 .9 Spännin öve staven ges av Blv Stavens öelse ä likfomigt acceleead och kallas fitt fall. Hastigheten efte en viss tid ges då av v v + gt gt 0 dä den sista likheten fås eftesom staven släpps. Detta ge den sökta spännin som Blgt dä l,0 m ä staven fallit i,0 s ä spännin mellan dess ända 0,3 mv. Detta ge oss stykan på magnetfältet 3 0,3 0 B T,69 0,0 9,8,0 Då staven fallit i 3,0 s fås spännin mellan dess ända som 5 Blgt,69 0,0 9,8 3,0 V Sva: 0,96 mv 5 T 9, V Geneato.0 Den induceade spännins amplitud ges av π uˆ BAω BA T Om både antalet vav och peioden födubblas fås π π uˆ BA BA T T d.v.s. den induceade spännins amplitud föändas inte. Sva: Sant Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
10 . a) Den induceade spännins maximala väde ä lika med stoleken på dess amplitud. uˆ BAω BAπf dä 8, B 470 mt, A 8,0 dm 8,0 0 - m och f 50 Hz ˆ vilket ge u 8 0,470 8,0 0 π 50 V 94,45 V b) Det allmänna uttycket fö den induceade spännin ä u ( t) uˆ sin( ωt) dä û 94 V och ω πf π 50 ad/s 34 ad/s vilket ge uttycket fö den induceade spännin som ( t) 94sin( t) u 34 Sva: a) 94 V och b) u( t) 94sin( 34t) Växelspänning. Spännins amplitud ges av iˆ dä ä spännins effektivväde. Om födubblas bli även amplituden dubbelt så sto Sva: Falskt.3 Växelspännins amplitud ges av dä iˆ 0 V vilket ge iˆ 0 V 3, V Sva: 3 V Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
11 .4 u (V) 0,5 0 û T t (s) 0 0,5,5,5-0,5 - Spännins amplitud, û, och peiod, T, ä makeade i figuen. Spännin ha amplituden uˆ V och fekvensen f Hz Hz T.5 Den induceade spännins effektivväde ges av û dä amplitudens stolek ges av uˆ BAω BAπf BAπf vilket ge u vilket den sökta flödestätheten fås som B Aπf dä 95 V, 500, A 0,035 m och f 60 Hz 95 Detta ge B T 0,004 T 500 0,035 π 60 Sva: 0 Mt Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
12 Tansfomato.6 Fö en ideal tansfomato ä d.v.s. elle Sva: Sant.7 Fö en tansfomato gälle a) Spännin öve sekundäspolen fås som b) Stömmen i sekundä spolen ges av 0 30 V,5 V ,83 A 6,6 A 0 c) Effekten ut u kondensaton fås som,5 6,6 W 9 W Sva: a) V, b) 7 A och c) 90 W.8 Effekten fån eaton ä W 5 3,5 W 0 a) Effektfölusten vid distibutionen ä dä dist fås fån dist dist dist dist R dist dist som dist dist Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
13 vilket ge dist dist R dä 00 A, 3500 V, dist, 0 5 V och R 30Ω Detta ge fölusten i distibutionen som dist , W 75,9 W och den pocentuella fölusten bli dist 75,9 3,5 0 5, ,07 % b) tan tansfomeing hade fölusten i distibutionen vait W 3,0 0 5 W dist och den pocentuella fölusten dist 3,0 0 3, ,857 85,7 % Sva: a) 0,0 % och b) 86 % Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB
7 Elektricitet. Laddning
LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva
Tentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
Lösningar till övningsuppgifter. Impuls och rörelsemängd
Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10
Lösningar till övningsuppgifter centralrörelse och Magnetism
Lösninga till öningsuppgifte centalöelse ch Magnetism Centalöelse G1 Centipetalacceleatinen a = = 5, m/s = 15,9 m/s 1,7 Sa: 16 m/s G4 (3,5 10 3 ) c 0,045 a m/s =,7 10 8 m/s Sa:,7 10 8 m/s 50 G7 = 50 km/h
ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led
y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.
UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E
UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med
1 Rörelse och krafter
1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften
Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.
1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte
Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!
14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen
Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8
Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft
Datum: Tid:
Kus: Moment: Pogam: Rättande läae: Examinato: Datum: Tid: Hjälpmedel: Omfattning och betygsgänse: Öig infomation: TETAME I FYSIK HF005 Fysik fö baså II Studente egisteade på den älde kusen HF0016 Fysik
14. Potentialer och fält
4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.
Gravitation och planetrörelse: Keplers 3 lagar
Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade
Kontrollskrivning Mekanik
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA6/KTR Kontollskivning Mekanik novembe 06 8:00 0:00 Kontollskivningen bestå av 3 uppgifte som totalt kan ge 4 poäng. Fö godkänt betyg (G)
TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat
Vågräta och lodräta cirkelbanor
Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel
2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.
2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också
Angående kapacitans och induktans i luftledningar
Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns
LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O
LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man
I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0
Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde
Värt att memorera:e-fältet från en punktladdning
I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektofält - Föeläsningsanteckninga Chistian Fossén, Institutionen fö fysik, Chalmes, Götebog, Sveige Oct 16, 2018 11. Elektomagnetiska fält och Maxwells ekvatione Vi stata med
Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.
Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga
Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.
Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa
1 Två stationära lösningar i cylindergeometri
Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.
FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften
Lösningsförslag nexus B Mekanik
Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)
REDOVISNINGSUPPGIFT I MEKANIK
Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken
Den geocentriska världsbilden
Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade
2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)
1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells
Tentamen ellära 92FY21 och 27
Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för
Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s
Lösningar till Kaströrelse magnetism Växelström Kaströrelse G1. y 4,6 sin 1 g t ger y (4,6 sin 1 9,8,3) m/s 0,9 m/s Sar: 1 m/s G. För hastigheterna id kaströrelse gäller x csα y sin α g t Om y 8,5 sin
LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2
LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive
=============================================== Plan: Låt π vara planet genom punkten P = ( x1,
Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation
Svar och anvisningar
15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är
Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola
Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl
Tentamen IF1330 Ellära torsdagen den 4 juni
entamen IF33 Elläa tosdagen den 4 juni 5 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
LÖSNINGAR TILL PROBLEM I KAPITEL 7
LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen
1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )
Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa
9 Rörelse och krafter 2
9 Röelse och afte Kastöelse 9.1 Just då stenen ä i banans hösta punt och ände fö att böja öa si nedåt ä den still i etialled. Stenens acceleation ä noll i hoisontalled unde hela öelsen. Sa: Sant 9. a)
Tentamen i IF1330 Ellära torsdagen den 5 juni
entamen i IF33 Elläa tosdagen den 5 juni 4 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487
Omtentamen IF1330 Ellära tisdagen den 18 augusti
Omtentamen IF33 Elläa tisdagen den 8 augusti 5 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79
Mekanik för I, SG1109, Lösningar till problemtentamen,
KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten
2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)
Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:
Prov Fysik B Lösningsförslag
Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens
XVI. Magnetiska fa lt
XV. Magnetiska fa lt Dessa a ndo, kallas fo magnetiska ole, sydol och nodol. odol, kallas den magnetiska olen, som sva nge sig mot no (nodso kande ol) i jodens magnetfa lt. En magnetisk diol kallas en
sluten, ej enkel Sammanhängande område
POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge
Tentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:
GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:
Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def
Potentialteori Mats Persson
Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E
θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1
LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på
Svar och anvisningar
170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse
Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)
Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår
Temperaturmätning med resistansgivare
UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad
Introduktion till fordonselektronik ET054G. Föreläsning 3
Introduktion till fordonselektronik ET054G Föreläsning 3 1 Elektriska och elektroniska fordonskomponenter Att använda el I Sverige Fas: svart Nolla: blå Jord: gröngul Varför en jordkabel? 2 Jordning och
Omtentamen i IF1330 Ellära torsdagen den 22 augusti
Omtentamen i F33 Elläa tosdagen den augusti 3 9.-3. Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487 (Campus Kista), entamensuppgiftena behöve inte åtelämnas
Vad är ljus? Fundamental krafter. James Clerk Maxwell. Kapitel 3, Allmänna vågekvationen. Maxwells ekvationer i vakuum FAF260
FA0 Vad ä ljus? FA0 Lunds Univesitet 016 Fundamental kafte FA0 Lunds Univesitet 016 James Clek Maxwell FA0 Lunds Univesitet 016 Gavitatin Elektmagnetism föenades på 1800 talet Staka känkaften Svaga känkaften
9 Rörelse och krafter 2
9 Röelse och afte Kastöelse 9.1 Just då stenen ä i banans hösta punt och ände fö att böja öa si nedåt ä den still i etialled. Stenens acceleation ä noll i hoisontalled unde hela öelsen. Sa: Sant 9. a)
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Bra tabell i ert formelblad
Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare
Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15
Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: tentamen Ladokkod: A145TG (41N19A) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 18-6-1 Tid: 14.-18. Hjälpmedel: Hjälpmedel
Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken
Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika
Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.
Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =
Lösningar och svar till uppgifter för Fysik 1-15 hösten -09
Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan
Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt
Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus
TFYA16/TEN2. Tentamen Mekanik. 18 augusti :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IM) Macus Ekholm TYA16/TEN2 Tentamen Mekanik 18 augusti 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae
Upp gifter I=2,3 A. B=37 mt. I=1,9 A B=37 mt. B=14 mt I=4,7 A
Upp gifter 1. Beskriv den magnetiska kraften som verkar på ledaren, både till storlek och till riktning. Den del av ledaren som är inne i magnetfältet kan antas vara 45 cm i samtliga fall. a. b. I=1,9
Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)
Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm
Sammanfattning av STATIK
Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea
Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]
Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt
file:///c:/users/engström/downloads/resultat.html
M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8
Heureka Fysik 2, Utgåva 1:1
Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med
Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.
villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
LÖSNINGAR TILL PROBLEM I KAPITEL 8
LÖSIGR TILL PROLEM I KPITEL 8 LP 8. Vi anta föst att den gina bomsande kaften F k ä den enda kaft som påeka öelsen och dämed också intängningsdjupet. Men eka ingen kaft i öelseiktningen? Fastän man i talspåk
Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.
1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad
Strålningsfält och fotoner. Kapitel 23: Faradays lag
Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar
Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)
Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Storhet SI enhet Kortversion. Längd 1 meter 1 m
Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens
Geometrisk optik reflektion och brytning
Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:
16. Spridning av elektromagnetisk strålning
16. Spidning av elektomagnetisk stålning [Jakson 9.6-] Med spidning avses mest allmänt poessen dä stålning antingen av patikel- elle vågnatu) växelveka med något objekt så att dess fotskidningsiktning
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel
TFYA16/TEN2. Tentamen Mekanik. 18 april :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN2 Tentamen Mekanik 18 apil 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vadea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveade
Lösningar till Problemtentamen
KTH Mkanik 2005 10 17 Mkanik II, 5C1140, M, T, CL 2005 10 17, kl 14.00-18.00 Lösninga till Pobltntan Uppgift 1: Två cylinda d adina spktiv R sitt ihop so n stl kopp. Dn kan ota fitt king n fix hoisontll
Tentamen med lösningar i IF1330 Ellära måndagen den 29 maj
Tentamen med lösninga i F lläa måndagen den 9 ma 7 8.-. Samtidigt gå en liknande tentamen fö 6 väl ätt tentamen! Allmän infomation xaminato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa
FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8)
Elektromagnetism Kapitel 8.-8., 8.4 (fram till ex 8.8) Varför magnetism? Energiomvandling elektrisk magnetisk mekanisk Elektriska maskiner Reversibla processer (de flesta) Motor Generator Elektromagneter
IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen
IF330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av U och I F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad: