16. Spridning av elektromagnetisk strålning

Storlek: px
Starta visningen från sidan:

Download "16. Spridning av elektromagnetisk strålning"

Transkript

1 16. Spidning av elektomagnetisk stålning [Jakson 9.6-] Med spidning avses mest allmänt poessen dä stålning antingen av patikel- elle vågnatu) växelveka med något objekt så att dess fotskidningsiktning ända. Ifall spidningen ske så att den inkommande patikeln föloa ingen avseväd del av sin enegi, kallas poessen fö elektomagnetiska vågo elastisk spidning. Motsatsen ä inelastisk spidning. Det ä dok skäl att notea att p.g.a. bevaelsen av enegi oh öelsemängd föloa en patikel okså en foton) alltid någon enegi om dess iktning ändas. Däfö måste definitionen på elastisk spidning innehålla temen ingen avseväd del. Hä åde dok en smäe begeppsföviing. Då man diskutea spidning av patikla med massa t.ex. i känfysiken), definiea man ofta elastisk spidning som spidning dä endast två patikla delta. Inelastik spidning avse då spidning dä det uppkomme en tedje patikel t.ex. en atom kollidea med en annan så att en elekton exiteas oh emitteas ut u systemet, så spidningen innehålle två inkommande men te utgående patikla). På denna kus behandla vi givetvis baa spidning av elektomagnetiska vågo, oh okså detta i baa det enklaste tänkbaa fallet. Men det lede till ett tevligt slutesultat. Elektodynamik, vt 013, Kai Nodlund Spidning av stålning med lång våglängd Om elektomagnetisk stålning med lång våglängd elle låg fekvens täffa en massiv kopp, induea stålningen oskilleande multipole i koppen, som oskillea med den infallande stålningens fekvens. Alltså λ = π k = π ω antas vaa myket stöe än stålmålets linjäa dimension. Ekvationena fö en plan monokomatisk våg va ju se kapitel 1.6): 16.1) E in, t) = E 0p sinωt κ φ) p + E 0s sinωt κ )ŝ 16.) B in = n k Ein 16.3) = n E 0p sinωt κ φ)ŝ E 0s sinωt κ ) p) 16.4) Hä avse nu undeindexet in att det ä fåga om en våg som komme in på en kopp. De oskilleande multipolena i koppen utståle en spidd våg. De viktigaste komponentena i den spidda stålningen ä i allmänhet stålningen fån stålmålets elektiska oh magnetiska dipolmoment. Elektodynamik, vt 013, Kai Nodlund 16.

2 Långt utanfö stålmålet ä de utstålade elfälten alltså fälten fån en oskilleande elektisk oh magnetisk dipol. Uttyken fö dessa va ju jf. kapitel 15): Elektisk dipol: Magnetisk dipol: E, t) = µ 0p 0 ω B, t) = E θ 4π osωt /)) θ 16.5) ψ 16.6) E, t) = t A, t) = µ 0 ω 4π B, t) = A, t) µ 0 ω 4π Dessa gällde alltså fö en sfäisk våg som famskide i iktningen. De kombineade utstålade dipolfälten bli osωt ω/) φ 16.7) osωt ω/) θ 16.8) E s = µ 0p 0 ω 4π osωt /)) θ 16.9) Elektodynamik, vt 013, Kai Nodlund µ 0 ω 4π = µ 0ω sin θ osωt /)) 4π osωt ω/) φ 16.10) ) φ 16.11) dä undeindexet s stå fö satteed spidd på engelska). B s = 1 E s 16.1) Den inkommande oh utstålade stålningen kan uppdelas i komponente med olika polaisationsiktning. Den komponent av den infallande stålningen som ha polaisationen ˆɛ 0 ä E in ˆɛ 0 E in)ˆɛ ) B in 1 ˆɛ 0 E in)ˆk ˆɛ ) Komplexkonjugeingen behövs ifall polaisationen ä ikulä, då skaläpodukten fö otationskomponente ä definiead A B = A, B) Den komponent i utdående stålningen som ä polaisead E) i iktningen ˆɛ kan skivas som Elektodynamik, vt 013, Kai Nodlund 16.4

3 E s ˆɛ E)ˆɛ 16.15) B s 1 ˆɛ E)ˆ ˆɛ 16.16) Den diffeentiella täffytan definieas som = effekt utstålad i iktningen ˆ med polaisation ˆɛ infallseffekt/ytenhet med polaisation ˆɛ 0 = P ut dω P in 16.17) oh ge alltså en diffeentiell) tväsnittsyta fö vilken andel av den inkommande stålningen avges i en viss iktning. Riktningen ges oftast som den diffeentiella ymdvinkeln dω. Effektutstålning i iktningen ˆ med polaisation ˆɛ fås med Poyntingvekton: P ut dω = 1 ˆ E s H s ) dω 16.18) = 1 ˆ 1 µ 0 E s B s ) dω 16.19) = 1 µ 0 ˆɛ E s ˆ ˆɛ ˆ ˆɛ ) dω 16.0) Temen med ˆ oh ɛ kan föenklas då man beakta att polaisationsvekton ä vinkelät mot Elektodynamik, vt 013, Kai Nodlund 16.5 fotskidningsiktningen ˆ, så ˆɛ ˆ = 0 samt med BAC-CAB-egeln: ˆ ˆɛ ˆ ˆɛ ) = ˆ ˆˆɛ ˆɛ ) ɛ ˆɛ ˆ) ) = ˆ ˆ = ) så man få P ut dω = 1 µ 0 dω ˆɛ E s 16.) Infallseffekt pe ytenhet: P in = 1 ˆk E in H in ) = 1 µ 0 ˆɛ 0 E in ˆk ˆɛ0 ˆk ˆɛ 0 ) }{{} ) dä man fått att kysspodukttemen = 1 på samma sätt som ovan då ˆk ˆɛ 0. Alltså fås = dω ˆɛ E s ˆɛ 0 E in 16.4) oh dämed dω = ˆɛ E s 16.5) ˆɛ 0 E in Elektodynamik, vt 013, Kai Nodlund 16.6

4 Med att sätta in ekvationena 16. samt i detta få man det fullständiga uttyket fö spidningen. Men nu ä vi intesseade fämst av medeltalet fekvensbeoendet av spidningen. Då kan vi lämna bot tidsbeoendet u uttyken, oh skiva inkommande vågen i den enklae fomen E in = ˆɛ 0 E 0 e ik 16.6) så man få ˆɛ 0 E in = E ) Fö den spidda vågen fås: ˆɛ E s = ˆɛ µ0ω 1 4π = µ 0 ω4 1 16π = µ 0 ω4 16π osω/)) ˆɛ sin θ osω/)) ˆɛ sin θ osω/)) φ) ) φ ) φ 16.8) 16.9) 16.30) 16.31) Elektodynamik, vt 013, Kai Nodlund 16.7 dω = µ 0 ω4 16π E 0 ˆɛ sin θ osω/)) ) φ 16.3) Denna typ av spidning ä känd som Rayleigh-spidning. Det viktigaste i detta esultat ä fekvensbeoendet: vilket ä känt som Rayleighs lag. dω ω ) Detta esultat kan jämföas med esultaten i föa kapitlet fö stålningen ut fån oskilleande elektiska oh magnetiska dipole. Även i dessa fik man esultatet att effekten ä ω 4, men denna häledning hä ge alltså sambandet mellan inkommande oh utgående våg. Detta föklaa okså vafö himlen ä blå, oh solnedgången öd! Osaken ä att atmosfäen kan i fösta appoximation anses vaa en tunn gas av dipole kväveoh syemolkyle N oh O ) u vilket soljuset spids. Fö att molekylena ä slumpmässigt iktade, fösvinne polaisationsfaktoena i medeltal, oh den domineande effekten ä en spidning av ljuset popotionellt mot fekvensens fjäde potens. Fö synligt ljus innebä detta att ött ljus som ha lägst fekvens) spids minst, oh blått oh violett ljus mest. Dessutom måste man beakta hu effektivt ljuset absobeas i atmosfäen. Detta Elektodynamik, vt 013, Kai Nodlund 16.8

5 kan bea knas u atmosfa ens absoptionskoeffiient α jf. kapitel 1.7). Ha a esultat fo inta ngningsdjupet 1/α i atmosfa en samt hu sto andel av soljusets intensitet absobeas fa n atmosfa ens topp till jodytan Iyta/I0 [Jakson sid. 43]: Fa g Inta ngingsdjup km) Ro tt 6500 A ) Go nt 500 A ) Violett 4100 A ) Andel som na ytan Solen i zenith Soluppga ng/nega ng Himlen a alltsa bla fo att da bla tt ljus spids mea, oh vi se ljuset som spitts o gat a minde ka nsligt fo violett ljus sa den bla a fa gen se ut att dominea). Soluppga ngen oh solnedga ngen a o da fo da ma ste solsta lana fa des la nge va g i atmosfa en, oh s.g.s. allt bla tt ljus hinne absobeas. Elektodynamik, vt 013, Kai Nodlund Himmel o ve aeleatotonet i Canbea, Austalien Elektodynamik, vt 013, Kai Nodlund JJ J I II 16.9 Solnedga ng o ve Columbia-floden i Rihland, WA, USA JJ J I II 16.10

16. Spridning av elektromagnetisk strålning

16. Spridning av elektromagnetisk strålning 16. Spridning av elektromagnetisk strålning [Jakson 9.6-] Med spridning avses mest allmänt proessen där strålning (antingen av partikel- eller vågnatur) växelverkar med något objekt så att dess fortskridningsriktning

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.

Läs mer

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig) 1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells

Läs mer

Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!

Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten! 14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm) Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0 Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektofält - Föeläsningsanteckninga Chistian Fossén, Institutionen fö fysik, Chalmes, Götebog, Sveige Oct 16, 2018 11. Elektomagnetiska fält och Maxwells ekvatione Vi stata med

Läs mer

Gravitation och planetrörelse: Keplers 3 lagar

Gravitation och planetrörelse: Keplers 3 lagar Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade

Läs mer

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1. 1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte

Läs mer

Geometrisk optik reflektion och brytning

Geometrisk optik reflektion och brytning Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av

Läs mer

8 SVARTKROPPS- 8.1 Tillståndet för en foton. Planck-fördelningen. elektriska fältet där E = (E x, E y, E z ) och

8 SVARTKROPPS- 8.1 Tillståndet för en foton. Planck-fördelningen. elektriska fältet där E = (E x, E y, E z ) och Planck-födelningen 8 8 SARTKROPPS- STRÅLNING 8. Tillståndet fö en foton Låt oss betakta elektomagnetisk stålning i jämvikt i en volym vas vägga hålls vid konstant tempeatu T. I denna situation komme fotone

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

Vad är ljus? Fundamental krafter. James Clerk Maxwell. Kapitel 3, Allmänna vågekvationen. Maxwells ekvationer i vakuum FAF260

Vad är ljus? Fundamental krafter. James Clerk Maxwell. Kapitel 3, Allmänna vågekvationen. Maxwells ekvationer i vakuum FAF260 FA0 Vad ä ljus? FA0 Lunds Univesitet 016 Fundamental kafte FA0 Lunds Univesitet 016 James Clek Maxwell FA0 Lunds Univesitet 016 Gavitatin Elektmagnetism föenades på 1800 talet Staka känkaften Svaga känkaften

Läs mer

Föreläsning 7 Molekyler

Föreläsning 7 Molekyler Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

1. Kraftekvationens projektion i plattans normalriktning ger att

1. Kraftekvationens projektion i plattans normalriktning ger att MEKANIK KTH Föslag till lösninga vid tentamen i 5C92 Teknisk stömningsläa fö M den 26 augusti 2004. Kaftekvationens pojektion i plattans nomaliktning ge att : F ṁ (0 cos α) F ρv 2 π 4 d2 cos α Med givna

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

15. Strålande system

15. Strålande system 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

6 KVANTSTATISTIK FÖR IDEALA GASER

6 KVANTSTATISTIK FÖR IDEALA GASER Kvantstatistik fö ideala gase 6 6 KVANTSTATISTIK FÖR IDEALA GASER 6. Fomuleing av det statistiska poblemet Vi betakta en gas av identiska patikla inneslutna i en volym V vilken befinne sig i ämvikt vid

Läs mer

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,

Läs mer

ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led

ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.

Läs mer

REDOVISNINGSUPPGIFT I MEKANIK

REDOVISNINGSUPPGIFT I MEKANIK Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken

Läs mer

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat.

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat. Database: Relationsalgeba 2-11 Relationsalgeba Relationsalgeba bestå av en mängd opeatoe som ta en elle två elatione som input och poducea en ny elation som esultat. De fundamentala opeationena ä unäa

Läs mer

XV. Elektriska fält. XV.1. Kraften mellan laddningar: Coulombs lag F E ( ) 2 ( ) N F E.

XV. Elektriska fält. XV.1. Kraften mellan laddningar: Coulombs lag F E ( ) 2 ( ) N F E. XV. lektiska fält Fö tillfället vet vi av baa fya olika fundamentala kafte i univesum. Dessa ä: Gavitationskaften Bekant fån mekanikenkusen Den elektomagnetiska kaften Detta kapitels ämne, osaken till

Läs mer

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0) Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll

Läs mer

Tentamen i Mekanik I del 1 Statik och partikeldynamik

Tentamen i Mekanik I del 1 Statik och partikeldynamik Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

Ljud spridning. Uppgift 4, kap 2. Uppgift 4, kap Källa Utbredning Mottagare. Lunds Tekniska Högskola Teknisk Akustik

Ljud spridning. Uppgift 4, kap 2. Uppgift 4, kap Källa Utbredning Mottagare. Lunds Tekniska Högskola Teknisk Akustik 009-0-0 Ljud spidning Källa Utbedning Mottagae Uppgift 4, kap Uppgift 4, kap 009-0-0 Uppgift 4, kap ft () N asint i i n Ljudutbedning avstånd Källa Utbedning Mottagae Ljudutbedning fifält Mätning av änding

Läs mer

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar.

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar. Regleteknik AK F6 Föa föeläsningen Nquistskiteiet (stabilitet) Stabilitetsmaginale Amplitud- och fasmaginal. Stabilitet. Rotot 3. Koefficient-villko (Routh-Huwitz) Läsanvisning: Kapitel 6 Repetition fekvensanals

Läs mer

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p) Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:

Läs mer

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska) Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3)

18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3) 18. Sammanfattning 18.2. Ursprung och form av fältena Elektriska laddningar (monopoler) i vila ger upphov till elfält Elektriska laddningar i rörelse ger upphov till magnetfält Elektriska laddningar i

Läs mer

18. Sammanfattning Kraft, fält och potential. Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18.

18. Sammanfattning Kraft, fält och potential. Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18. 18. Sammanfattning Elektrodynamik, vt 2013, Kai Nordlund 18.1 18.1. Kraft, fält och potential Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18.1) Potential φ är en matematisk

Läs mer

18. Sammanfattning. Elektrodynamik, vt 2013, Kai Nordlund 18.1

18. Sammanfattning. Elektrodynamik, vt 2013, Kai Nordlund 18.1 18. Sammanfattning Elektrodynamik, vt 2013, Kai Nordlund 18.1 18.1. Kraft, fält och potential Krafter F är fysikaliskt mätbara storheter Elfält beror på kraften som F = Eq (18.1) Potential φ är en matematisk

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper. Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Värt att memorera:e-fältet från en punktladdning

Värt att memorera:e-fältet från en punktladdning I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet

Läs mer

14. Elektriska fält (sähkökenttä)

14. Elektriska fält (sähkökenttä) 14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna

Läs mer

Kap. 12. Molekylspektroskopi: Rot&Vib

Kap. 12. Molekylspektroskopi: Rot&Vib Kap.. Molekylspektoskopi: Rot&Vib A.3 Spektoskopiska teknike Molekylspektoskopi: Växelvekan elektoagnetisk stålning olekyle olekyl i gundtillståndet absoption M hν M* eission excitead olekyl (elektoniskt-,

Läs mer

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige. Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa

Läs mer

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt

Läs mer

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8 Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft

Läs mer

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar 17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst

Läs mer

Solenergi. Clearline. en introduktion. Solenergi. Solenergi En introduktion (v1.0) Warm-Ec Scandinavia AB Box 110 671 23 Arvika

Solenergi. Clearline. en introduktion. Solenergi. Solenergi En introduktion (v1.0) Warm-Ec Scandinavia AB Box 110 671 23 Arvika En intoduktion (v1.0) en intoduktion En intoduktion (v1.0) Innehåll 1.0 Olika fome av solenegi... 3 1.1 Passiv solinvekan...3 1.2 Solfångae...3 1.3 Solcelle...3 1.4 Koncentation av solljuset...4 2.0 Hu

Läs mer

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

Omtentamen i IF1330 Ellära torsdagen den 22 augusti

Omtentamen i IF1330 Ellära torsdagen den 22 augusti Omtentamen i F33 Elläa tosdagen den augusti 3 9.-3. Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487 (Campus Kista), entamensuppgiftena behöve inte åtelämnas

Läs mer

Tentamen IF1330 Ellära torsdagen den 4 juni

Tentamen IF1330 Ellära torsdagen den 4 juni entamen IF33 Elläa tosdagen den 4 juni 5 9.-3. Samtidigt gå en liknande tentamen fö IE6 välj ätt tentamen! Allmän infomation Examinato: William Sandqvist. Ansvaig läae: William Sandqvist, tel 8-79 4487

Läs mer

Datum: Tid:

Datum: Tid: Kus: Moment: Pogam: Rättande läae: Examinato: Datum: Tid: Hjälpmedel: Omfattning och betygsgänse: Öig infomation: TETAME I FYSIK HF005 Fysik fö baså II Studente egisteade på den älde kusen HF0016 Fysik

Läs mer

TAKVÄRME. December klimatpanele

TAKVÄRME. December klimatpanele CASA PLAN TAKVÄRME klimat - Mateial, mm aluminiumplåt, mm koppaö, isoleing av glasull - Ytbehandling, lackead - Kulö, Standadkulö ä vit RAL 93 men anda kulöe finns mot tillägg. - Max difttyck, ba - Max

Läs mer

Strålningsfält och fotoner. Våren 2016

Strålningsfält och fotoner. Våren 2016 Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

13. Plana vågors reflektion och brytning

13. Plana vågors reflektion och brytning 13. Plana vågors reflektion och brytning Extra material som ges som referens, men krävs inte i mellanförhören eller räkneövningarna: Elektrodynamik, vt 2008, Kai Nordlund 13.1 13.1. Vågledare... Hastigheter

Läs mer

Statsupplåning. prognos och analys 2004:1. Statens lånebehov. Finansiering. Aktuellt. Marknadsinformation

Statsupplåning. prognos och analys 2004:1. Statens lånebehov. Finansiering. Aktuellt. Marknadsinformation 2004:1 Statsupplåning pognos oh analys Statens lånebehov Åspognosen fö 2004 3 Lånebehovet justeat fö tillfälliga betalninga 4 Jämföelse med anda lånebehovspognose 5 Månadspognose 5 Statsskulden 5 Finansieing

Läs mer

Schrödingerekvationen i 3 dim: Väteatomen.

Schrödingerekvationen i 3 dim: Väteatomen. Föläsig : Schödigkvtio i di: Vätto. Lösts v Schödig 96. Fökl spktllij få vätt och vis däd tt S. fg!!! Schödig kv i D: Ψ(, t) U( )Ψ(, t) i Ψ(, t) t Solikhtstolkig: Ψ(, t) d Noig: Ψ(, t ) d Sttioä tillståd:

Läs mer

Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y

Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y Föeläsning 2 Den enkla standadketsen PID-egleing Pocessmodelle e Reglato Pocess Negativ åtekoppling fån mätsignalen Reglaton bestämme stsignalen tifån eglefelet (contol eo)e= Rekommendead läsning: Feedback

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod

Läs mer

V. Den klassiska idealgasen

V. Den klassiska idealgasen V. Den klassiska idealgasen Viktiga ålsättninga ed detta kapitel Veta att Boltzanns distibutionsfunktion lede till idealgasekvationen Känna till. Maxwell-Boltzanns distibutionsfunktion... både i D och

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Föreläsning 6: Polarisation

Föreläsning 6: Polarisation 1 Föreläsning 6: Polarisation Tre saker behövs för att förstå polaroidglasögon och deras begränsningar. Först måste vi veta vad polarisations är, sedan hur polarisationsfilter fungerar, och till sist varför

Läs mer

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden A.Uppgifte om stödmottagae Namn och adess Enköpings Biodlae c/o Mattias Blixt Kykvägen 3 749 52 GRILLBY Jounalnumme 2012-1185 E-postadess mattias.blixt@enviotaine.com B.Uppgifte om kontaktpesonen Namn

Läs mer

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 3 april :00 19:00 TER2. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 3 april :00 19:00 TER2. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN2 Tentamen Mekanik 3 apil 2018 14:00 19:00 TER2 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL 7

LÖSNINGAR TILL PROBLEM I KAPITEL 7 LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen

Läs mer

Transmissionsegenskaper av material i frekvensområdet 2-110 GHz och möjligheter att se igenom

Transmissionsegenskaper av material i frekvensområdet 2-110 GHz och möjligheter att se igenom Tansmissionsegenskape av mateial i fekvensomådet 2-11 GHz och möjlighete att se igenom ANNA JÄNIS STEFAN NILSSON FOI ä en huvudsakligen uppdagsfinansiead myndighet unde Fösvasdepatementet. Känveksamheten

Läs mer

Föreläsning 6: Polarisation

Föreläsning 6: Polarisation 1 Föreläsning 6: Polarisation Tre saker behövs för att förstå polaroidglasögon och deras begränsningar. Först måste vi veta vad polarisations är, sedan hur polarisationsfilter fungerar, och till sist varför

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 18 augusti :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 18 augusti :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kemi och biologi (IM) Macus Ekholm TYA16/TEN2 Tentamen Mekanik 18 augusti 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

XVI. Magnetiska fa lt

XVI. Magnetiska fa lt XV. Magnetiska fa lt Dessa a ndo, kallas fo magnetiska ole, sydol och nodol. odol, kallas den magnetiska olen, som sva nge sig mot no (nodso kande ol) i jodens magnetfa lt. En magnetisk diol kallas en

Läs mer

Kapitel 8. Kap.8, Potentialströmning

Kapitel 8. Kap.8, Potentialströmning Kpitel 8 Kp.8, Voticitet (epetition) Hstighetspotentil Stömfunktionen Supeposition Cikultion -dimensionell kopp Kutt-Joukovskis lftkftsteoem Komple potentil Rottionssmmetisk potentilstömning Rottion v

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Grundläggande mekanik och hållfasthetslära

Grundläggande mekanik och hållfasthetslära Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentialer och fält [Griffiths,RMC] För att beräkna strålningen från kontinuerliga laddningsfördelningar och punktladdningar måste deras el- och magnetfält vara kända. Dessa är i de flesta fall enklast

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8)

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8) Elektromagnetism Kapitel 8.-8., 8.4 (fram till ex 8.8) Varför magnetism? Energiomvandling elektrisk magnetisk mekanisk Elektriska maskiner Reversibla processer (de flesta) Motor Generator Elektromagneter

Läs mer