Formelsamling i kretsteori, ellära och elektronik
|
|
- Elsa Lundqvist
- för 8 år sedan
- Visningar:
Transkript
1 Formelamling i kretteori, ellära och elektronik Elektro- och informationteknik Lund teknika högkola April 8
2 Formelamling i kretteori, ellära och elektronik 8 Komplexvärden Realdelkonvention: v(t) = Re{V e ωt } och i(t) = Re{Ie ωt }. Imaginärdelkonvention: v(t) = Im{V e ωt } och i(t) = Im{Ie ωt }. Tvåpolekvivalenter Z Th a a V Th - I N ZN b b Th evenin Norton Komplex effekt S = V I = P Q = S (co ϕ in ϕ) S = komplex effekt [ VA] S = kenbar effekt [ VA] P = ReS = aktiv effekt (=tidmedelvärdet av effektförbrukningen) [ W] Q = ImS = reaktiv effekt [ VA r ] = [ VAR] co ϕ = effektfaktor Effektanpaningregeln Z L = Z i och max{p L } = V 8R i.
3 Formelamling i kretteori, ellära och elektronik 8 Ömeidig induktan { V = ωl I ωmi M V = ωl I ωmi L, L = älvinduktaner M = ömeidig induktan M = k L L där k k = kopplingfaktorn Nätverktranformation I L L V I V - - Z Z Z Z 3 Z 3 Z 3 3 Y till 3 till Y Z = Z Z Z Z Z 3 Z = Z 3 = Z Z 3 Z Z 3 Z Z = Z 3 = Z 3 Z Z 3Z Z Z 3 = Z 3 Z Z Z 3 Z 3 Z Z 3 Z Z 3 Z 3 Z 3 Z 3 Z Z 3 Z 3 Ideal operationförtärkare (OP) För en ideal OP är i p = i n =. Vi använder vanligtvi negativ återkoppling där ockå v in =. v in i p i n Kretmodell av pänningförtärkare i in R ut v in R in Av in v ut
4 Formelamling i kretteori, ellära och elektronik 8 3 Dioder Shockleyekvationen ( ) i D = I e v D nv T där V T = kt q, q.6 9 C och k.38 3 J/K. Dynamik reitan r d = di D dv D Q MOSFET NMOS D PMOS S G i D G Kretymbol S D µ 675 cm V 4 cm V κ 5µAV 4µAV V t.5 V.6 V Subtrökel v GS V t, v GS V t, (trypt v DS, v DS, område) i D = i D = Linärt område v GS V t, v DS v GS V t, i D = K((v GS V t )v DS vds ) v GS V t, v DS v GS V t, i D = K(v GS V t ) i D v GS V t, v DS v GS V t, i D = K((v GS V t )v DS vds ) Mättnadområde v GS V t, v DS v GS V t, i D = K(v GS V t ) v DS, v GS Vanligtvi poitiva Vanligtvi negativa K = W L κ Småignalmodell Småignalmodell för en FET, där g m = i D och r d = i D v GS arbetpunkt v DS arbetpunkt G vg gm vg S id r d D
5 Formelamling i kretteori, ellära och elektronik 8 4 Trigonometrika formler in α = co(α π/) co α = in(α π/) in(α β) = inαco β co α in β co(α β) = coαco β in α in β co α in α = inαin β = co(α β) co(α β) co α in α = co α in α co β = in(α β) in(α β) in α co α = in α co α coβ = co(α β) co(α β) A co α B in α = A B co(α β) där coβ = A B in β = A B, A B co α = eα e α in α = eα e α e α = co α in α Komplexa tal Im z = a b = z e φ där z = a b och om a > är φ = arctan b a b φ a Re Ekvationytem ( ) a b X = Y c d X Y med löning X = X d ad bc c b Y a Y
6 Formelamling i kretteori, ellära och elektronik 8 5 Laplacetranformen Spole med i( ) = I : V () = L(I() I ) i(t) v(t) L I() V () L L I L Kondenator med v( ) = V : I() = C(V () V ) i(t) v(t) C L I() C V() V f(t) F(). αf(t) αf(). f (t) f (t) f 3 (t) F () F () F 3 () df(t) dt t f(τ) dτ F() f( ) F() 5. f(t a) u(t a), a > e a F() 6. e at f(t) F( a) 7. f(at), a > ( ) a F a Begynnelevärdeaten Slutvärdeaten lim f(t) = lim F() t lim t f(t) = lim F()
7 Formelamling i kretteori, ellära och elektronik 8 6 f(t) F(). δ(t). d n dt δ(t) n n 3. u(t), enhetteget 4. t n n! u(t) n 5. e at u(t) t n n! eat u(t) e at e bt b a ae at be bt a b 9. in(ω t) u(t). co(ω t) u(t) u(t) u(t) a ( a) n ( a)( b) ( a)( b) ω ω ω. ( in(ω t) ω t co(ω t) ) u(t). ω t in(ω t) u(t) 3. e at in(ω t) u(t) 4. e at co(ω t) u(t) ω 3 ( ω ) ω ( ω ) ω ( a) ω a ( a) ω
8 Formelamling i kretteori, ellära och elektronik 8 7 TRANSMISSIONSLEDNINGAR Ledningekvationerna, förlutfri dubbelledning v z i z = L i t = C v t Allmän löning, förlutfri dubbelledning v = v (z v p t) v (z v p t) i = Z v (z v p t) Z v (z v p t) v p = L Z = LC C LC = µ r µ ε r ε Ledningekvationerna, inuformigt tidberoende dv dz di dz = RI ωli = GV ωcv Allmän löning, inuformigt tidberoende Utbredningkontant V (z) = V e γz V e γz I(z) = Z (V e γz V e γz ) γ = (R ωl)(g ωc) = α β Karakteritik impedan Z = R ωl G ωc Impedanen för en dubbelledning med längden l avlutad med Z L Z L coh(γl) Z inh(γl) Z in = Z Z coh(γl) Z L inh(γl) = Z Γe γl Γe γl Impedanen för en förlutfri ledning med längden l avlutad med Z L Z L co(βl) Z in(βl) Z in = Z Z co(βl) Z L in(βl) = Z Γe βl Γe βl Reflektionfaktorn för pänning vid belatningen Γ = Z L Z Z L Z
9 Formelamling i kretteori, ellära och elektronik 8 8 Rätlineapproximationer av Bodediagram H() Amplitud Fa ω B db/dekad 9 arg(h) ω B ζ ω B ω B ( ω B ) ( ) ω B ( ζ ) ω B ωb db/dekad arg(h) db/dekad db/dekad arg(h) 4 db/dekad - db/dekad - db/dekad -4 db/dekad arg(h) -9 arg(h) arg(h). -9-8
10 Formelamling i kretteori, ellära och elektronik 8 9 RCL-beräkningar Kretparametrarna i fältuttryck: R C L R = v a v b i S J e n ds = i C = q v a v b S D e n ds = q L = φ i S B e n ds = φ Pb P a E dr = v a v b Pb P a E dr = v a v b C H dr = i J = σe D = ε ε r E B = µ µ r H Fälten uppfyller fölande villkor: E = E = V J = B = Kretparametrarna i effekt- och energiuttryck: E dr = C J e n ds = S B e n ds = S R C L Kret p = Ri = v /R w e = Cv = q /C w m = Li = φ /L Fält p = E J dv w e = D E dv w m = B H dv
Formelsamling i kretsteori, ellära och elektronik
Formelsamling i kretsteori, ellära och elektronik Elektro- och informationsteknik Lunds tekniska högskola Februari FORMELSAMLING I KRETSTEORI, ELLÄRA OCH ELEKTRONIK Kretsteori Komplexvärden Realdelskonvention:
Formelsamling i Krets- och mätteknik fk ETEF15, Ht2011
Formelsamling i Krets- och mätteknik fk ETEF5, Ht Utdrag ur: Formelsamling i kretsteori, ellära och elektronik Elektro- och informationsteknik, TH Formelsamling i Data- och telekommunikationsteknik 3-6,
REGLERTEKNIK. Formelsamling
REGLERTEKNIK Formelamling Intitutionen för reglerteknik Lund teknika högkola Juni 27 2 Matriteori Beteckningar Matri av ordning m x n a a 2 a n a 2 a 22 a 2n A =. a m a m2 a mn Vektor med dimenion n x
Tentamen i EJ1200 Eleffektsystem, 6 hp
Elektro- och ytemteknik Elektrika makiner och effektelektronik Stefan Ötlund 7745 Tentamen i EJ Eleffektytem, 6 hp Den 7 december, 4.-9. Räknedoa och matematik handbok (Beta) får använda. Tentamen kan
10. Kretsar med långsamt varierande ström
1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera
10. Kretsar med långsamt varierande ström
10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar
10. Kretsar med långsamt varierande ström
. Kretsar med långsamt varierande ström För en normalstor krets kan vi med andra ord använda drivande spänningar med frekvenser upp till 7 Hz, förutsatt att analysen sker med de metoder som vi nu kommer
10. Kretsar med långsamt varierande ström
1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar
Du behöver inte räkna ut några siffervärden, svara med storheter som V 0 etc.
(8) 27 augusti 2008 Institutionen för elektro- och informationsteknik Daniel Sjöerg ETE5 Ellära och elektronik, tentamen augusti 2008 Tillåtna hjälpmedel: formelsamling i kretsteori, ellära och elektronik.
Tentamen Elektronik för F (ETE022)
Tentamen Elektronik för F (ETE022) 2008-08-28 Tillåtna hjälpmedel: formelsamling i kretsteori, ellära och elektronik. Tal 1 En motor är kopplad till en spänningsgenerator som ger spänningen V 0 = 325 V
Fö 1 - TMEI01 Elkraftteknik Trefassystemet
Fö 1 - TMEI01 Elkraftteknik Trefassystemet Per Öberg 16 januari 2015 Outline 1 Introduktion till Kursen Outline 1 Introduktion till Kursen 2 Repetition växelströmslära Outline 1 Introduktion till Kursen
Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01
Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik
Tentamen ETE115 Ellära och elektronik för F och N,
Tentamen ETE5 Ellära och elektronik för F och N, 2009 0602 Tillåtna hjälpmedel: formelsamling i kretsteori och elektronik. Observera att uppgifterna inte är ordnade i svårighetsordning. Alla lösningar
Fö 3 - TSFS11 Energitekniska system Trefassystemet
Fö 3 - TSFS11 Energitekniska system Trefassystemet Christofer Sundström 23 mars 2018 Kursöversikt Fö 11 Fö 5,13 Fö 4 Fö 2 Fö 6 Fö 3 Fö 7,9,10 Fö 13 Fö 12 Fö 8 Outline 1 Repetition växelströmslära 2 Huvudspänning
Tentamen i EITF90 Ellära och elektronik, 28/8 2018
Tentmen i EITF9 Ellär och elektronik, 8/8 8 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Komplexa tal. j 2 = 1
1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den
IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen
F330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö0 F/Ö9
Fö 1 - TMEI01 Elkraftteknik Trefassystemet
Fö 1 - TMEI01 Elkraftteknik Trefassystemet Christofer Sundström 20 januari 2019 Outline 1 Introduktion till Kursen 2 Repetition växelströmslära 3 Huvudspänning och fasspänning 4 Y- och D-koppling 5 Symmetrisk
Tentamen i Elektronik för F, 13 januari 2006
Tentamen i Elektronik för F, 3 januari 006 Tillåtna hjälpmedel: Formelsamling i kretsteori, miniräknare Du har fått tag på 6 st glödlampor från USA. Tre av dem visar 60 W och tre 40 W. Du skall nu koppla
Fö 2 - TMEI01 Elkraftteknik Trefas effektberäkningar
Fö 2 - TMEI01 Elkraftteknik Trefas effektberäkningar Christofer Sundström 23 januari 2019 Outline 1 Trefaseffekt 2 Aktiv, reaktiv och skenbar effekt samt effektfaktor 3 Beräkningsexempel 1.7 4 Beräkningsexempel
Tentamen i Elektronik, ESS010, den 15 december 2005 klockan 8:00 13:00
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, den 5 december 005 klockan 8:00 3:00 Uppgifterna i tentamen ger totalt 60p. Uppgifterna är inte ordnade på något
Fö 3 - TSFS11 Energitekniska system Trefassystemet
Fö 3 - TSFS11 Energitekniska system Trefassystemet Christofer Sundström 11 april 2016 Kursöversikt Fö 11 Fö 5 Fö 4 Fö 2 Fö 6 Fö 3 Fö 7,8,10 Fö 9 Fö 12 Fö 13 Outline 1 Repetition växelströmslära 2 Huvudspänning
Elektronik 2017 EITA35
Elektronik 2017 EITA35 Föreläsning 15 Repetition Information inför tentamen 1 Resistornätverk: Definition av potential, spänning och ström. Ohms lag, KCL och KVL Parallell och seriekoppling av resistanser
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
Tentamen i Elektronik för E (del 2), ESS010, 5 april 2013
Tentamen i Elektronik för E (del ), ESS00, 5 april 03 Tillåtna hjälpmedel: Formelsamling i kretsteori. Spänningen mv och strömmen µa mäts upp på ingången till en linjär förstärkare. Tomgångsspänningen
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
15825 93FY51 1 93FY51/ STN1 Elektromgnetism Tent 15825: svr och nvisningr Uppgift 1 Från Couloms lg och E F/q hr vi uttrycket: E 1 4πε ρl dl r Vi väljer cylindrisk koordinter och sätter r zẑ ˆR och dl
1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1
Matematik Chalmer Tentamen i TMA683/TMA68 Tillämpad matematik K/Bt, 7 4, kl 8:3-:3 Telefon: Maximilian Thaller, 3-77 535 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner,
Pla$kondensator - Fälteffekt
Pla$kodesator - Fälteffekt gs 1V gs V gs V gs 3V + + + + + + + + + + + + + Metall P- typ halvledare Joiserade acceptoratomer (N A Hål Elektroer 16-4- 6 Föreläsig 5, Kompoe7ysik 16 1 Tröskelspäig stark
Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström
Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström Relation mellan ström och spänning i R, L och C. RLC-krets Elektrisk oscillator, RLC-krets
ETE115 Ellära och elektronik, tentamen april 2006
24 april 2006 (9) Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen april 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. OBS! Ny version av formelsamlingen finns
Genom att kombinera ekvationer (1) och (3) fås ett samband mellan strömmens och spänningens amplitud (eller effektivvärden) C, (4)
VÄXELSTRÖMSKRETSEN 1 Inledning Behandlandet av växelströmskretsar baserar sig på tre grundkomponenters, motståndets (resistans R), spolens (induktans L) och kondensatorns (kapacitans C) funktionsprinciper.
Fö 2 - TMEI01 Elkraftteknik Trefas effektberäkningar
Fö 2 - TMEI01 Elkraftteknik Trefas effektberäkningar Per Öberg 16 januari 2015 Outline 1 Trefaseffekt 2 Aktiv, reaktiv och skenbar effekt samt effektfaktor 3 Beräkningsexempel 1.7 4 Beräkningsexempel 1.22d
Tentamen i Elektronik, ESS010, del 1 den 18 oktober, 2010, kl
Institutionen för Elektro och informationsteknik, LTH Tentamen i Elektronik, ESS00, del den 8 oktober, 00, kl. 08.00.00 Ansvariga lärare: Anders Karlsson, tel. 40 89, 07 98 (kursexp. 90 0). arje uppgift
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie
1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) + 3y (t) + 2y(t) = 1, t > 0 y(0) = 1, y (0) = 1
Matematik Calmer Tentamen i TMA68/TMA68 Tillämpad matematik K/Bt, 7 8 7, kl 4:-8: Telefon: Olof Gielon, -77 55 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner, : -7p, 4:
Tentamen i Elektronik, ESS010, och Elektronik för D, ETI190 den 10 jan 2006 klockan 14:00 19:00
Tentamen i Elektronik, ESS00, och Elektronik för D, ETI90 den 0 jan 006 klockan 4:00 9:00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, och Elektronik för D,
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Tentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07
Tentamen i Elektronik, ESS00, del 4,5hp den 9 oktober 007 klockan 8:00 :00 För de som är inskrivna hösten 007, E07 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00,
Växelspänning och effekt. S=P+jQ. Olof Samuelsson Industriell Elektroteknik och Automation
Växelspänning och effekt S=P+jQ VA W var Olof Samuelsson Industriell Elektroteknik och Automation Översikt Synkronmaskinens uppbyggnad Växelspänning Komplexräkning Komplex, aktiv och reaktiv effekt Ögonblicksvärde
Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0
Uppdaterad: 01-05-5 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling:
AB2.9: Heavisides stegfunktion. Diracs deltafunktion
AB29: Heaviide tegfunktion Dirac deltafunktion Heaviide tegfunktion Heaviide tegfunktion definiera ut a) = { if t < a, if t > a Betrakta via exempel: ft) = 5 in t ft)ut 2) ft 2)ut 2) k[ut ) 2ut 4) + ut
Växelspänning och effekt. S=P+jQ. Ingmar Leisse Industriell Elektroteknik och Automation
Växelspänning och effekt S=P+jQ VA W var Ingmar Leisse Industriell Elektroteknik och Automation Översikt Synkronmaskinens uppbyggnad Växelspänning Komplexräkning Komplex, aktiv och reaktiv effekt Ögonblicksvärde
( y) ( L) Beräkning av ström nmos: Lång kanal (L g >1µm) di dy. Oxid U GS U DS. Kanal. 0<U cs (y)<u DS. Lös med:
Beräkning av ström nmos: ång kanal ( g >1µm Oxid 0< cs (y< y Kanal ε Q N ( ( y th ( y Z µ ε ( y y n ( y ( y Q ( y N ös med: cs cs d dy (0 0 ( 0 15-04- 15 Föreläsning 6, Komponen7ysik 015 1 Ström och kanal
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 204 08 28. Beräkna den totala kraft på laddningen q = 7.5 nc i origo som orsakas av laddningarna q 2 = 6 nc i punkten x,y) = 5,0) cm och q 3 = 0 nc i x,y) = 3,4) cm.
ETE115 Ellära och elektronik, tentamen oktober 2006
(2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är
Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska
Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:
Föreläsning 11 Fälteffekttransistor II
Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik
Tentamen ellära 92FY21 och 27
Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för
Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar
Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna
IE1206 Inbyggd Elektronik
E1206 nbyggd Elektronik F1 F3 F4 F2 Ö1 Ö2 PC-block Dokumentation, Seriecom Pulsgivare,, R, P, serie och parallell KK1 LAB1 Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchoffs lagar Nodanalys
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
Reglerteknik 5. Kapitel 9. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
Reglerteknik 5 Kapitel 9 Köp bok och övninghäfte på kårbokhandeln Föreläning 5 kap 9 Frekvenanaly Sinuformade ignaler i linjära ytem amma frekven Ain t G Bin t ϕ annan amplitud annan favinkel G och Gj
nmosfet och analoga kretsar
nmosfet och analoga kretsar Erik Lind 22 november 2018 1 MOSFET - Struktur och Funktion Strukturen för en nmosfet (vanligtvis bara nmos) visas i fig. 1(a). Transistorn består av ett p-dopat substrat och
Komplexa tal. j 2 = 1
Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras
Föreläsning 7: Stabilitetsmarginaler. Föreläsning 7. Stabilitet är viktigt! Förra veckan. Stabilitetsmarginaler. Extra fördröjning i loopen?
Föreläning 7 Föreläning 7: Känlighetfunktionen och Stationära fel 4 Februari, 29. 2. Standardkreten 3. Känlighetfunktion Förra veckan Stabilitet är viktigt! yquitkriteriet Im G(iω) Amplitud- och famarginal
Föreläsning 7 Fälteffek1ransistor IV
Föreläsning 7 Fälteffek1ransistor IV PMOS Småsignal FET A, f t MOS- Kondensator D/MOS- kamera Flash- minne 1 PMOS U Gate U - 0.V 1.0V 0.4V Source Isolator SiO Drain U - 1V P ++ N- typ semiconductor P ++
IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen
F1330 Ellära F/Ö1 F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK1 LAB1 Mätning av U och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8
15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1
15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna
Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal?
Komponentfysik Övningsuppgifter MOS del II VT-5 Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal? II: Vad skiljer en n-mosfet från en p-mosfet när
Tentamen i Krets- och mätteknik, fk - ETEF15
Tentamen i Krets- och mätteknik, fk - ETEF15 Institutionen för elektro- och informationsteknik LTH, Lund University 2016-10-27 8.00-13.00 Uppgifterna i tentamen ger totalt 60. Uppgifterna är inte ordnade
ETE115 Ellära och elektronik, tentamen oktober 2007
(0) 9 oktober 007 Insttutonen för elektro- och nformatonsteknk Danel Sjöberg ETE5 Ellära och elektronk, tentamen oktober 007 Tllåtna hjälpmedel: formelsamlng kretsteor. Observera att uppgfterna nte är
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F6 Bodediagram, Nyquistkriteriet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 11 Frekvensegenskaper Hur svarar ett (slutet) system på oscillerande signaler? 2 / 11
1. f är en två gånger deriverbar funktion på intervallet (a, b) och π 1 f är dess linjära interpolant. Visa att π 1 f f L (a,b) (b a) 2 f L (a,b).
Matematik Chalmer Tentamen i TMA68 Tillämpad matematik K/Bt, ; KL 8:3-:3 Telefon: Martin Berglund: 73-883. Hjälpmedel: Endat utdelad vänd textlappen tabell. Kalkylator ej tillåten. Uppgift 7 ger max 8p,
15. Strålande system
15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna
Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00
Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna
Tentamen i Krets- och mätteknik, fk - ETEF15
Tentamen i Krets- och mätteknik, fk - ETEF15 Institutionen för elektro- och informationsteknik LTH, Lund University 2013-10-25 8.00-13.00 Uppgifterna i tentamen ger totalt 60. Uppgifterna är inte ordnade
Specifikationer i frekvensplanet ( )
Föreläsning 7-8 Specifikationer i frekvensplanet (5.2-5.3) Återkopplat system: Enligt tidigare gäller att där och Y (s) =G C (s)r(s) G C (s) = G O(s) 1+G O (s) G O (s) =F (s)g(s) är det öppna systemet
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Ellära och Elektronik Moment AC-nät Föreläsning 5
Ellära och Elektronik Moment A-nät Föreläsning 5 Visardiagram Impendans jω-metoden Komplex effekt, effekttriangeln Visardiagram Om man tar projektionen på y- axeln av en roterande visare får man en sinusformad
12. Plana vågors fortskridande i oändliga media
2. Plana vågors fortskridande i oändliga media Extra material som ges som referens, men krävs inte i mellanförhören eller räkneövningarna: 2.0.. Tredimensionella vågor En harmonisk elementarvåg i tre dimensioner
Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3
Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
Arvika 2019_243 Stömne Bertil Persson Betongteknik AB DECIBEL - Huvudresultat Beräkning: VKV SWE99TM VKV typ Ljuddata
SVENSKA BESTÄMMELSER FÖR EXTERNT BULLER FRÅN LANDBASERADE VINDKRAFTVERK 2019-03-02 07:25 / 1 Beräkningen är baserad på den av Statens Naturvårdsverk rekommenderad metod "Ljud från landbaserade vindkraftverk",
Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1
Ellära 2, ema 3 Ville Jalkanen illämpad fysik och elektronik, UmU ville.jalkanen@umu.se 1 Innehåll Periodiska signaler Storlek, frekvens,... Filter Överföringsfunktion, belopp och fas, gränsfrekvens ville.jalkanen@umu.se
Tentamen i ETE115 Ellära och elektronik, 10/1 2015
Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in
Växelström i frekvensdomän [5.2]
Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer
Tentamen i ETE115 Ellära och elektronik, 3/6 2017
Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
Komplexa tal. j 2 = 1
Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths
1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de
Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan
Referens :: Komplexa tal version
Referens :: Komplexa tal version 0.6 Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. De komplexa talen uppstår som ett behov av av att kunna lösa polynomekvationer
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
Tentamen i komponentfysik
Tentame komponentfysik 009-05-8 08 00-13 00 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat anges, så antag att det är kisel (Si),
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration.
A135TG Elektrisk Kraftgenerering 7,5 högskolepoäng Provmoment: Skriftlig tentamen Ladokkod: A135TG Tentamen ges för: Energiingenjörsprogrammet Åk3 Tentamenskod: Tentamensdatum: 2017-01-12 Tid: 2017-01-12
Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2
Moment 1 - Analog elektronik Föreläsning 2 Transistorn del 2 Jan Thim 1 F2: Transistorn del 2 Innehåll: Fälteffekttransistorn - JFET Karakteristikor och parametrar MOSFET Felsökning 2 1 Introduktion Fälteffekttransistorer
Elektriska och elektroniska fordonskomponenter. Föreläsning 4 & 5
Elektriska och elektroniska fordonskomponenter Föreläsning 4 & 5 Kondensatorn För att lagra elektrisk laddning Användning Att skydda brytarspetsarna (laddas upp istället för att gnistan bildas) I datorminnen
Föreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Växelström K O M P E N D I U M 2 ELEKTRO
MEÅ NIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson 999-09- Rev.0 Växelström K O M P E N D I M ELEKTRO INNEHÅLL. ALLMÄNT OM LIK- OCH VÄXELSPÄNNINGAR.... SAMBANDET MELLAN STRÖM
Tentamen för TFYA87 Fysik och Mekanik
Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:
Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling
1 Bestäm Théveninekvivalenten mellan anslutningarna a och b i nedanstående krets.
1(8) 7 november 005 Institionen för elektrovetenskap Daniel Sjöberg ETE115 Ellära och elektronik, tentamen okt 05 Tillåtna hjälpmedel: formelsamlg i kretsteori. 1 Bestäm Thévenekvivalenten mellan anslngarna