TFYA16/TEN2. Tentamen Mekanik. 3 april :00 19:00 TER2. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
|
|
- Jan-Erik Åström
- för 6 år sedan
- Visningar:
Transkript
1 Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN2 Tentamen Mekanik 3 apil :00 19:00 TER2 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae samt följa en tylig lösningsgång. Låt gäna in lösning åtföljas av en figu. Numeiska väen på fysikaliska stohete skall anges me enhet. Det skall tyligt famgå av eovisningen va som ä et slutgiltiga svaet på vaje uppgift. Makea gäna itt sva me exempelvis Sva:. Skiv baa på ena sian av pappet, och behanla högst en uppgift pe bla. Skiv AID-numme på vaje bla Tillåtna hjälpmeel: äkneosa (även gafitane) me tömt minne bifogat fomelbla Peliminäa betygsgänse: betyg 3 betyg 4 betyg 5 10 poäng 15 poäng 19 poäng Om u fick gokänt betyg på kontollskivningen (KTR1) 2017 få u tillgooäkna ig in skivningspoäng på uppgift 1. Om u välje att behanla uppgift 1 vi agens tentamenstillfälle så komme et mest föelaktiga esultatet att äknas. Jouhavane senio läae, Bo Dubeej, besöke skivningssalen vi två tillfällen. Examinato nås via telefon, n Lycka till
2
3 TFYA16 1 Uppgift 1 a) En patikel ä ölig längs x-axeln. Dess acceleationen beo på tien t enligt: a(t) = a 0 e t/τ ä a 0 och τ ä konstante. Vi tien t = 0 ä patikeln i vila vi x = 0. Bestäm läget som funktion av tien. (2 p) b) En bil me massa 1200 kg kös genom en kuva me aien 100 m på en plan väg. I ett visst ögonblick ä bilens fat v = 20 m/s samtiigt som en bomsas så att v = 3 m/s 2. Bestäm beloppet av en totala fiktionskaften som veka på bilens äck. (2 p) Uppgift 2 a) Te kvaatiska täbita, me silängen 0,16 m, pessas mot vaana enligt figuen nean, ä = 10,0 cm och kaften P = 240 N. Bestäm skjuvspänningen på biten i mitten. b) Då man ese en 12,0 m lång flaggstång använe man sig av ett ep som ä fäst på avstånet = 4,00 m fån stångens ena äne. Stången bila vinkeln 60 me maken, och epet bila vinkeln 45 me stången, som ha massan m och kan anses vaa homogen. Bestäm bestäm stolek och iktning hos eaktionskaften fån maken på stången (1 p) (3 p) Uppgift 3 Två exakt likaana hjul otea fiktionsfitt king samma axel. Hjulen otea åt motsatta håll, och et ena hjulet ha ubbelt så sto otationshastighet som et ana. Plötsligt föbins hjulen (stelt) me vaana, så att e få samma otationshastighet. Hu sto båkel av en kinetiska enegin föloas ävi? (4 p)
4 TFYA16 2 Uppgift 4 I figuen visas två klossa på ett lutane plan, som föbins av ett masslöst och otänjbat ep. Kloss A ha tyngen 30 N, och kloss B ha tyngen 15 N. Den kinetiska fiktionskoefficienten mellan kloss A och planet ä 0,25 och mellan B och planet ä en 0,375. A B 45 Då man släppe klossana fia böja e glia nefö planet. Bestäm spännkaften i epet å e ö sig. (4 p) Uppgift 5 På en minigolfbana finns en anoning som bestå av ett halvcikelfomat ö me glatt insia i ett vetikalplan, enligt figuen till höge. Röets aie ä. Hu sto fat, v, ska man ge bollen fö att en ska hamna i hålet, såsom figuen visa? Avstånet mellan hålet och öets vetikala iamete ä 2. Bollen kan behanlas som en patikel. (4 p) Uppgift 6 En kloss me massa m glie me hastighet u på ett fiktionsfitt unelag. Den kolliea me en annan kopp me massa m, som bestå av en kloss föse me en fjäe, ä fjäekonstanten ä k. Den vänsta klossen fastna i fjäen. u m k m a) Vilken hastighet få systemets masscentum? b) Bestäm hu långt fjäen tycks ihop. (1 p) (3 p)
5 Fomelbla TFYA16 Mekanik utelas vi skivningstillfälle vesion 4 Pefix SI-enhete p n µ m c k M G T läng ti massa fekvens kaft enegi effekt tyck m s kg Hz = s 1 N = kg m/s 2 J = Nm W = J/s Pa = N/m 2 Impuls I = p = F t Centipetalkaft Fc = mv2 Abete W = F s = F s cos α = mω 2 Måttenhete 1 lite = 1/1000 m 3 = 1 m 3, 1 atm = 101,3 kpa, 1 u = 1, kg Kinetisk enegi Ek = mv2 2, W = E k 1 Kinematik Lägesenegi Ep = mgy v = ẋ = x t v, a = v = v x = 1 2 x (v2 ) Cikulä öelse s = θ, ṡ = ω, s = α, ω = θ, α = θ a = a 2 + a 2 t, a = v2 Peioisk öelse: ω = 2πf = 2π T Likfomig acceleation at = t v, f fekvens, T peioti 2 2 x(t) = 1 2 at2 + v0t + x0, 2as = v 2 v 0 2, s = v 2 θ(t) = 1 + ω0t +, 2αθ = ω 2 ω 2, θ = ω 0 + ω 2 αt2 θ Kastöelse x(t) = v0t cos α, y(t) = v0t sin α gt2 2, g = 9,81 m/s2 Relativ öelse Punkt P :s läge i systemet A ä P A = P B + BA 2 Patikelynamik Röelsemäng p = mv m massa Newtons laga 1. En kopp som inte påvekas av en kaft föbli i sitt tillstån av vila, elle likfomig öelse längs en ät linje. 2. Då en kopp påvekas av en kaft F, änas ess öelsemäng enligt: p t = F 3. En kopp A som påveka en kopp, B, me kaften FAB, påvekas av kaften FBA = FAB. t t Konsevativa kafte Fx = E p(x) x, W W2 1 = 0 Enegilagen Ep + Ek = Wf, Wf icke-konsevativa kaftes abete Effekt P = W = F v, vekningsga η = P nyttig t Ptillfö F Fiktionskaft statisk: fs µsfn, FN nomalkaft kinetisk: fk = µkfn µs, µk fiktionstal, Kaftmoment τ = F sin φ Röelsemängsmoment L = p sin φ Hookes lag F = k l, k fjäekonstant Hamonisk svängning x(t) = A sin (ωt + α) = A sin m Total enegi: E = ka 2 /2 Dämpa svängning Retaeane kaft F = bv F m p=mv ( ) 2π T t p=mv + α x(t) = Ae bt/(2m) sin (ωt + α), ω = L Matematisk penel T = 2π g, L penelläng Reucea massa µ = mm m + M 3 Patikelsystem och stela koppa Masscentum g = 1 i M m ii, M = i m i Masscentums öelse M v g t = Fext, T = 2π k m b2 4m 2 m k
6 Rullvillko vg = ωr Töghetsmoment I = i 2 i m i = 2 m x x' Homogen cyline y Iy = 1 2 MR2, Ix = 1 4 MR ML2 R Ix = 1 4 MR ML2 L Tunn stav (R = 0) Cikulä skiva (L = 0) Ix = 1 12 ML2, Ix = 1 3 ML2 Iy = MR2, Ix = I y z Cikulä ing Iz = 1 2 M(R2 1 + R 2 2) Klot Ix = Iy = Iz = 2 5 MR2 Tunt sfäiskt skal Ix = Iy = Iz = 2 3 MR2 R 2 R 1 x y z Fysikalisk penel T = 2π I O mgh, h avstån fån svängningsaxeln O till masscentum Rotationsöelse L = Iω, L t = Iα = τ, W = τ θ, E k ot = 1 2 Iω2 Allmän plan öelse Ek = 1 2 I gω Mv2 g 4 Elasticitet Elasticitetsmoul E = σ/ε [ E ] = [ σ ] =N/m 2 = Pa spänningen σ = F/A, töjningen ε = L/L Δx A Skjuvmoul G = τ/γ [ G ] = [ τ ] = N/m 2 = Pa skjuvspänningen τ = F/A, skjuvningen γ = x/h Tyckmoul B = pv/ V [ B ] = [ p ] = N/m 2 = Pa tycket p = F/A, kompessibilitet κ = B 1 h A skjuvning 5 Fluimekanik Densitet ρ = m V, V volym luft: ρ = 1,29 kg/m3, vatten: ρ = 997 kg /m 3 Akimees pincip Flyft = ρgv, ρ meiets ensitet, V föemålets volym F Vätsketyck p = ρgh h jup Kontinuitetsekvationen A1v1 = A2v2 Benoullis pincip p ρv2 1 + ρgy1 = p ρv2 2 + ρgy2 Luftmotstån F = 1 2 CρAv2, C luftmotstånskoefficienten 6 Matematiska samban Geometi omkets ytaea volym cikel 2πR πr 2 sfä 4πR 2 4πR 3 /3 cyline 2πRL πr 2 L a c b α c = a 2 + b 2 sin α = a c, cos α = b c, tan α = a b Tigonometiska samban sin (90 α) = cos α, cos (90 α) = sin α e ix = cos x + i sin x cos x = eix + e ix, sin x = eix e ix x sin x = cos x, x 2 cos x = sin x 2i Anagasekvationen x 2 + px + q = 0 ha lösninga x1,2 = 1 2 p ± 1 4 p2 q Diffeentialekvationen y + ay + by = f(x) ha lösningen y(x) = yh(x) + yp(x) Om f(x) = D och b = 0 ä yp(x) = Dx/a. Om f(x) = 0 ä yp = 0. { C1e 1x + C2e 2x om 1 2 yh(x) = (C1x + C2)e 1x om 1 = 2 ä 1,2 ä lösningana till ekvationen 2 + a + b = 0 Då 1,2 = α ± iβ : yh = e αx (A cos βx + B sin βx) McLauinutvecklinga f(x) = f(0) + f (0) 1 e x = 1 + x 1 + x2 sin x = x x3 cos x = 1 x2 x + f (0) = 3 + x = x = 2 + x = x n n ( 1) n (2n + 1) x2n+1 ( 1) n (2n) x2n f (n) (0) n x n
TFYA16/TEN2. Tentamen Mekanik. 18 augusti :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IM) Macus Ekholm TYA16/TEN2 Tentamen Mekanik 18 augusti 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae
TFYA16/TEN2. Tentamen Mekanik. 10 januari :00 13:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IM) Macus Ekholm TYA16/TEN2 Tentamen Mekanik 10 januai 2017 8:00 13:00 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae
Kontrollskrivning Mekanik
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA6/KTR Kontollskivning Mekanik novembe 06 8:00 0:00 Kontollskivningen bestå av 3 uppgifte som totalt kan ge 4 poäng. Fö godkänt betyg (G)
TFYA16/TEN2. Tentamen Mekanik. 18 april :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN2 Tentamen Mekanik 18 apil 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vadea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveade
TFYA16/TEN2. Tentamen Mekanik. 11 januari :00 13:00 TER1. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 11 januai 2018 8:00 13:00 TER1 Tentaen bestå av 6 uppgifte so vaea kan ge upp till 4 poäng. Lösninga skall vaa välotiveae
Tentamen Mekanik TFYA16/TEN2. 24 augusti :00 19:00 TER2. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN Tentamen Mekanik 4 augusti 018 14:00 19:00 TER Tentamen bestå av 6 uppgifte som vadea kan ge upp till 4 poäng. Lösninga skall vaa
TFYA16: Tenta Svar och anvisningar
1808 TFYA16 1 TFYA16: Tenta 1808 Sva och anvisninga Uppgift 1 a) Läget som funtion av tid fås genom sambandet: x(t) = v(t) dt = v 0 (1 t )dt = v 0 ( t 1 3 t3 ) + x 0 Eftesom x(0) = 0 gälle att x 0 = 0.
TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat
Tentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:
Lösningar till övningsuppgifter. Impuls och rörelsemängd
Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10
TFYA16/TEN2. Tentamen Mekanik. 12 januari :00 13:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 12 januari 2015 8:00 13:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
TFYA16/TEN :00 13:00
Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.
UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E
UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med
REDOVISNINGSUPPGIFT I MEKANIK
Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken
LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O
LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man
Mekanik för I, SG1109, Lösningar till problemtentamen,
KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
TFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led
y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: tentamen Ladokkod: A145TG (41N19A) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 18-6-1 Tid: 14.-18. Hjälpmedel: Hjälpmedel
Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av
Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt
Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa
FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.
FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften
TFYA16: Tenta Svar och anvisningar
170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
TFYA16/TEN2. Tentamen Mekanik. 7 april :00 19:00. Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa ng.
Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Tentamen Mekanik 7 april 2015 14:00 19:00 Tentamen besta r av 6 uppgifter som vardera kan ge upp till 4 poa
7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.
Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling
Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)
Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
1 Två stationära lösningar i cylindergeometri
Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel
Gravitation och planetrörelse: Keplers 3 lagar
Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade
Tentamen Mekanik MI, TMMI39, Ten 1
Linköpings universitet tekniska högskolan IEI/mekanik Tentamen Mekanik MI, TMMI39, Ten Torsdagen den 9 april 205, klockan 4 9 Kursadministratör Anna Wahlund, anna.wahlund@liu.se, 03-2857 Examinator Joakim
7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:
Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
7 Elektricitet. Laddning
LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva
FYSIKTÄVLINGEN. KVALIFICERINGS- OCH LAGTÄVLING 5 februari 2004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING februari 004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET. Skillnaen i avläsningen av vågen mellan bil och bestäms av vattnets lyftkraft på metallstaven som enligt
Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00
GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet
Vågräta och lodräta cirkelbanor
Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
Dynamiken hos stela kroppar
Natulaga cbemen VT 6 Lekton 4 Dnamken hos stela koa Matn Sevn Insttutonen fö fsk Umeå unvestet -Sol boes (lke EATHLINGS) look sll, on t ou thnk, Koas? -Sll? Yes, Kang, but taste. Mmm! Novoe cow le Dagens
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 16 8: 1: Tentamen består av två
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plats: 3 augusti, 017, kl. 14.00 19.00, lokal: MA10 A och B. Kursansvarig lärare: Aners Karlsson, tel. 40 89. Tillåtna
LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2
LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt
Tentamen Elektromagnetism
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm 93FY51/STN1: Fysik (61 75 hp) Tentamen Elektromagnetism 8 juni 2017 8:00 12:00 U14 Tentamen består av 6 uppgifter som vardera kan ge upp till
Kapitel extra Tröghetsmoment
et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten
undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.
FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Kursinformation Mekanik f.k. TMMI39
Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,
Kursinformation i Partikeldynamik för M (TMME08)
Kursinformation i Partikeldynamik för M (TMME08) 18h föreläsningar, 6h lektioner och h datorlaboration i period VT, 009. Kurshemsida www.mechanics.iei.liu.se/edu ug/tmme08/ Föreläsare och examinator Jonas
Uppgift 3.5. Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: dt = kv2. Vi separerar variablerna: v 2 = kdt
Uppgift 3.5 a) Vi har att: a = dv dt enligt definitionen. Med vårt uttryck blir detta: Vi separerar variablerna: Vi kan nu integrera båda leden: dv v = k dv dt = kv dv v = kdt dt 1 v = kt + C där C är
θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1
LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
LÖSNINGAR TILL PROBLEM I KAPITEL 7
LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen
Datum: Tid:
Kus: Moment: Pogam: Rättande läae: Examinato: Datum: Tid: Hjälpmedel: Omfattning och betygsgänse: Öig infomation: TETAME I FYSIK HF005 Fysik fö baså II Studente egisteade på den älde kusen HF0016 Fysik
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2. 5 juni :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL02/TEN: Fysik 2 för basår (8 hp) Tentamen Fysik 2 5 juni 205 8:00 2:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
1. Kraftekvationens projektion i plattans normalriktning ger att
MEKANIK KTH Föslag till lösninga vid tentamen i 5C92 Teknisk stömningsläa fö M den 26 augusti 2004. Kaftekvationens pojektion i plattans nomaliktning ge att : F ṁ (0 cos α) F ρv 2 π 4 d2 cos α Med givna
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,
.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse
.4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk
TFEI02: Vågfysik. Tentamen : Lösningsförslag
160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan
Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)
Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll
TFYA16: Tenta Svar och anvisningar
160819 TFYA16 1 TFYA16: Tenta 160819 Svar och anvsnngar Uppgft 1 a) Svar: A(1 Bt)e Bt v = dx dt = d dt (Ate Bt ) = Ae Bt ABte Bt = A(1 Bt)e Bt b) Då partkeln byter rktnng har v v = 0, dvs (1 t) = 0. Svar:
Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ
9.1 Kinetik Rotation kring fix axel Ledningar
9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn
Tentamen i Mekanik II
Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tentamensskrivning i Mekanik Del Dynamik för M 08 Lösningsförslag. a) meelbart före stöt har kula en horisontella hastigheten v mean kula är i vila v s v = 0. Låt v och v beteckna kulornas hastigheter
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Elektriska Drivsystems Mekanik (Kap 6)
Elektiska Divsystems Mekanik (Kap 6) Newtons ana lag! En av e mea viktiga ynamiska ekvationena fö elektiska maskine. L ä beteckna vinkelhastigheten och kallas töghetsmoment. och L beteckna ivane moment
Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl
Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,
Tentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14
Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter
Mekanik och maritima vetenskaper, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA OKTOBER 2017
Mekanik och maritima vetenskaper, Chalmers tekniska högskola ENAMEN I HÅFASHESÄRA KF OCH F MHA 8 6 OKOBER 7 i och plats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt.3 Hjälpmeel: ösningar. ärobok i
Ordinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,
Mekanik FK2002m. Repetition
Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
Sammanfattning av STATIK
Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea
LÖSNINGAR TILL PROBLEM I KAPITEL 8
LÖSIGR TILL PROLEM I KPITEL 8 LP 8. Vi anta föst att den gina bomsande kaften F k ä den enda kaft som påeka öelsen och dämed också intängningsdjupet. Men eka ingen kaft i öelseiktningen? Fastän man i talspåk
Lösningar och svar till uppgifter för Fysik 1-15 hösten -09
Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan
Lösningsförslag nexus B Mekanik
Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)
Möjliga lösningar till tentamen , TFYY97
Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum
Tentamen i Mekanik för D, TFYY68
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics
92FY27: Vågfysik teori och tillämpningar. Tentamen Vågfysik. 17 oktober :00 13:00
Linköpings Universitet Institutionen för fysik, kemi och biologi Roger Magnusson 92FY27: Vågfysik teori och tillämpningar Tentamen Vågfysik 17 oktober 2016 8:00 13:00 Tentamen består av 6 uppgifter som
Den geocentriska världsbilden
Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade
Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.
Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa
Grundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.
3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
Textil mekanik och hållfasthetslära
Textil mekanik och hållfasthetslära 7,5 högskolepoäng romoment: tentamen Ladokkod: ATMH och 5MH Tentamen ges för: Textilingenjörer årskurs Tentamensdatum: 7--3 Tid: 9.-3. Hjälpmedel: Hjälpmedel id tentamen
TENTAMEN I FYSIK. HF0022 Fysik för basår I TENA / TEN1, 7,5 hp Tekniskt basår/bastermin TBASA Svante Granqvist, Niclas Hjelm, Staffan Linnæus
TENTAMEN I YSIK Kusnumme: Moment: Pogam: Rättande läae: Examinato: Datum: Tid: Hjälpmedel: Omattning och betygsgänse: Övig inomation: H00 ysik ö baså I TENA / TEN1, 7,5 hp Tekniskt baså/bastemin TBASA
Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520)
Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Tid och plats: Tisdagen den juni 2014 klockan 08.0-12.0 i M-huset. Lösningsskiss: Christian Forssén Obligatorisk del 1. Ren summering över de fyra
Tentamen i mekanik TFYA kl
TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen ör Fysik, Kemi och Biologi Galia Pozina Tentamen i mekanik TFYA16 014-04- kl. 14-19 Tillåtna Hjälpmedel: Physics Handbook eller Teyma utan egna anteckningar,
Stelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå