Föreläsning 7 Molekyler
|
|
- Thomas Berg
- för 8 år sedan
- Visningar:
Transkript
1 Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik
2 Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta skalen genom att växelveka med vaanda. Kovalenta bindninga bildas om elektone delas mellan atome. Joniska bindninga bildas om elektone övefös fån en atom till en annan. Fyu0- Kvantfysik
3 Animation av bilden av en jonisk bindning Na och Cl atome växelveka. lektonen i en Na atom övefös till en Cl atom. Na + och Cl - jone poduceas. Jonena attaheas till vaanda. n stabil NaCl föening bildas. Fyu0- Kvantfysik
4 Vad ä kostnaden av en jonisk bindning? Positiv jon, t.ex. Na + Joniseingsenegi måste tillföas fö att figöa en elekton fån det yttesta skalet. negin som kävs fö att befia en elekton fån en neutal atom (1:e joniseingsenegi) Na+ joniseingsenegi 5.138eV Negativ jon, t.ex. Cl - lektonen attaheas av känan. negin släpps ut nä en elekton tillsätts till en neutal atom (1:e elektonaffinitet) Fö Cl- elektonaffinitet ev Däfö, fö att skapa Na + och Cl - kävs enegin: 5.138eV ev1.55 ev. Fyu0- Kvantfysik
5 Joniska bindninga Betakta en växelvekan mellan Na + och Cl - jone -e Den potentiell a enegin (stoa ) : U (7.1) Na + Cl - 40 Kaften bli minde attaktiv näsom minskas. Om < 0 bli kaften epulsiv på gund av en övelappning av elektonmolnena. F() U() Kaft Potentiell enegi 0 0 U 0 0 avståndet på jämvikt Fyu0- Kvantfysik
6 Fåga Beäkna den potentiella enegin av ett system av Na + and Cl - jone som ha en 0.4nm sepaation. P 1 4πε e 0 10 J eV 9 (Nm C - ) ( C) m Mätning -5.7eV. Skillnaden på gund av övelappande elektonmolnen (en jon ä ingen punktladdning). Fyu0- Kvantfysik
7 Bindningsenegi negin som kävs fö att byta lös en molekyl och bilda neutala atome. B elektonaffinitet potentiell enegi i jämvikt joniseingsenegi (7.) NaCl ha bindingsenegi : B ev Fyu0- Kvantfysik
8 Fåga (a) Bestäm den potentiella enegin av en K + jon och en B - jon som sepaeas vid 0.9nm (avståndet på jämvikt) i en KB molekyl. (b) Joniseingsenegin av K ä 4.3 ev.b ha en elektonaffinitet av 3.5 ev. Uppskatta bindningsenegin av en KB atom. Fövänta ni e att svaet ska vaa stöe elle minde än den vekliga bindningsenegi? a P e 4πε ( ) 9 0 ( b) B affinitet P J ev joniseing senegi Fyu0- Kvantfysik
9 Animation av en kovalent bindning p p e - e - lektone fån vaje väteatomen delas fö att bilda en stabil väteatom. Kovalentbindninga bildas med ett elektonpa i samma ymdtillstånd. lektonena måste ha motsatt spinn. Kovalent bindningsstuktu föklaas av Paulispincip. Fyu0- Kvantfysik
10 Kovalent bindninga Si Komplicead stuktu: t.ex. gupp IV Si-kystal. Det finns ingen definitiv skillnad mellan kovalenta och joniska bindninga. Det finns ofta en öveföing av en del av en elekton mellan två atome. Fyu0- Kvantfysik
11 Rotationseneginivåe Atome ha eneginivåe, molekyle också! Betakta en diatomiskmolekyl som bestå av atome med massona m 1 och m. 0 m 1 och m otea unt dess gemensamma masscentum. Systemets enegi: L I (7.3) Fyu0- Kvantfysik
12 I Röelsemängdsmomentet kvantiseas: L - l( l l( l + 1) h - h + 1) I ( l 01,,, 3) ( l 01,,, 3) (7.4) (7.5) m 1m educead massa m (7.7) 10 - m 1 + m h I l4 6- h kv. 7.5 ge otationseneginivåe 3- - h h 0 I I I m 0 (7.6) l3 l l1 l0 Fyu0- Kvantfysik
13 Fåga Avståndet mellan känona i en kabonmonoxid-molekyl (CO) ä 0.118nm. Massan av en kabonatom 1u1.991x10-6 kg. Massan av en syeatom ä u.656x10-6 kg. (a) Bestäm enegin av den te lägsta otationseneginiveåna. (b) Bestäm våglängden av fotonen som emitteas i övegången l till l1 tillstånden. ( a ) I Rotationse l (b) l ( l 0 λ l ( l + 1)( h / I + 1) ,1, 0 Fotonens hc m negi π ) enegi 10 3 J mev l ( l 6 kgms l ( l (0.118 ( ) ( ) mev mev ) mev mm ) ) Fyu0- Kvantfysik
14 Vibationseneginivåe n n + k 1 h - ω n + kaftkonstant 1 h - k m (7.8) Atomena kan vibea i en dimension. Övegångsenegiföänding hω - (7.9) Fyu0- Kvantfysik
15 Fåga Skillnaden mellan vibationseneginivåe i CO ä Bestäm konstant k ev k ' m ) ( ( h/ Nm π ) Fyu0- Kvantfysik
16 Vibation-otationspektum n+1 n+1 Skillnaden mellan vibationseneginivåe > Skillnaden mellan otationsneginivåe n enkel diatomisk molekyl ha vibationsoch otationsnivåe. l-1 l+1 Det finns egle fö övegånga. l0 n l ± 1 (otationsspektum) n n n 1 (vibationsspektum,fotonabsoption) 1 (vibationsspektum,fotonemission) Fyu0- Kvantfysik
17 Vibations-otationsspektum av HCL toppa pga n0 till n1 Cl 35 och Cl 37 isotope l1 l0 l-1 (föbjuden övegång) Fyu0- Kvantfysik
18 Fåga Betakta en CO molekyl. Bestäm våglängden av en foton som emitteas nä vibationsenegin föändas och otationsenegin ä (a) noll i böjan och (b) noll till slut ev mev (vibation (otation ) l 1 till l 0 elle l 0 till l 1) (a) övegång Fotonens hc (b) övegång Fotonens hc l 0 till l 1 enegi l 1 till l 0 enegi ev 4.618m ev m Fyu0- Kvantfysik
UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E
UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med
Gravitation och planetrörelse: Keplers 3 lagar
Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade
Den geocentriska världsbilden
Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade
Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.
Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga
7 Elektricitet. Laddning
LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva
Kvantmekanik och kemisk bindning I 1KB501
Kvantmekanik och kemisk bindning I 1KB501 TENTAMEN, 013-06-05, 8.00-13.00 Tillåtna hjälpmedel: Miniräknare, bifogade formelsamlingar. Börja på nytt blad för varje nytt problem, och skriv din kod på varje
8 SVARTKROPPS- 8.1 Tillståndet för en foton. Planck-fördelningen. elektriska fältet där E = (E x, E y, E z ) och
Planck-födelningen 8 8 SARTKROPPS- STRÅLNING 8. Tillståndet fö en foton Låt oss betakta elektomagnetisk stålning i jämvikt i en volym vas vägga hålls vid konstant tempeatu T. I denna situation komme fotone
6 KVANTSTATISTIK FÖR IDEALA GASER
Kvantstatistik fö ideala gase 6 6 KVANTSTATISTIK FÖR IDEALA GASER 6. Fomuleing av det statistiska poblemet Vi betakta en gas av identiska patikla inneslutna i en volym V vilken befinne sig i ämvikt vid
Lösningar till övningsuppgifter. Impuls och rörelsemängd
Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10
REDOVISNINGSUPPGIFT I MEKANIK
Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken
Kap. 12. Molekylspektroskopi: Rot&Vib
Kap.. Molekylspektoskopi: Rot&Vib A.3 Spektoskopiska teknike Molekylspektoskopi: Växelvekan elektoagnetisk stålning olekyle olekyl i gundtillståndet absoption M hν M* eission excitead olekyl (elektoniskt-,
Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)
Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt
21. Boltzmanngasens fria energi
21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet
Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av
Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av
För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.
I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att
LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2
LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive
LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O
LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man
Sammanfattning av STATIK
Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea
16. Spridning av elektromagnetisk strålning
16. Spidning av elektomagnetisk stålning [Jakson 9.6-] Med spidning avses mest allmänt poessen dä stålning antingen av patikel- elle vågnatu) växelveka med något objekt så att dess fotskidningsiktning
Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)
Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.
FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften
Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.
3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen
14. Potentialer och fält
4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.
Kap. 8. Bindning: Generella begrepp
Kap. 8. Bindning: Generella begrepp 8.1 Kemiska bindningar: olika typer Bindningslängd: avståndet mellan atomer vid energiminimum Bindningsenergi: Energivinsten vid minimum jämfört med fria atomerna, energin
Tentamen i Materia, 7,5 hp, CBGAM0
Fakulteten för teknik- och naturvetenskap Tentamen i Materia, 7,5 hp, CBGAM0 Tid Måndag den 9 januari 2012 08 15 13 15 Lärare Gunilla Carlsson tele: 1194, rum: 9D406 0709541566 Krister Svensson tele: 1226,
Tentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från
KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet
.Kemiska föreningar. Kap. 3.
Föreläsning 2 Kemiska bindningar Kovalenta, polära kovalenta och jonbindningar. Elektronegativitet. Diatomära molekyler Molekylorbitaler, bindande och antibindande. Bindningstal. Homo- och heteroatomära
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
Heureka Fysik 2, Utgåva 1:1
Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med
Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.
Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa
Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.
1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte
Lösningsförslag nexus B Mekanik
Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)
Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):
Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa
Ditt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen.
Ditt nya dömboende finns hä. I Nykvan. 72 toppmodena hyesätte 1-4 um och kök i kv. Kaaffen. Fötätning i centalt läge. Kaaffen bestå av två punkthus om sex våninga samt två tevånings vinkelhus, samtliga
ω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led
y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.
1 Två stationära lösningar i cylindergeometri
Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes
Föreläsning 5 Att bygga atomen del II
Föreläsning 5 Att bygga atomen del II Moseleys Lag Pauliprincipen Det periodiska systemet Kemi på sidor Vad har vi lärt hittills? En elektron hör till ett skal med ett kvanttal n Varje skal har en specifik
Lösningar Heureka 2 Kapitel 14 Atomen
Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla
Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.
Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =
Tentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:
Utveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)
sluten, ej enkel Sammanhängande område
POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge
U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa
FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst
2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)
1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Angående kapacitans och induktans i luftledningar
Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns
Lösningar till tentamen i tillämpad kärnkemi den 10 mars 1998 kl
Lösninga till tentamen i tillämpad känkemi den 10 mas 1998 kl 0845-145 Ett öetag ha köpt natuligt uan ö 10 k/. Konveteing till UF 6 kosta 60 k/ tillvekad UF 6. I en gascentiugbasead anikningsanläggning
Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8
Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska
Elektriska Drivsystems Mekanik (Kap 6)
Elektiska Divsystems Mekanik (Kap 6) Newtons ana lag! En av e mea viktiga ynamiska ekvationena fö elektiska maskine. L ä beteckna vinkelhastigheten och kallas töghetsmoment. och L beteckna ivane moment
Dynamiken hos stela kroppar
Natulaga cbemen VT 6 Lekton 4 Dnamken hos stela koa Matn Sevn Insttutonen fö fsk Umeå unvestet -Sol boes (lke EATHLINGS) look sll, on t ou thnk, Koas? -Sll? Yes, Kang, but taste. Mmm! Novoe cow le Dagens
XV. Elektriska fält. XV.1. Kraften mellan laddningar: Coulombs lag F E ( ) 2 ( ) N F E.
XV. lektiska fält Fö tillfället vet vi av baa fya olika fundamentala kafte i univesum. Dessa ä: Gavitationskaften Bekant fån mekanikenkusen Den elektomagnetiska kaften Detta kapitels ämne, osaken till
ATOMENS BYGGNAD. En atom består av : Kärna ( hela massan finns i kärnan) Positiva Protoner Neutrala Neutroner. Runt om Negativa Elektroner
periodiska systemet ATOMENS BYGGNAD En atom består av : Kärna ( hela massan finns i kärnan) Positiva Protoner Neutrala Neutroner Runt om Negativa Elektroner En Elektron har en negativt laddning. Och elektronerna
Värt att memorera:e-fältet från en punktladdning
I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)
Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar.
Regleteknik AK F6 Föa föeläsningen Nquistskiteiet (stabilitet) Stabilitetsmaginale Amplitud- och fasmaginal. Stabilitet. Rotot 3. Koefficient-villko (Routh-Huwitz) Läsanvisning: Kapitel 6 Repetition fekvensanals
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består
Alla svar till de extra uppgifterna
Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0
Konstruktionsmaterial, 4H1068, 4p. Viktigt. Repetition av föreläsning 1. Repetition av föreläsning 1. Repetition av föreläsning 1
Konstuktionsmateial, 41068, 4p Viktigt Anmälan till labkus och val av labgupp skall göas omgående. Skiv upp dig på lista på kusanslagstavlan i enten på BR23. Adjunkt Andes Eliasson KT/ITM/Metallenas gjutning
TILLÄMPAD ATOMFYSIK Övningstenta 1
TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00
FK2003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du
Kap. 8. Bindning: Generella begrepp, fortsättning
Kap. 8. Bindning: Generella begrepp, fortsättning 8.5 Energieffekter i binära joniska föreningar Faktorer som påverkar stabiliteten och strukturen för fasta binära joniska ämnen. Coulomb (elektrostatisk)
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel
Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt
Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus
TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007
TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock
=============================================== Plan: Låt π vara planet genom punkten P = ( x1,
Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet
Föreläsning 3 Heisenbergs osäkerhetsprincip
Föreläsning 3 Heisenbergs osäkeretsprincip Materialet motsvarar Kap.1,.,.5 and.6 i Feynman Lectures Vol III + Uncertainty in te Classroom - Teacing Quantum Pysics K.E.Joansson and D.Milstead, Pysics Education
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
Solenergi. Clearline. en introduktion. Solenergi. Solenergi En introduktion (v1.0) Warm-Ec Scandinavia AB Box 110 671 23 Arvika
En intoduktion (v1.0) en intoduktion En intoduktion (v1.0) Innehåll 1.0 Olika fome av solenegi... 3 1.1 Passiv solinvekan...3 1.2 Solfångae...3 1.3 Solcelle...3 1.4 Koncentation av solljuset...4 2.0 Hu
WALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 6 januari 017 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 017 1. Enligt diagrammet är accelerationen 9,8 m/s när hissen står still eller rör sig med
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Atomen - Periodiska systemet. Kap 3 Att ordna materian
Atomen - Periodiska systemet Kap 3 Att ordna materian Av vad består materian? 400fKr (före år noll) Empedokles: fyra element, jord, eld, luft, vatten Demokritos: små odelbara partiklar! -------------------------
I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0
Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde
Dipoler och dipol-dipolbindningar Del 1. Niklas Dahrén
Dipoler och dipoldipolbindningar Del 1 Niklas Dahrén Indelning av kemiska bindningar Jonbindning Bindningar mellan jonerna i en jonförening (salt) Kemiska bindningar Metallbindning Kovalenta bindningar
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,
Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2
Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om
Oxidationstal. Niklas Dahrén
Oxidationstal Niklas Dahrén Innehåll Förklaring över vad oxidationstal är. Regler för att bestämma oxidationstal. Vad innebär oxidation och reduktion? Oxidation: Ett ämne (atom eller jon) får ett elektronunderskott
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 8 Vågrörelselära & Kvantfysik, FK2002 9 januari 2012 Problem 40.1 Vad är våglängden för emissionsmaximum λ max, hos en svartkropps-strålare med temperatur a) T 3 K (typ kosmiska mikrovågsbakgrunden)
Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!
14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen
Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x
Lösning till tentamen 2013-02-28 för Grundläggande kemi 10 hp Sid 1(5) 1. CH 3 COO - (aq) + H 2 O (l) CH 3 COOH ( (aq) + OH - (aq) Konc. i början 0.1M 0 0 Ändring -x +x +x Konc. i jämvikt 0,10-x +x +x
GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:
Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def
14. Elektriska fält (sähkökenttä)
14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna
FYTA11: Molekylvibrationer
FYTA: Molekylvibrationer Daniel Nilsson 2/ 202 Introduktion Övningens syfte var att undersöka normalmoderna hos molekyler, i synnerhet vattenmolekyler, och studera dessas variation beroende på olika parametrar.
Fysik TFYA86. Föreläsning 11/11
Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt
Föreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
===================================================
min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet
s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
Kovalenta bindningar, elektronegativitet och elektronformler. Niklas Dahrén
Kovalenta bindningar, elektronegativitet och elektronformler Niklas Dahrén Innehåll ü Opolära kovalenta bindningar ü Polära kovalenta bindningar ü Elektronegativitet ü Paulingskalan ü Elektronformler ü
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar
elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda
Kemisk bindning I, Chemical bonds A&J kap. 2
Kemisk bindning I, Chemical bonds A&J kap. 2 Dagens Olika bindningstyper - Jonbindning - Kovalent bindning - Polär kovalent bindning - Metallbindning Elektronegativitet - Jonbindning eller kovalent bindning?
Jonföreningar och jonbindningar del 1. Niklas Dahrén
Jonföreningar och jonbindningar del 1 Niklas Dahrén Del 1: Innehåll o Introduktion till jonföreningar och jonbindningar. o Jämförelse mellan jonföreningar och molekylföreningar. o Hur jonföreningar är