Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0
|
|
- Inga Hermansson
- för 5 år sedan
- Visningar:
Transkript
1 Uppdaterad: Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling: C Parallell = C 1 + C + Seriekoppling: C serie =1 1 C1 + 1 C + Ohms lag: U = R I = ρ L I A Resistans: R = U I Konduktivitet: Resistivitet: ρ = σ = e (µ n n + µ p p); 1 e (µ n n + µ p p) eller I = G U = σ A U L Småsignalresistans: R = du di där: σ = 1 ρ ; Elektriskt fält: ε = U L Termisk spänning: U t = k T q Einsteinsambandet: D n = U t µ n ; D p = U t µ p Intrinsisk laddningsbärarkoncentration: n i = ( ) N c N v E g kt I en intrinsisk halvledare är n = p = n i Massverkans lag: n p = n i (Gäller endast i termisk jämvikt!) n-typ halvledare ( N D >> n i >> N A ): n n 0 = N D + p n 0 N D ; n n 0 p n 0 = n i p-typ halvledare( N A >> n i >> N D ): p p0 = N A + n p0 N A ; n p0 p p0 = n i Observera att q V gör om enheten [V] till [ev] och att gör E/q om enheten [ev] till [V]
2 Formelsamling [8] Komponentfysik Strömmar och strömtäthet: I = I n + I p = I n drift + I n diff + I p drift + I p diff Strömtäthet: J = I A I n = e n v d A I p = e p v d A I = I n + I p Ström: Driftström Diffusionsström Elektroner I n drift = e A µ n n ε I n diff = e A U t µ n dn dx Hål I p drift = e A µ p p ε I p diff = e A U t µ p dp dx Fermi-nivå: Generellt: E F = E V + E C Intrinsisk (odopad) halvledare (n=p=n i ): n-typ (n = N D >>n i ): p-typ (p = N A >>n i )): + kt ln n p E F = E V + E C E F = E V + E C + kt ln N D n i kt ln N A n i Använder man E V som referensnivå gäller: E V + E C E F = E V + E C = E i ( ) OBS! Gäller endast när n >> n i ( ) OBS! Gäller endast när p >> n i = E g Om man dopar samtidigt med acceptorer och donatorer i samma område gäller: E F = E V + E C ± kt ln N D N A n i "+" om N D > N A, d.v.s. n-typ material och "-" om N D < N A d.v.s. p-typ material. OBS! Om N A = N D så är materialet intrinsiskt, d.v.s. pn-övergången (Dioden): Inbyggd spänning: U bi = U t ln N A N D ; n i U bi = d tot ε max N D d n N A d p Maximalt elektriskt fält: ε max = e N D d n ε r ε 0 = e N A d p ε r ε 0 Injicerad minoritetsladdningsbärarkoncentration vid pålagd spänning U a : p-sidan: n-sidan: n p ( d p ) = n p0 p n (d n ) = p n 0 U a U t U a U t = n i = n i N A N D U a U t U a U t OBS! U a < U bi
3 Formelsamling 3[8] Komponentfysik Rymdladdningsområdets utsträckning: Generellt: d tot = d n + d p = ε r ε 0 e p-sidan: d p = ε r ε 0 e n-sidan: d n = ε r ε 0 e Specialfall: N A = N D => symmetrisk övergång där d n = d p : d n sym = ε r ε 0 ( U bi U a ); d tot e N sym = d n sym D N D N A N A + N D N A + N D ( U bi U a ) N A N D ( ) ( U bi U a) N A ( ) ( U bi U a) N D N A + N D p + n-övergång: N A >> N D => asymmetrisk övergång där d n >> d p : d n p + n = ε r ε 0 e N D ( ) U bi U a ; d pp + n = d n p + n N D N A ; d tot p + n d n p + n n + p-övergång: N D >> N A => asymmetrisk övergång där d p >> d n : d pn + p = ε r ε 0 e N A ( ) U bi U a ; d n n + p = d pn + p N A N D ; d tot n + p d pn + p
4 Formelsamling 4[8] Komponentfysik Strömmar i en diod: U Strömmen igenom en pn-övergång: I = I 0 e a U a < U bi Håldelen av I 0 : m U t 1 ; 1 m ; U a < U bi I 0 för olika fall med ren diffusionsström, m=1 Kort diod (=kort bas) [ W << L]: Lång diod (=lång bas) [ W >> L]: I 0 = e A U t µ p n i N D W n Elektrondelen av I 0 : I 0 = e A U t µ n n i N A W p p + n-diod n + p-diod Rekombinationsström: Högnivåinjektion: I 0 = e A U t µ p n i N D L p I 0 = e A U t µ n n i N A L n Elektrondelen är normalt betydligt lägre och därför försumbar! Håldelen är normalt betydligt lägre och därför försumbar! I = I rek e I = I hög e U a U t U a U t 1 1 I rek = e A d tot n i τ I hög = e A U t µ n n i W p (för n + p) Utarmningskapacitans: C j = A ε r ε 0 (p + n: d tot d n, n + p: d tot d p enligt ovan) d tot Diffusionskapacitans (I P ): C diff = g s t b = di p W n du a U t µ I p p m U W n t µ p Diffusionskapacitans (I n ): C diff = g s t b = di W n p du a U t µ I n n m U W p t µ n Transkonduktans: g s = du di I a m U t Genombrottsspänning: (p + n): U br = U bi ε r ε 0 ε br e N D ; (n + p): ersätt N D med N A
5 Formelsamling 5[8] Komponentfysik Bipolär npn-transistor: Normal mod: U BE > 0 och U BC < 0 Kollektorström: I C = e A U t µ n n i W B N AB Basström: I B = e A U t µ p n i Emitterström: I E = I C + I B W E N DE U BE U t U BE U t Strömförstärkning, gemensam emitter: β = I C I B = h FE β = µ n N D E W E µ p N AB W B För en pnp-transistor: Byt index n mot p och vice versa och A mot D och vice versa. Byt tecken på strömmar och spänningar, t.ex. är U BE <0 i normal mod. För en npn-transistor i inverterad mod: Byt index: E mot C. Exempel: β npn normal = µ n N D E W E β npn µ p N AB W invl = µ n N D C W C β pnpnormal = µ p N A E W E B µ p N AB W B µ n N DB W B Inverterad mod: U BE < 0 & U BC > 0; Bottnad mod: U BE > 0 & U BC > 0 Strypt mod: U BE < 0 & U BC < 0 Hybrid π:
6 Formelsamling 6[8] Komponentfysik Basresistans: R B = ρ L 3 W B B = L 3 e µ p N AB W B B Diffusionskapacitans: C diff = di C W B I C du BE U t µ n U W B = g m t bb t µ n Utarmningskapacitans: Emitter: C je = A ε r ε 0 d tot A ε r ε 0 d pb (d tot från pn-övergången) Kollektor: C jc = A ε r ε 0 d tot A ε r ε 0 d n C Transkonduktans: Utgångskonduktans: g m = di C I C ; du BE Ut Ingångsresistans r π = h fe, g m g out = di C I = C du CE U CE + U A AC-förstärkning: h fe = di C di B Övergångsfrekvens: f t = g m π (C jc + C je + C diff ) MOSFET: p-substrat: Φ F = U t ln N A n i n-substrat: Φ F = U t ln N D n i Gatekapacitans per ytenhet: C ox ( ) E F = E V + E i Φ F ( ) E F = E V + E i + Φ F = ε ox ε 0 t ox Utarmningskapacitans per ytenhet: C D Gatekapacitans: C ox = A C ox = ε r ε 0 d p ; Utarmningskapacitans: C D = A C D Flatbandsspänning:U fb = E F sub E Fgate q Tröskelspänning (U yta = Φ F ): OBS! För en ideal MOSFET är U fb =0 p-substrat: U th = U fb + Φ F + 1 C ox 4 ε r ε 0 Φ F e N A d p = 4 ε r ε 0 e N A n-substrat: U th = U fb Φ F 1 4 ε r ε 0 Φ F e N D d n = 4 ε r ε 0 Φ F C ox e N D Φ F n-mos på p-substrat har en n-kanal p-mos på n-substrat har en p-kanal
7 Formelsamling 7[8] Komponentfysik Drain-source-ström (n-mos = p-substrat, µ=µ n ): U GS U th Strypt: U GS <U th : I DS = 0 Linjära området: U DS (U GS -U th ): Mättnadsområdet: U DS (U GS -U th ): Transkonduktans (di DS /du GS vid mättnad): g m = µ n Z C ox L ( U GS U th ) Övergångsfrekvens (vid mättnad): g f t = m 1 = π C ox π t sd I DS = µ n Z C ox L ( U GS U th ) U DS U DS I DS = µ n Z C ox ( U GS U th ) L För MOSFET på n-substrat: µ Z C p ox U DS <0, I DS <0, U GS U th. Ersätt µ n med µ p => I = [ ] L Linjära området: U DS (U GS -U th ) Mättnadsområdet: U DS (U GS -U th ) DS
8 Formelsamling 8[8] Komponentfysik E g [ev] µ n [m /Vs] µ p [m /Vs] ε r Si 1,11 0,1350 0,045 11,8 Ge 0,67 0,39 0,19 16,0 AlAs,16 0, GaP,6 0,03 0,015 11,1 GaAs 1,43 0,85 0,04 13, GaN 3,36 0,038-1, InP 1,35 0,46 0,015 1,4 InAs 0,36 3,30 0,046 14,6 C(diamant) 5,47 0,18 0,1 5,7 SiO ,9 (ε ox ) Några konstanter: e = 1, As q = 1 ev/v = 1, J/V k = 1, J/K = 8, ev/k ε 0 =8, F/m kt=0,059 ev vid 300K U t =0,059 V vid 300K U t (T) = T 8, V N C [m -3 ] N V [m -3 ] n i [m -3 ] (300K) Si, , , Ge 1, ,1 10 4, GaAs 4, , , Logaritmer och Exponenter: ln( A B)= ln( A)+ ln( B) ln A n ln A = ln( A) ln B B e A+B = e A B e A ( ) ln 1 B = e A e ln A Periodiska systemet (valda delar): ( )= n ln A = ln( B) ( e A ) B = e A B ( ) = A Grupp III Grupp IV Grupp V B (bor) Al (aluminium) Ga (gallium) In (indium) C (kol) Si (kisel) Ge (germanium) Sn (tenn) N (kväve) P (fosfor) As (arsenik) Sb (antimon) ( )
Formelsamling för komponentfysik
Uppdaterad: 010-01-18 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A r r d Parallellkoppling:
Läs merTentamen i Komponentfysik ESS030, ETI240/0601 och FFF090
011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat
Läs merLösningar Tenta
Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål
Läs merFöreläsning 9 Bipolära Transistorer II
Föreläsning 9 Bipolära Transistorer II Funktion bipolär transistor Småsignal-modell Hybrid-p 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser Optokomponenter pn-övergång:
Läs merTentamen i komponentfysik
Tentame komponentfysik 009-05-8 08 00-13 00 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat anges, så antag att det är kisel (Si),
Läs merFöreläsning 12 Bipolära Transistorer II. Funk<on bipolär transistor
Föreläsning 1 Bipolära Transistorer II Funk
Läs merBeskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal?
Komponentfysik Övningsuppgifter MOS del II VT-5 Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal? II: Vad skiljer en n-mosfet från en p-mosfet när
Läs merOm inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övning 1 VT-10 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande frågor: I Definiera
Läs merUtredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod?
Komponentfysik Uppgifter Bipolärtransistor VT-15 Utredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod? III: Definiera övergångsfrekvensen
Läs merOm inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande
Läs merI: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn.
Komponentfysik Övning 4 VT-10 Utredande uppgifter: I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. II: Beskriv de fyra arbetsmoderna för en npn-transistor.
Läs merOm inget annat anges så gäller det kisel och rumstemperatur (300K)
Komponentfysik Uppgifter pn del VT-15 Om inget annat anges så gäller det kisel och rumstemperatur (300K Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.
Läs merFöreläsning 11 Fälteffekttransistor II
Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik
Läs merOm inget annat anges så gäller det kisel och rumstemperatur (300K)
Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.
Läs merFöreläsning 7 Fälteffek1ransistor IV
Föreläsning 7 Fälteffek1ransistor IV PMOS Småsignal FET A, f t MOS- Kondensator D/MOS- kamera Flash- minne 1 PMOS U Gate U - 0.V 1.0V 0.4V Source Isolator SiO Drain U - 1V P ++ N- typ semiconductor P ++
Läs merKomponentfysik Introduktion. Kursöversikt. Hålltider --- Ellära: Elektriska fält, potentialer och strömmar
Komponentfysik 2014 Introduktion Kursöversikt Hålltider --- Ellära: Elektriska fält, potentialer och strömmar 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Lektor i nanoelektronik vid EIT sedan
Läs merUtredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.
Komponentfysik Övning VT-10 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i (a), men med en pålagd
Läs merFöreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt
Läs merFöreläsning 13 Fälteffekttransistor III
Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
Läs merFöreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer
Läs merFöreläsning 9 Bipolära Transistorer II
Föreläsning 9 ipolära Transistorer Funktion bipolär transistor Småsignal-modell Hybrid-p Designparametrar 1 Komponentfysik - Kursöversikt ipolära Transistorer pn-övergång: kapacitanser Optokomponenter
Läs mer2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.
Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men
Läs merFöreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning
Föreläsning 11 ipolära ransistorer J ipolar JuncDon ransistor FunkDon bipolär transistor Geometri npn D operadon, strömförstärkning OperaDonsmoder Early- effekten pnp transistor G. alla 1 deal transistor
Läs merTentamen i komponentfysik Halvledare 6,0p. 2. Dioder 7,5p.
Tentamen i komponentfysik 2010-05-31 08 00-13 00 Hjälpmeel: TEFYMA, orlista, beteckningslista, formelsamlingar och räknare. Max 25p, för gokänt resultat krävs 10p. Om inget annat anges, antag att et är
Läs merKomponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:
Komponen'ysik 2016 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora?oner Förberedelseuppgi=er inför
Läs mer( y) ( L) Beräkning av ström nmos: Lång kanal (L g >1µm) di dy. Oxid U GS U DS. Kanal. 0<U cs (y)<u DS. Lös med:
Beräkning av ström nmos: ång kanal ( g >1µm Oxid 0< cs (y< y Kanal ε Q N ( ( y th ( y Z µ ε ( y y n ( y ( y Q ( y N ös med: cs cs d dy (0 0 ( 0 15-04- 15 Föreläsning 6, Komponen7ysik 015 1 Ström och kanal
Läs merKomponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:
Komponen'ysik 2014 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora>oner Förberedelseuppgi>er inför
Läs merKomponentfysik ESS030. Den bipolära transistorn
Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket
Läs merKomponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer
Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade
Läs merFöreläsning 8 Bipolära Transistorer I
Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor 1 Komonentfysik - Kursöversikt iolära ransistorer n-övergång:
Läs merÖvningsuppgifter i Elektronik
1 Svara på följande frågor om halvledarkomponenter. Övningsuppgifter i Elektronik a) Vad är utmärkande för ett halvledarmaterial? b) Vad innebär egenledning och hur kan den förhindras? c) edogör för dopning
Läs merIntroduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 7 Fälteffekttransistorer MOS-transistorn strömekvation MOS-transistorn kanal mobilitet Substrat bias effekt 7 Bipolar transistorn Introduktion Minoritets bärare
Läs merIntroduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 6 Övergångar (pn och metal-halvledare) 2:a ordningens effekter Metal-halvledar övergångar 6 Fälteffekttransistorer JFET och MOS transistorer Ideal MOS kapacitans
Läs merMoment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1
Moment 1 - Analog elektronik Föreläsning 1 Transistorn del 1 Jan Thim 1 F1: Transistorn del 1 Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch
Läs merFöreläsning 8 Bipolära Transistorer I
Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor G. alla 1 Komonentfysik - Kursöversikt iolära ransistorer
Läs merPla$kondensator - Fälteffekt
Pla$kodesator - Fälteffekt gs 1V gs V gs V gs 3V + + + + + + + + + + + + + Metall P- typ halvledare Joiserade acceptoratomer (N A Hål Elektroer 16-4- 6 Föreläsig 5, Kompoe7ysik 16 1 Tröskelspäig stark
Läs merElektronik. Lars-Erik Cederlöf
Elektronik LarsErik Cederlöf 1 Ledare och isolatorer Ledare för elektrisk ström har atomer med fria rörliga laddningar i yttersta skalet. Exempel på ledare är metallerna koppar och aluminium. Deras atomer
Läs merFöreläsning 3 Extrinsiska Halvledare
Föreläsig 3 xtrisiska Halvledare ergibad Driftström Dopig xtrisisk halvledare ffekt av temperatur Fermi-ivå 1 Kompoetfysik - Kursöversikt Bipolära Trasistorer Optokompoeter p-övergåg: strömmar och kapacitaser
Läs merLaboration: pn-övergången
LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer
Läs merHalvledare. Transistorer, Förstärkare
Halvledare Transistorer, Förstärkare Om man har en två-ports krets v in (t) ~ v ut (t) R v ut (t) = A v in (t) A är en konstant: Om A är mindre än 1 så kallas kretsen för en dämpare Om A är större än 1
Läs merRättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.
/5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad
Läs merHalvledare. Periodiska systemet (åtminstone den del som är viktig för en halvledarfysiker)
Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N: GaN, ngan Blå (& vita) LED, UV lasrar
Läs merFöreläsning 8. MOS transistorn. IE1202 Analog elektronik KTH/ICT/EKT HT09/BM
Föreläsning 8 MOS transistorn Förstärkare med MOS transistorn t Exempel, enkel förstärkare med MOS IE1202 Analog elektronik KTH/ICT/EKT HT09/BM 1 Varför MOS transistorn Förstå en grundläggande komponent
Läs merFöreläsning 8. MOS transistorn Förstärkare med MOS transistorn Exempel, enkel förstärkare med MOS. IE1202 Analog elektronik KTH/ICT/EKT VT11/BM
Föreläsning 8 MOS transistorn Förstärkare med MOS transistorn Exempel, enkel förstärkare med MOS 1 Varför MOS transistorn Förstå en grundläggande komponent för både digitala och analoga kretsar Är idag
Läs mernmosfet och analoga kretsar
nmosfet och analoga kretsar Erik Lind 22 november 2018 1 MOSFET - Struktur och Funktion Strukturen för en nmosfet (vanligtvis bara nmos) visas i fig. 1(a). Transistorn består av ett p-dopat substrat och
Läs merFöreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
Läs merElektronik 2017 EITA35
Elektronik 2017 EITA35 OP-Amp Komplex Återkoppling. Klippning. Maximal spänning/ström. Gain-bandwidthproduct. Offset. Slewrate Avkopplingskondensator Transistorer - MOSFETs Lab 4 Anmälan på hemsidan Projektnummer
Läs merFöreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Läs merFöreläsning 7 Fälteffek1ransistor IV
Föreläsning 7 Fälteffek1ransistor IV måsignal FET A, f t MO- Kondensator D/MO- kamera Flash- minne 1 måsignalmodell A kapacitanser i mä1nadsmod δu Isolator io 2 D N ++ N ++ P- typ halvledare δ Q δu >>
Läs merFÖRELÄSNING 3. Förstärkaren. Arbetspunkten. Olika lastresistanser. Småsignalsschemat. Föreläsning 3
FÖRELÄSNING 3 Förstärkaren Arbetspunkten Olika lastresistanser Småsignalsschemat Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(36) Förstärkaren (S&S4 1.4, 5.2, 5.4, 5.5, 5.6/
Läs merFöreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik
Läs merPhysics to Go! Part 1. 2:a på Android
Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:
Läs merSensorer och elektronik. Grundläggande ellära
Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans
Läs merMoment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2
Moment 1 - Analog elektronik Föreläsning 2 Transistorn del 2 Jan Thim 1 F2: Transistorn del 2 Innehåll: Fälteffekttransistorn - JFET Karakteristikor och parametrar MOSFET Felsökning 2 1 Introduktion Fälteffekttransistorer
Läs merElektronik 2015 ESS010
Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer
Läs merFöreläsning 9 Transistorn och OP-förstärkaren
Föreläsning 9 Transistorn och OP-förstärkaren /Krister Hammarling 1 Transistorn Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch Felsökning
Läs merFasta Tillståndets Fysik - Elektroniska material
Fasta Tillståndets Fysik Elektroniska material Formelsamling 00 Elektroner klassiskt F q( E+ v B) U R I, J σe N J ( e)v V d Lorentzkraft Ohms lag v d ee τ m Drifthastighet τ kollisionstid md + dt τ v F
Läs merRepetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna
FÖRELÄSNING 2 Repetition: Nätanalys för AC Repetition: Elektricitetslära Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(49) Repetition: Nätanalys
Läs merFöreläsning 3 Extrinsiska Halvledare
Föreläsig 3 xtrisiska Halvledare ergibad Drift/Diffusio Doig xtrisisk halvledare ffekt av temeratur Fermi-ivå 013-03-13 Föreläsig 3, Komoetfysik 013 1 Komoetfysik - Kursöversikt Biolära Trasistorer Otokomoeter
Läs merLaboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum
Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital
Läs merUMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors Transistorswitchen. Laboration E25 ELEKTRO
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors 1997-01-14 Transistorswitchen Laboration E25 ELEKTRO Laboration E25 Transistorswitchen 2 Nyckelord Switch, bottnad- och strypt
Läs merElektronik 2018 EITA35
Elektronik 2018 EITA35 Föreläsning 12 Halvledare PN-diod Kretsanalys med diodkretsar. 1 Labrapport Gratisprogram för att rita kretsar: http://www.digikey.com/schemeit/ QUCS LTSPICE (?) 2 Föreläsningen
Läs merTentamen ETE115 Ellära och elektronik för F och N,
Tentamen ETE5 Ellära och elektronik för F och N, 2009 0602 Tillåtna hjälpmedel: formelsamling i kretsteori och elektronik. Observera att uppgifterna inte är ordnade i svårighetsordning. Alla lösningar
Läs merMOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper
FÖRELÄSNING 4 MOSFET:ens in och utimpedanser Småsignalsmodeller Spänning och strömstyrning Stora signaler MOSFET:ens högfrekvensegenskaper Per LarssonEdefors, Chalmers tekniska högskola EDA351 Kretselektronik
Läs merInföra begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar
Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare
Läs merPraktisk beräkning av SPICE-parametrar för halvledare
SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi
Läs merTSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor
0/3/204 0:24 Nodanalys metod 0. Förenkla schemat. liminera ensamma TST20 lektronik 2. Jorda en nod 3. nför nodpotentialer 4. nför referensriktningar på strömmarna i nätet 5. Sätt upp ekvation för varje
Läs merMed ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:
530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Läs merAllmänt Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur. l A Allmänt. 8.1.
8.1.1. Allmänt 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Läs merMaterialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur
530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Läs merSensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken
Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika
Läs merLabb-PM MCC086 Mikroelektronik 2016
Labb-PM MCC086 Mikroelektronik 2016 Syfte med labben: Att få praktisk och experimentell erfarenhet av mätningar på pn-dioden och MOSFET, samt uppleva komponenternas egenskaper. Mäta på dioder och transistorer
Läs merNanoelektronik. FAFA10 Kvantfenomen och nanostrukturer HT Martin Magnusson.
Nanoelektronik FAFA10 Kvantfenomen och nanostrukturer HT 2014 Martin Magnusson martin.magnusson@ftf.lth.se Fält, potentialer mm i vakuum Lägg en spänning mellan två elektroder Stoppa dit en elektron e
Läs merGrindar och transistorer
Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.
Läs mer12. Kort om modern halvledarteknologi
12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till
Läs mer12. Kort om modern halvledarteknologi
12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till
Läs merɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04
Tabell 1: Några utvalda naturkonstanter: Namn Symbol Värde Enhet Ljushastighet c 2,998.10 8 m/s Elementarladdning e 1,602.10 19 C Plancks konstant h 6,626.10 34 Js h 1,055.10 34 Js Finstrukturkonstanten
Läs merCMOS-inverteraren. CMOS-logik. Parasitiska kapacitanser. CMOS-variationer: Pseudo-NMOS och PTL
FÖRELÄSNING 6 CMOS-inverteraren CMOS-logik Parasitiska kapacitanser CMOS-variationer: Pseudo-NMOS och PTL Per Larsson-Edefors, Chalmers tekniska högskola ED351 Kretselektronik 1(46) CMOS-inverteraren (S&S4:
Läs merBilaga 2. Ackrediteringens omfattning. Kemisk analys /1313
Ackrediteringens omfattning Laboratorier Degerfors Laboratorium AB Degerfors Ackrediteringsnummer 1890 A003432-001 Kemisk analys Oorganisk kemi Aluminium, Al ASTM E1086:2014 OES Stål ASTM E1621:2013 XRF
Läs merLektion 1: Automation. 5MT001: Lektion 1 p. 1
Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.
Läs merElektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar
Översikt Pietro Andreani Institutionen för elektro- och informationsteknik unds universitet ite historik nmofet Arbetsområden pmofet CMO-inverterare NOR- och NAN-grindar MO-teknologi å och nu Metal-e-silicon
Läs merElektriska och magnetiska fält Elektromagnetiska vågor
1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,
Läs merTentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 204 08 28. Beräkna den totala kraft på laddningen q = 7.5 nc i origo som orsakas av laddningarna q 2 = 6 nc i punkten x,y) = 5,0) cm och q 3 = 0 nc i x,y) = 3,4) cm.
Läs merHALVLEDARES ELEKTRISKA KONDUKTIVITET
HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket
Läs mer3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1
3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta
Läs merDen bipolä rä tränsistorn
Komponentfysik ESS3 Laborationshandledning av: Martin Berg Elvedin Memišević Den bipolä rä tränsistorn VT-213 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken
Läs merEllära och Elektronik Moment AC-nät Föreläsning 4
Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer
Läs merVälkomna till kursen i elektroniska material!
Välkomna till kursen i elektroniska material! Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare, kursansvarig)
Läs merDefinition av kraftelektronik
F1: Introduktion till Kraftelektronik Definition av kraftelektronik Den enegelska motsvarigheten till kraft elektronik är Power electronics. På Wikipedia kan man hitta följande definition: Power electronics
Läs merLaboration N o 1 TRANSISTORER
Institutionen för tillämpad fysik och elektronik Umeå universitet Patrik Eriksson 22/10 2004 Analog elektronik 2 Laboration N o 1 TRANSISTORER namn: datum: åtgärda: godkänd: Målsättning: Denna laboration
Läs merFormelsamling i kretsteori, ellära och elektronik
Formelsamling i kretsteori, ellära och elektronik Elektro- och informationsteknik Lunds tekniska högskola Februari FORMELSAMLING I KRETSTEORI, ELLÄRA OCH ELEKTRONIK Kretsteori Komplexvärden Realdelskonvention:
Läs merETE115 Ellära och elektronik, tentamen oktober 2006
(2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är
Läs merTentamen i Krets- och mätteknik, fk, ETEF15. Exempeltentamen
Lunds Tekniska Högskola, Institutionen för Elektro- och informationsteknik Ingenjörshögskolan, Campus Helsingborg Tentamen i Krets- och mätteknik, fk, ETEF15 Exempeltentamen Uppgifterna i tentamen ger
Läs merTentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i
Läs merTentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07
Tentamen i Elektronik, ESS00, del 4,5hp den 9 oktober 007 klockan 8:00 :00 För de som är inskrivna hösten 007, E07 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00,
Läs merTentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)
Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår
Läs merTentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
Läs merVad är elektricitet?
Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret
Läs merOlika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren
FÖRELÄSNING 12 Olika sätt att bygga förstärkare Differentialförstärkaren (översikt) Strömspegeln Till sist: Operationsförstärkaren Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik
Läs merIntroduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g
Läs mer