Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av

Storlek: px
Starta visningen från sidan:

Download "Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av"

Transkript

1 Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av dä k vilket ge B k,0 0 3,5 B,0 0 T 0,5 Tm/A, 3,5 A och 0,5 m 4,67 0 Fältets gå unt ledaen och HHR ge oss iktnin. Tummen i stömmens iktning, esten av fingana unt ledaen och fältet ha då en sådan iktning att det komme ut u fingetoppana, d.v.s. in i pappeet i. Sva: 4,7 μt in i pappeet 6 T Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

2 .3 Stoleken på kaften på ledaen ges av F Bl dä B 35 mt,,0 A och l 0,50 m vilket ge F 0,035,0 0,50 0,035 Kaftens iktning få m.h.a. HHR: Tummen i stömmens iktning, esten av fingana i fältets iktning, kaften komme ut u handflatan d.v.s. uppåt i figuen. Sva: 35 m uppåt i figuen..4 Kaften på ledana ges av F k vilket ge oss den sökta stömmen som F k l l dä F 5 6 0,, m k,0 0 Tm/A, vilket ge Sva: 43 A 3,5 A och l m 5 0,0 0 6, A 4,9 A 3,5.5 Stoleken på den magnetiska kaften på patikeln ges av F BQv dä vilket ge dä k B k F k,0 Qv 0 Tm/A, 3,0, Q 6,5 6 0 C, v 8 m/s och 50 mm 3,0 6 vilket ge F,0 0 6, Kaftens iktning fås m.h.a. HHR och HHR.,8 0 HHR ge oss fältet iktning dä laddnin befinne sig. 9 Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

3 Tummen i stömmens iktning, fingana unt ledaen. Fältet gå unt ledaen och ha en sådan iktning att det komme ut u fingetoppana. Det ge att fältet dä Q befinne sig ä iktat ut u pappeet. HHR ge oss kaftens iktning: Tummen i stömmens iktning (samma iktning som positiv laddnings hastighet), esten av fingana i fältets iktning (ut u pappeet), kaften komme ut u handflatan d.v.s. bot fån ledaen. Sva:, n bot fån ledaen..6 Den magnetiska flödestätheten 0 cm vänste om den vänsta ledaen fås som summan av fälten fån de två ledana. HHR ge att fältet fån den vänsta ledaen ä iktat in i pappeet i punkten och fältet fån den höga ledaen ä iktat ut u pappeet i punkten. n i pappeet väljs som positiv iktning. Detta ge B B vänste Bhöge k vänste k höge k vänste höge dä k,0 0 Tm/A, 5,0 A, vänste 0,0 m och höge 0,30 m Detta ge fältet i punkten som B,0 0 5,0 T,67 0 0,0 0,30 Sva:, 7μT i positiv iktning, d.v.s. in i pappeet. 6 T Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

4 .7 Det veka två kafte på den mellesta ledaen. Kaften p.g.a. den vänsta ledaen: Stolek l l k k F v Riktning HHR ge magnetfältet in i pappeet dä mellesta ledaen ä. HHR ge kaft på mellesta ledaen åt vänste. Kaften p.g.a. den höga ledaen: Stolek 3l l k 6k F h Riktning HHR ge magnetfältet u u pappeet dä mellesta ledaen ä. HHR ge kaft på mellesta ledaen åt höge. Summan av kaftena få som åt höge. Sva: Åt höge F F F h v l l l 6 k k 4k.8 Det totala magnetfältet kan vaa noll endast dä fälten ä motiktade. Det ä de till vänste om ledae och till höge om ledae. Då > kan det totala magnetfältet vaa noll endast till höge om. Avståndet fån till den sökta punkten få heta x. Då fås B B k,5 + x x k,5 0,80 k k,5 + x x u vilket den sökta stäckan få enligt Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

5 ,5 0,80,5 + x x,5 (, ) x 0, x,5x,5 0,80 + 0, 80x,5x 0,80x,5 0,80,5x 0,80x,5 0,80,5 0,80 x m,8 m,5 0,80 Sva:, m till höge om den höga ledaen. Röelse av elektisk laddning i magnetiskt fält.9 HHR ge att kaften på laddnin ä vinkelät mot laddnins hastighet. Ett magnetiskt fält kan däfö endast föända iktnin på laddnins hastighet, aldig dess stolek. Om laddnins hastighet inte ä vinkelät mot magnetfältet kan hastigheten ses som summan av två hastighete: En paallell med fältet och en vinkelät mot detsamma. Den paallella delen påvekas inte av fältet. Den vinkeläta ä den del som påvekas och som används då kaftens stolek beäknas enligt F BQv och den som används i HHR. Sva: Sant.0 Den magnetiska kaften beäknas enligt F BQv vilket bli noll om hastigheten ä noll. Sva: 0. Den delen av hastigheten som ä paallell med magnetfältet påvekas inte av fältet. Hä ä hela hastigheten paallell med fältet och dämed ä den magnetiska kaften på potonen noll. Sva: 0 Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

6 . HHR ge att stömmen ä iktad åt höge. Laddnin ö sig åt vänste, d.v.s. dess hastighet ä motiktad stömmen. Detta ä fallet fö en negativ laddning. Sva: egativ.3 Elektonen utfö en centalöelse. Dess centipetalacceleation ges av v a 6 dä v 5,0 0 m/s Ett uttyck fö fås fån att den esulteande kaften iktad mot cikelns centum och dess stolek ä mv Fes Den esulteande kaften ges också av F es BQv Detta ge mv BQv elle mv BQv mv BQ vilket ge oss centipetalacceleationen som v a mv BQ BQv m dä 3 B,5 0 T,, Q C, v 6 5,0 0 m/s och m 9, kg Detta ge oss acceleationen,5 0 a 3,60 0 9, ,0 0 6 m s,0 0 5 m s Sva:, 0 5 m s Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

7 nduktion.4 Den induceade spännin i en slinga ä popotionell mot föändin av det magnetiska flödet i slingan. Sva: Falskt.5 Den induceade spännin beäknas enligt φ t Flödet föändas fån 0 till 4,0 mwb på 5,0 ms. Detta ge Sva: 0,8 V φ 4,0 0 V 0,8 V t 5,0.6 Stömmens stolek fås med Ohms lag som R dä spännin fås enligt φ t φ vilket ge R t Hä ända sig det magnetiska flödet däfö att den magnetiska flödestätheten ända sig. Detta ge dä A B R t A π Stömmen fås nu som π B R t dä 3,0 cm, B,0 0,4 T 0,6 T R 0 mω och Stömmen beäknas nu till t, s Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

8 π 0,030 0,6 A 0,43 A 3 0 0, Sva: 0,4 A Se bokens Sva till övninga fö stömmens iktning..7 Stoleken på ledaens hastighet fås fån som dä Detta ge Blv v Bl 0, V, B 3 mt och l 0,90 m v 0, m/s 5,80 m/s ,90 Riktnin på ledaens hastighet fås enligt: och med att ledaens nede del ä positiv ä den magnetiska kaften på de negativa laddningana, p.g.a. stavens öelse, iktad mot ledaens öve del. Det få vi om stömmen använd i HHR ä iktad åt vänste. Stömmens iktning ä motsatt negativ laddnings hastighet, alltså ö sig staven åt höge. Sva. 5,8 m/s åt höge.8 a) Det magnetiska flödet beäknas som φ BA dä B 0,55 T och A 7 cm m 4 vilket ge φ 0, Wb 9, Wb b) Den induceade spännin ges av φ t u vilket den sökta tiden fås som φ t dä 35,,5 V och φ 9, Wb vilket ge 9,35 0 t 35,5 4 s 0,03 s Sva: a) 9,4 0 4 Wb och b) 3 ms Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

9 .9 Spännin öve staven ges av Blv Stavens öelse ä likfomigt acceleead och kallas fitt fall. Hastigheten efte en viss tid ges då av v v + gt gt 0 dä den sista likheten fås eftesom staven släpps. Detta ge den sökta spännin som Blgt dä l,0 m ä staven fallit i,0 s ä spännin mellan dess ända 0,3 mv. Detta ge oss stykan på magnetfältet 3 0,3 0 B T,69 0,0 9,8,0 Då staven fallit i 3,0 s fås spännin mellan dess ända som 5 Blgt,69 0,0 9,8 3,0 V Sva: 0,96 mv 5 T 9, V Geneato.0 Den induceade spännins amplitud ges av π uˆ BAω BA T Om både antalet vav och peioden födubblas fås π π uˆ BA BA T T d.v.s. den induceade spännins amplitud föändas inte. Sva: Sant Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

10 . a) Den induceade spännins maximala väde ä lika med stoleken på dess amplitud. uˆ BAω BAπf dä 8, B 470 mt, A 8,0 dm 8,0 0 - m och f 50 Hz ˆ vilket ge u 8 0,470 8,0 0 π 50 V 94,45 V b) Det allmänna uttycket fö den induceade spännin ä u ( t) uˆ sin( ωt) dä û 94 V och ω πf π 50 ad/s 34 ad/s vilket ge uttycket fö den induceade spännin som ( t) 94sin( t) u 34 Sva: a) 94 V och b) u( t) 94sin( 34t) Växelspänning. Spännins amplitud ges av iˆ dä ä spännins effektivväde. Om födubblas bli även amplituden dubbelt så sto Sva: Falskt.3 Växelspännins amplitud ges av dä iˆ 0 V vilket ge iˆ 0 V 3, V Sva: 3 V Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

11 .4 u (V) 0,5 0 û T t (s) 0 0,5,5,5-0,5 - Spännins amplitud, û, och peiod, T, ä makeade i figuen. Spännin ha amplituden uˆ V och fekvensen f Hz Hz T.5 Den induceade spännins effektivväde ges av û dä amplitudens stolek ges av uˆ BAω BAπf BAπf vilket ge u vilket den sökta flödestätheten fås som B Aπf dä 95 V, 500, A 0,035 m och f 60 Hz 95 Detta ge B T 0,004 T 500 0,035 π 60 Sva: 0 Mt Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

12 Tansfomato.6 Fö en ideal tansfomato ä d.v.s. elle Sva: Sant.7 Fö en tansfomato gälle a) Spännin öve sekundäspolen fås som b) Stömmen i sekundä spolen ges av 0 30 V,5 V ,83 A 6,6 A 0 c) Effekten ut u kondensaton fås som,5 6,6 W 9 W Sva: a) V, b) 7 A och c) 90 W.8 Effekten fån eaton ä W 5 3,5 W 0 a) Effektfölusten vid distibutionen ä dä dist fås fån dist dist dist dist R dist dist som dist dist Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

13 vilket ge dist dist R dä 00 A, 3500 V, dist, 0 5 V och R 30Ω Detta ge fölusten i distibutionen som dist , W 75,9 W och den pocentuella fölusten bli dist 75,9 3,5 0 5, ,07 % b) tan tansfomeing hade fölusten i distibutionen vait W 3,0 0 5 W dist och den pocentuella fölusten dist 3,0 0 3, ,857 85,7 % Sva: a) 0,0 % och b) 86 % Detta mateial ä ett komplement till boken Fysik av Jö Gustafsson Föfattaen och Studentlitteatu AB

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Lösningar till övningsuppgifter centralrörelse och Magnetism

Lösningar till övningsuppgifter centralrörelse och Magnetism Lösninga till öningsuppgifte centalöelse ch Magnetism Centalöelse G1 Centipetalacceleatinen a = = 5, m/s = 15,9 m/s 1,7 Sa: 16 m/s G4 (3,5 10 3 ) c 0,045 a m/s =,7 10 8 m/s Sa:,7 10 8 m/s 50 G7 = 50 km/h

Läs mer

ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led

ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1. 1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte

Läs mer

Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!

Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten! 14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen

Läs mer

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8 Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft

Läs mer

Datum: Tid:

Datum: Tid: Kus: Moment: Pogam: Rättande läae: Examinato: Datum: Tid: Hjälpmedel: Omfattning och betygsgänse: Öig infomation: TETAME I FYSIK HF005 Fysik fö baså II Studente egisteade på den älde kusen HF0016 Fysik

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.

Läs mer

Gravitation och planetrörelse: Keplers 3 lagar

Gravitation och planetrörelse: Keplers 3 lagar Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade

Läs mer

Kontrollskrivning Mekanik

Kontrollskrivning Mekanik Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA6/KTR Kontollskivning Mekanik novembe 06 8:00 0:00 Kontollskivningen bestå av 3 uppgifte som totalt kan ge 4 poäng. Fö godkänt betyg (G)

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man

Läs mer

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0 Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde

Läs mer

Värt att memorera:e-fältet från en punktladdning

Värt att memorera:e-fältet från en punktladdning I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektofält - Föeläsningsanteckninga Chistian Fossén, Institutionen fö fysik, Chalmes, Götebog, Sveige Oct 16, 2018 11. Elektomagnetiska fält och Maxwells ekvatione Vi stata med

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige. Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

Lösningsförslag nexus B Mekanik

Lösningsförslag nexus B Mekanik Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)

Läs mer

REDOVISNINGSUPPGIFT I MEKANIK

REDOVISNINGSUPPGIFT I MEKANIK Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig) 1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s

Lösningar till Kaströrelse magnetism Växelström. Kaströrelse. sin. G1.v y = 4,6 sin 21 o g t ger. v y = (4,6 sin 21 o 9,82 2,3) m/s = 20,9 m/s Lösningar till Kaströrelse magnetism Växelström Kaströrelse G1. y 4,6 sin 1 g t ger y (4,6 sin 1 9,8,3) m/s 0,9 m/s Sar: 1 m/s G. För hastigheterna id kaströrelse gäller x csα y sin α g t Om y 8,5 sin

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

Svar och anvisningar

Svar och anvisningar 15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är

Läs mer

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl

Läs mer

Tentamen IF1330 Ellära torsdagen den 4 juni

Tentamen IF1330 Ellära torsdagen den 4 juni entamen IF33 Elläa tosdagen den 4 juni 5 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL 7

LÖSNINGAR TILL PROBLEM I KAPITEL 7 LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen

Läs mer

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( ) Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa

Läs mer

9 Rörelse och krafter 2

9 Rörelse och krafter 2 9 Röelse och afte Kastöelse 9.1 Just då stenen ä i banans hösta punt och ände fö att böja öa si nedåt ä den still i etialled. Stenens acceleation ä noll i hoisontalled unde hela öelsen. Sa: Sant 9. a)

Läs mer

Tentamen i IF1330 Ellära torsdagen den 5 juni

Tentamen i IF1330 Ellära torsdagen den 5 juni entamen i IF33 Elläa tosdagen den 5 juni 4 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487

Läs mer

Omtentamen IF1330 Ellära tisdagen den 18 augusti

Omtentamen IF1330 Ellära tisdagen den 18 augusti Omtentamen IF33 Elläa tisdagen den 8 augusti 5 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p) Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

XVI. Magnetiska fa lt

XVI. Magnetiska fa lt XV. Magnetiska fa lt Dessa a ndo, kallas fo magnetiska ole, sydol och nodol. odol, kallas den magnetiska olen, som sva nge sig mot no (nodso kande ol) i jodens magnetfa lt. En magnetisk diol kallas en

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

Tentamen i Mekanik I del 1 Statik och partikeldynamik

Tentamen i Mekanik I del 1 Statik och partikeldynamik Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1

θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1 LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Introduktion till fordonselektronik ET054G. Föreläsning 3

Introduktion till fordonselektronik ET054G. Föreläsning 3 Introduktion till fordonselektronik ET054G Föreläsning 3 1 Elektriska och elektroniska fordonskomponenter Att använda el I Sverige Fas: svart Nolla: blå Jord: gröngul Varför en jordkabel? 2 Jordning och

Läs mer

Omtentamen i IF1330 Ellära torsdagen den 22 augusti

Omtentamen i IF1330 Ellära torsdagen den 22 augusti Omtentamen i F33 Elläa tosdagen den augusti 3 9.-3. Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487 (Campus Kista), entamensuppgiftena behöve inte åtelämnas

Läs mer

Vad är ljus? Fundamental krafter. James Clerk Maxwell. Kapitel 3, Allmänna vågekvationen. Maxwells ekvationer i vakuum FAF260

Vad är ljus? Fundamental krafter. James Clerk Maxwell. Kapitel 3, Allmänna vågekvationen. Maxwells ekvationer i vakuum FAF260 FA0 Vad ä ljus? FA0 Lunds Univesitet 016 Fundamental kafte FA0 Lunds Univesitet 016 James Clek Maxwell FA0 Lunds Univesitet 016 Gavitatin Elektmagnetism föenades på 1800 talet Staka känkaften Svaga känkaften

Läs mer

9 Rörelse och krafter 2

9 Rörelse och krafter 2 9 Röelse och afte Kastöelse 9.1 Just då stenen ä i banans hösta punt och ände fö att böja öa si nedåt ä den still i etialled. Stenens acceleation ä noll i hoisontalled unde hela öelsen. Sa: Sant 9. a)

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15 Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs

Läs mer

Grundläggande mekanik och hållfasthetslära

Grundläggande mekanik och hållfasthetslära Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: tentamen Ladokkod: A145TG (41N19A) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 18-6-1 Tid: 14.-18. Hjälpmedel: Hjälpmedel

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper. Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =

Läs mer

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09 Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 18 augusti :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 18 augusti :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kemi och biologi (IM) Macus Ekholm TYA16/TEN2 Tentamen Mekanik 18 augusti 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae

Läs mer

Upp gifter I=2,3 A. B=37 mt. I=1,9 A B=37 mt. B=14 mt I=4,7 A

Upp gifter I=2,3 A. B=37 mt. I=1,9 A B=37 mt. B=14 mt I=4,7 A Upp gifter 1. Beskriv den magnetiska kraften som verkar på ledaren, både till storlek och till riktning. Den del av ledaren som är inne i magnetfältet kan antas vara 45 cm i samtliga fall. a. b. I=1,9

Läs mer

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm) Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt

Läs mer

file:///c:/users/engström/downloads/resultat.html

file:///c:/users/engström/downloads/resultat.html M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8

Läs mer

Heureka Fysik 2, Utgåva 1:1

Heureka Fysik 2, Utgåva 1:1 Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL 8

LÖSNINGAR TILL PROBLEM I KAPITEL 8 LÖSIGR TILL PROLEM I KPITEL 8 LP 8. Vi anta föst att den gina bomsande kaften F k ä den enda kaft som påeka öelsen och dämed också intängningsdjupet. Men eka ingen kaft i öelseiktningen? Fastän man i talspåk

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Strålningsfält och fotoner. Kapitel 23: Faradays lag Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar

Läs mer

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska) Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

Geometrisk optik reflektion och brytning

Geometrisk optik reflektion och brytning Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:

Läs mer

16. Spridning av elektromagnetisk strålning

16. Spridning av elektromagnetisk strålning 16. Spidning av elektomagnetisk stålning [Jakson 9.6-] Med spidning avses mest allmänt poessen dä stålning antingen av patikel- elle vågnatu) växelveka med något objekt så att dess fotskidningsiktning

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo

Läs mer

Grundläggande mekanik och hållfasthetslära

Grundläggande mekanik och hållfasthetslära Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 18 april :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 18 april :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN2 Tentamen Mekanik 18 apil 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vadea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveade

Läs mer

Lösningar till Problemtentamen

Lösningar till Problemtentamen KTH Mkanik 2005 10 17 Mkanik II, 5C1140, M, T, CL 2005 10 17, kl 14.00-18.00 Lösninga till Pobltntan Uppgift 1: Två cylinda d adina spktiv R sitt ihop so n stl kopp. Dn kan ota fitt king n fix hoisontll

Läs mer

Tentamen med lösningar i IF1330 Ellära måndagen den 29 maj

Tentamen med lösningar i IF1330 Ellära måndagen den 29 maj Tentamen med lösninga i F lläa måndagen den 9 ma 7 8.-. Samtidigt gå en liknande tentamen fö 6 väl ätt tentamen! Allmän infomation xaminato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8)

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8) Elektromagnetism Kapitel 8.-8., 8.4 (fram till ex 8.8) Varför magnetism? Energiomvandling elektrisk magnetisk mekanisk Elektriska maskiner Reversibla processer (de flesta) Motor Generator Elektromagneter

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av U och I F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer