REDOVISNINGSUPPGIFT I MEKANIK
|
|
- Barbro Lindgren
- för 6 år sedan
- Visningar:
Transkript
1 Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken lä man sig att veklighetens sstem motsvaas av teoetiska modelle och med natuens pincipe kan man ställa upp en öelseekvation fö sstemet Med numeiska metode kan man hitta och gafiskt åskådliggöa lösninga även till ekvatione, som inte gå att lösa diekt analtiskt esentation av poblemet Motoe och maskine alsta oftast icke önskväda vibatione Tänk dig en moto med oteande dela som stå på ett golv i ett um Föutom ljudet i luften geneeas vibatione i golvet och i ummet Vilken fekvens ha dessa vibatione? Bestäms den av motons vavtal, ummets fjäding och dämpning elle av anda egenskape hos ummet? Hu stoa bli vibationena fö olika vavtal och olika um? Hu kan vibationena dämpas? Betakta ett hjul som otea king en ael, som hålls upp av ett stativ på ummets golv Hjulet, som en clinde, ä inte pefekt så att masscentum ligge lite utanfö clindens geometiska centum Rummet stå på ett fjädande och dämpande undelag och antas baa kunna öa sig vetikalt Att hjulets masscentum ligge utanfö aeln kan sägas motsvaas av en punktmassa på ett avstånd fån aeln Eftesom denna patikel vid cikelöelsen också ha en vetikal acceleationskomponent måste det finnas en vetikal kaftkomponent på hela sstemet, hela ummet I patikelns övesta läge kävs alltså en neåtiktad kaft fö att hjulaeln skall vaa i vila Utföande Du abeta dig igenom alla föbeedelse och huvuduppgiften och skive en lösning till samtliga Huvuduppgiften käve också att du skive ett matlabpogam Den skiftliga appoten ställs det höga kav på Allt abete få gäna göas i gupp men individuellt ansva fö vaje lösning gälle Den individuella muntliga edovisningen innebä att det ställs föståelsefågo på den skivna lösningen och matlabbeäkningen
2 Uppgiften ä fö enkelhets skull uppdelad i deluppgifte Fullständig edovisning av alla föbeedelse och huvuduppgift skall inlämnas Föbeedelse l 0 jämviktsläge En kopp med massan m kan öa sig utan motstånd i ett vetikalt spå Den hänge i en lätt fjäde, som ha fjädekonstanten k och den natuliga längden l Det betde att om fölängningen av fjäden äknat fån den natuliga längden ä l, så ä den åteföande kaften k l Vi vill skiva upp kaftekvationen (elle öelseekvationen) fö koppens öelse Den vetikala koodinataelns oigo kan läggas på olika sätt Innan man skive upp kaftekvationen måste en filäggningsfigu itas a) Rita en filäggningsfigu med oigo i den punkt dä koppen befinne sig då fjäden ha sin natuliga längd Koppens läge ges då av koodinaten Skiv upp kaftekvationens -komponent Acceleationen betecknas b) Vid jämvikt, alltså då koppen ä i vila, ä acceleationen noll Vilket ä då jämviktsläget 0? Kaftekvationen i a) gälle föstås även vid jämvikt c) Rita en filäggningsfigu med oigo ' i den punkt dä koppen befinne sig då den ä i jämvikt Koppens läge ges av koodinaten bsevea att inte ä fjädefölängningen Skiv föst upp sambandet mellan koodinatena och Bestäm sedan sambanden mellan ẏ och ẋ samt och d) Skiv upp kaftekvationen med som vaiabel Utnttja sambandet mellan 0, mg och k fö att sedan föenkla kaftekvationen I denna na föenklade ekvation sns inte de statiska kaftena, dvs kaftena vid jämvikt Man kan alltså edan fån böjan botse fån dessa kafte och baa ita in de dnamiska kaftena i filäggningsfiguen Vilken ä den dnamiska kaften?
3 Föbeedelse l k 0 c älle föegående esonemang även om sstemet också innehålle en s k viskös dämpae med dämpningskonstanten c? En sådan dämpae ge en motståndskaft, som ä popotionell mot faten opotionalitetskonstanten ä c ö alltså om och edovisa lösningen till föegående uppgifte a), b), c) och d) fö detta na fall! Du ha föhoppningsvis nu visat att de statiska kaftena mg och k 0 inte behöve tas med i öelseekvationen fö detta sstem, om lägesändingen mäts fån jämviktsläget Fö fjädekaften ä det baa den dnamiska delen, den del som uppstå på gund av avvikelsen fån jämviktsläget, som skall vaa med Den viskösa kaften ä ju helt och hållet en dnamisk kaft Föbeedelse z θ En liten kula med massan m sitte fast i en oelastisk tåd med längden Tådens anda ände ä fastsatt i en fi ögla, så att kulan kan beskiva en cikelöelse på ett glatt hoisontellt bod Vi vill bestämma den kaft S vamed tåden påveka öglan Låt tådens vidningsvinkel äknad fån en efeenslinje ( -aeln) vaa θ Vinkelhastigheten θ kan kallas ω a) Rita cikelöelsen sett uppifån, filägg kulan och infö de vekande kaftena på kulan b) Infö i samma figu basvektoena e t, e n och e b i det natuliga koodinatsstemet! c) Ställ upp kaftekvationens komponente i det natuliga sstemet! å öve till vaiabeln θ! Vad kan man säga om vinkelhastigheten θ? Hu sto ä tådkaften? Hu sto ä kaften på öglan?
4 Föbeedelse m 2 Betakta nu ett hjul som otea med en konstant vinkelhastighet ω king en fi hoisontell ael Aeln ä undestödd av ett stativ, vas massa kan fösummas Hjulets massa ä m 2 Stativet stå hela tiden på ett hoisontellt bod å hjulet, på avståndet fån aeln, finns en patikel med massan Bestäm hu nomalkaften N fån det hoisontella bodet på stativet vaiea med tiden genom att följa nedanstående poblemuppdelning i a), b) och c) a) Rita en filäggningsfigu dä hela sstemet hjul + patikel + stativ filagts fån bodet De tte kaftena skall inföas Eftesom nomalkaften N ä en tte kaft bode den kunna bestämmas med kaftekvationen fö hela sstemet, F = ma dä F ä den tte kaftsumman, a masscentums acceleation och m den totala massan m + m 1 2 b) Lägg en -ael vetikalt uppåt med oigo i samma nivå som otationsaeln Skiv patikelns koodinat uttckt i vinkeln Tidsdeivea fö att få ẋ och Använd masscentums definition och bestäm acceleationen uttckt i vinkelhastigheten ω och tiden t c) Sätt in i kaftekvationens -komponent och bestäm ett uttck fö nomalkaften N Ange nomalkaftens stolek fö = 0, = π/2, = π samt = 3π/ 2 d) Filägg hjulet fån stativet Kävs det något kaftpasmoment M 1 fö att otea hjulet med den fastsatta patikeln med en konstant vinkelhastighet ω? I så fall, vilket kaftpasmoment kävs? Vafö sns inte detta kaftpasmoment i kaftekvationen? Ett kaftpasmoment ha ju sitt uspung i kafte e) Behövs det någa vetikala vägga fö stativet? Ha sstemet någon hoisontell acceleation?
5 Huvuduppgift m 2 jämviktsnivå Ett hjul med massan m 2 otea med en konstant vinkelhastighet ω king en hoisontell ael Aeln ä undestödd av ett lätt stativ som i sin tu stå på ett sstem av fjäda och dämpae Fjädana ha samma vekan som en fjäde med fjädekonstanten k och dämpana kan i äkningana esättas av en dämpae med dämpningskonstanten c Hela sstemet stå på ett hoisontellt bod å hjulet, på avståndet fån aeln, finns en patikel med massan Bestäm öelseekvationen fö hjulets (otationsaelns) vetikala öelse! a) Låt -aeln peka vetikalt uppåt Lägg oigo dä otationsaeln befinne sig vid jämvikt Koodinaten betde alltså aelns avvikelse uppåt äknat fån jämvikt Låt vaa koodinaten fö patikeln Uttck föst i koodinaten och vinkelvidningen Tidsdeivea sambandet fö att få ett uttck fö acceleationen b) Rita en filäggningsfigu fö sstemet hjul (inklusive patikel) + stativ, dä alla tte vetikala kafte ä inföda Endast de dnamiska kaftena behöve beaktas! c) Ställ upp kaftekvationens -komponent dä acceleationen fö sstemets masscentum ingå Utnttja definitionen av masscentum fö att skiva acceleationen uttckt i och d) Skiv svängningsekvationen på standadfom: + c m + k m = f() t e) Skiv ett matlabpogam fö svängningsöelsen Låt t e m = 10 kg, = 001 kg, = 010 m, ω = 30 ad/s Du ska kunna edovisa (plotta och diskutea) lösningens utseende fö olika val av fjädekonstant k och dämpningskonstant c
Mekanik för I, SG1109, Lösningar till problemtentamen,
KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten
LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O
LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man
TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat
Tentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt
1 Två stationära lösningar i cylindergeometri
Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes
LÖSNINGAR TILL PROBLEM I KAPITEL 7
LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen
LÖSNINGAR TILL PROBLEM I KAPITEL 8
LÖSIGR TILL PROLEM I KPITEL 8 LP 8. Vi anta föst att den gina bomsande kaften F k ä den enda kaft som påeka öelsen och dämed också intängningsdjupet. Men eka ingen kaft i öelseiktningen? Fastän man i talspåk
Lösningar till övningsuppgifter. Impuls och rörelsemängd
Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10
TMV166 Linjär algebra för M. Datorlaboration 4: Geometriska transformationer och plottning av figurer
MATEMATISKA VETENSKAPER TMV166 2017 Chalmes tekniska högskola Datolaboation 4 Eaminato: Ton Stillfjod TMV166 Linjä algeba fö M Datolaboation 4: Geometiska tansfomatione och plottning av figue Allmänt Vi
Gravitation och planetrörelse: Keplers 3 lagar
Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade
Tentamen Mekanik TFYA16/TEN2. 24 augusti :00 19:00 TER2. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN Tentamen Mekanik 4 augusti 018 14:00 19:00 TER Tentamen bestå av 6 uppgifte som vadea kan ge upp till 4 poäng. Lösninga skall vaa
ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led
y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.
Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.
Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa
Den geocentriska världsbilden
Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade
Kontrollskrivning Mekanik
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA6/KTR Kontollskivning Mekanik novembe 06 8:00 0:00 Kontollskivningen bestå av 3 uppgifte som totalt kan ge 4 poäng. Fö godkänt betyg (G)
LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2
LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive
UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E
UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med
2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)
Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:
Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3
levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean
Sammanfattning av STATIK
Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea
Kap.7 uppgifter ur äldre upplaga
Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti
Föreläsningar i Mekanik (FMEA30) Del 2: Dynamik. Läsvecka 6
015 Utgåva.0 Föeläsninga i Mekanik (FMEA30) Del : Dnamik Läsvecka 6 Föeläsning 1: Stela koppens kinetik abete enegi och effekt-metode (6/6). Stel kopps kinetiska enegi: Definitionsmässigt ha vi fö godtckliga
Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.
3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen
Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av
Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av
1 Rörelse och krafter
1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften
Vågräta och lodräta cirkelbanor
Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.
FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften
14. Potentialer och fält
4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.
Elektriska Drivsystems Mekanik (Kap 6)
Elektiska Divsystems Mekanik (Kap 6) Newtons ana lag! En av e mea viktiga ynamiska ekvationena fö elektiska maskine. L ä beteckna vinkelhastigheten och kallas töghetsmoment. och L beteckna ivane moment
Lösningar och svar till uppgifter för Fysik 1-15 hösten -09
Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan
Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)
Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt
LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48)
LEDIGR TILL ROLEM I KITEL 3-48) L 3. α Mg ntg tt den hög lådns mss ä M. Filägg åd lådon! Filäggningsfiguen, som skll innehåll pktiskt tget ll infomtion som ehövs fö tt lös polemet, viss hä. Kontktkften
Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.
villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och
1. Kraftekvationens projektion i plattans normalriktning ger att
MEKANIK KTH Föslag till lösninga vid tentamen i 5C92 Teknisk stömningsläa fö M den 26 augusti 2004. Kaftekvationens pojektion i plattans nomaliktning ge att : F ṁ (0 cos α) F ρv 2 π 4 d2 cos α Med givna
Lösningsförslag nexus B Mekanik
Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)
7 Elektricitet. Laddning
LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva
BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5
LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola
1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.
Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på
θ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1
LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på
Tentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
TFYA16/TEN2. Tentamen Mekanik. 18 april :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN2 Tentamen Mekanik 18 apil 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vadea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveade
Storhet SI enhet Kortversion. Längd 1 meter 1 m
Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens
Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.
Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =
Partikeldynamik Problemsamling Lösningar
Patikeldynamik Poblemsamling Lösninga a Chiste Nybeg MEKANIK Patikeldynamik Lösninga Chiste Nybeg och Libe A Få kopieas Patikeldynamik Poblemsamling LÖSNINGAR TILL PROLEM I KAPITEL 6 LP. Acceleationen
Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar.
Regleteknik AK F6 Föa föeläsningen Nquistskiteiet (stabilitet) Stabilitetsmaginale Amplitud- och fasmaginal. Stabilitet. Rotot 3. Koefficient-villko (Routh-Huwitz) Läsanvisning: Kapitel 6 Repetition fekvensanals
TFYA16/TEN2. Tentamen Mekanik. 18 augusti :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IM) Macus Ekholm TYA16/TEN2 Tentamen Mekanik 18 augusti 2017 14:00 19:00 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae
Mekanik Laboration 3
Götebogs Uniesitet Natuetenskapligt baså, NBAF 9/9 8 Institutionen fö fsik Inga Albinsson Natuetenskapligt baså, NBAF Laboationen genomfös i guppe om te och omfatta 4 olika fösök som totalt genomfös unde
I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0
Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde
2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)
1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells
Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl
Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,
Föreläsning 7 Molekyler
Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta
Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ
Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.
Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga
Föreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.
I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att
TFYA16/TEN2. Tentamen Mekanik. 10 januari :00 13:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IM) Macus Ekholm TYA16/TEN2 Tentamen Mekanik 10 januai 2017 8:00 13:00 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae
Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter
Lonitudinell dynamik Fodonsdynamik med elein Modell med kaftjämvikt i lonitudinell led F tot = ma Jan Åslund jaasl@isy.liu.se Associate Pofesso Dept. Electical Enineein Vehicula Systems Linköpin Univesity
x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.
Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b
Företagens ekonomi Tillbakaräkning i SNI2007 NV0109
PCA/MFFM, ES/NS 2-4-29 (7) Föetagens ekonomi Tillbakaäkning i SNI27 NV9 Innehållsföteckning. Sammanfattning... 2 2. Bakgund... 2 2. Den nya näingsgensindelningen (SNI27)... 2 2.2 Föetagens ekonomi... 2
Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)
Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll
KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe
Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.
KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!
14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen
LE2 INVESTERINGSKALKYLERING
LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3
r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:
Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä
Dynamiken hos stela kroppar
Natulaga cbemen VT 6 Lekton 4 Dnamken hos stela koa Matn Sevn Insttutonen fö fsk Umeå unvestet -Sol boes (lke EATHLINGS) look sll, on t ou thnk, Koas? -Sll? Yes, Kang, but taste. Mmm! Novoe cow le Dagens
Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning
Pojektedovisning vid Sahlgenska Univesitetssjukhuset födjupad ganskning Ganskningsappot 2008-03-06 Pe Settebeg, Enst & Young, Pojektledae Chistina Selin, Enst & Young, Aukt. eviso Patik Bjökstöm, Enst
LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + )
LÖNINGR TILL RLEM I KITEL L. 3 4 z 5 I dett eempel ä geometin så enkel tt de sökt vinkln med lite eftetnke kn bestämms nästn diekt. Vi följe ändå en metod som lltid funge. Vektoen kn skivs i komponentfom:
Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y
Föeläsning 2 Den enkla standadketsen PID-egleing Pocessmodelle e Reglato Pocess Negativ åtekoppling fån mätsignalen Reglaton bestämme stsignalen tifån eglefelet (contol eo)e= Rekommendead läsning: Feedback
Ta ett nytt grepp om verksamheten
s- IT ä f f A tem, sys knik & Te Ta ett nytt gepp om veksamheten Vå övetygelse ä att alla föetag kan bli me lönsamma, me effektiva och me välmående genom att ha ätt veksamhetsstöd. Poclient AB gundades
Temperaturmätning med resistansgivare
UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel
Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen
005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar
TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel
Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.
6 KVANTSTATISTIK FÖR IDEALA GASER
Kvantstatistik fö ideala gase 6 6 KVANTSTATISTIK FÖR IDEALA GASER 6. Fomuleing av det statistiska poblemet Vi betakta en gas av identiska patikla inneslutna i en volym V vilken befinne sig i ämvikt vid
TFYA16/TEN2. Tentamen Mekanik. 3 april :00 19:00 TER2. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA16/TEN2 Tentamen Mekanik 3 apil 2018 14:00 19:00 TER2 Tentamen bestå av 6 uppgifte som vaea kan ge upp till 4 poäng. Lösninga skall vaa välmotiveae
Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.
1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte
FYSIKTÄVLINGEN SVENSKA FYSIKERSAMFUNDET. KVALIFICERINGS- OCH LAGTÄVLING 31 januari Lösning: Avstånd till bilden: 1,5 2,0 m = 3,0 m
FYSIKÄVLINGEN KVALIFIERINGS- O LAGÄVLING jnui 00 SVENSKA FYSIKERSAFUNDE. Avstånd till bilden:,5,0,0,5,5 5,,5,5 6,5 6 0,5 Sv: Det inns två öjlig kökningsdie, och. . 7 pt/c 7 0 6 pt/ O vi nse solvinden loklt
Matlab: Inlämningsuppgift 2
Mtlb: Inläningsuppgift Uppgift : Dynisk däpning. Inledning I denn uppgift skll vi nlyse den dynisk däpningen v tvättskinen so vi studede i pojektet. Se igu nedn. Vi foule föst öelseekvtionen fö systeet
Kapitel extra Tröghetsmoment
et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten
Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15
Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs
sluten, ej enkel Sammanhängande område
POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge
TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel
Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,
Tentamen i Mekanik - Partikeldynamik TMME08
Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen
Angående kapacitans och induktans i luftledningar
Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns
=============================================== Plan: Låt π vara planet genom punkten P = ( x1,
Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation
Kartläggning av brandrisker
Bandskyddsbeskivning v4.3 y:\1132 geby 14 mfl\dokumentation\1132 pt 199.doc Katläggning av bandiske : Revidead: - Uppdagsansvaig: Håkan Rönnqvist - Bandingenjö : - Bandingenjö Kungsgatan 48 B 411 15 Götebog
Laborationsregler. Förberedelser. Laborationen. Inlämning av skriftlig redovisning. Säkerhet. Missade laborationstillfällen. Laborationsredovisning
Laboationsegle Föbeedelse Läs (i god tid föe laboationstillfället) igenom laboationsinstuktionen och de teoiavsnitt som laboationen behandla. Till vaje laboation finns ett antal föbeedelseuppgifte. Dessa
16. Spridning av elektromagnetisk strålning
16. Spidning av elektomagnetisk stålning [Jakson 9.6-] Med spidning avses mest allmänt poessen dä stålning antingen av patikel- elle vågnatu) växelveka med något objekt så att dess fotskidningsiktning
Lösningsförslat ordinarie tentamen i Mekanik 2 (FFM521)
Lösningsförslat ordinarie tentamen i Mekanik (FFM5) 08-06-0. Baserat på Klassiker Ett bowlingklot med radie r släpps iväg med hastighet v 0 utan rotation. Initialt glider den mot banan, och friktionen
Tentamen i SG1140 Mekanik II. Problemtentamen
010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet
SG1140, Mekanik del II, för P2 och CL3MAFY
Tentaen 101218 Lcka till! Tillåtna hjälpedel är penna och suddgui. Rita tdliga figurer, skriv grundekvationer och glö inte att sätta ut vektorstreck. Definiera införda beteckningar och otivera uppställda
Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.
Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:
verkar horisontellt åt höger på glidblocket. Bestäm tangens för vinkeln så att
Istitutioe fö Mei Chiste Nybeg Ho Essé Nichols Apzidis 011-08- 1) Tete i SG1130 och SG1131 Mei, bsus Vje uppgift ge högst 3 poäg. Ig hjälpedel. Sivtid: 4 h OBS! Uppgifte 1-8 sll iläs på sept pppe. Lyc
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
21. Boltzmanngasens fria energi
21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet
U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa
FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst
tl Frakka ab - vårt arbete i programmet Energivision (2 rapporter per ED) Energideklarationsarbetet HSB:s Brf Kuberna i Stockholm Stockholm 2010-05-17
tl Fakka ab Stockholm 2010-05-17 Enegideklaationsabetet HSB:s Bf Kubena i Stockholm Vi ä nu fädiga med enegideklaationsabetet fö HSB:s Bf Kubena i Stockholm, Enegideklaationena ä inskickade och godkända
Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)
Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm