Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0

Storlek: px
Starta visningen från sidan:

Download "Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0"

Transkript

1 Uppdaterad: Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling: C Parallell = C 1 + C + Seriekoppling: C serie =1 1 C1 + 1 C + Ohms lag: U = R I = ρ L I A Resistans: R = U I Konduktivitet: Resistivitet: ρ = σ = e (µ n n + µ p p); 1 e (µ n n + µ p p) eller I = G U = σ A U L Småsignalresistans: R = du di där: σ = 1 ρ ; Elektriskt fält: ε = U L Termisk spänning: U t = k T q Einsteinsambandet: D n = U t µ n ; D p = U t µ p Intrinsisk laddningsbärarkoncentration: n i = ( ) N c N v E g kt I en intrinsisk halvledare är n = p = n i Massverkans lag: n p = n i (Gäller endast i termisk jämvikt!) n-typ halvledare ( N D >> n i >> N A ): n n 0 = N D + p n 0 N D ; n n 0 p n 0 = n i p-typ halvledare( N A >> n i >> N D ): p p0 = N A + n p0 N A ; n p0 p p0 = n i Observera att q V gör om enheten [V] till [ev] och att gör E/q om enheten [ev] till [V]

2 Formelsamling [8] Komponentfysik Strömmar och strömtäthet: I = I n + I p = I n drift + I n diff + I p drift + I p diff Strömtäthet: J = I A I n = e n v d A I p = e p v d A I = I n + I p Ström: Driftström Diffusionsström Elektroner I n drift = e A µ n n ε I n diff = e A U t µ n dn dx Hål I p drift = e A µ p p ε I p diff = e A U t µ p dp dx Fermi-nivå: Generellt: E F = E V + E C Intrinsisk (odopad) halvledare (n=p=n i ): n-typ (n = N D >>n i ): p-typ (p = N A >>n i )): + kt ln n p E F = E V + E C E F = E V + E C + kt ln N D n i kt ln N A n i Använder man E V som referensnivå gäller: E V + E C E F = E V + E C = E i ( ) OBS! Gäller endast när n >> n i ( ) OBS! Gäller endast när p >> n i = E g Om man dopar samtidigt med acceptorer och donatorer i samma område gäller: E F = E V + E C ± kt ln N D N A n i "+" om N D > N A, d.v.s. n-typ material och "-" om N D < N A d.v.s. p-typ material. OBS! Om N A = N D så är materialet intrinsiskt, d.v.s. pn-övergången (Dioden): Inbyggd spänning: U bi = U t ln N A N D ; n i U bi = d tot ε max N D d n N A d p Maximalt elektriskt fält: ε max = e N D d n ε r ε 0 = e N A d p ε r ε 0 Injicerad minoritetsladdningsbärarkoncentration vid pålagd spänning U a : p-sidan: n-sidan: n p ( d p ) = n p0 p n (d n ) = p n 0 U a U t U a U t = n i = n i N A N D U a U t U a U t OBS! U a < U bi

3 Formelsamling 3[8] Komponentfysik Rymdladdningsområdets utsträckning: Generellt: d tot = d n + d p = ε r ε 0 e p-sidan: d p = ε r ε 0 e n-sidan: d n = ε r ε 0 e Specialfall: N A = N D => symmetrisk övergång där d n = d p : d n sym = ε r ε 0 ( U bi U a ); d tot e N sym = d n sym D N D N A N A + N D N A + N D ( U bi U a ) N A N D ( ) ( U bi U a) N A ( ) ( U bi U a) N D N A + N D p + n-övergång: N A >> N D => asymmetrisk övergång där d n >> d p : d n p + n = ε r ε 0 e N D ( ) U bi U a ; d pp + n = d n p + n N D N A ; d tot p + n d n p + n n + p-övergång: N D >> N A => asymmetrisk övergång där d p >> d n : d pn + p = ε r ε 0 e N A ( ) U bi U a ; d n n + p = d pn + p N A N D ; d tot n + p d pn + p

4 Formelsamling 4[8] Komponentfysik Strömmar i en diod: U Strömmen igenom en pn-övergång: I = I 0 e a U a < U bi Håldelen av I 0 : m U t 1 ; 1 m ; U a < U bi I 0 för olika fall med ren diffusionsström, m=1 Kort diod (=kort bas) [ W << L]: Lång diod (=lång bas) [ W >> L]: I 0 = e A U t µ p n i N D W n Elektrondelen av I 0 : I 0 = e A U t µ n n i N A W p p + n-diod n + p-diod Rekombinationsström: Högnivåinjektion: I 0 = e A U t µ p n i N D L p I 0 = e A U t µ n n i N A L n Elektrondelen är normalt betydligt lägre och därför försumbar! Håldelen är normalt betydligt lägre och därför försumbar! I = I rek e I = I hög e U a U t U a U t 1 1 I rek = e A d tot n i τ I hög = e A U t µ n n i W p (för n + p) Utarmningskapacitans: C j = A ε r ε 0 (p + n: d tot d n, n + p: d tot d p enligt ovan) d tot Diffusionskapacitans (I P ): C diff = g s t b = di p W n du a U t µ I p p m U W n t µ p Diffusionskapacitans (I n ): C diff = g s t b = di W n p du a U t µ I n n m U W p t µ n Transkonduktans: g s = du di I a m U t Genombrottsspänning: (p + n): U br = U bi ε r ε 0 ε br e N D ; (n + p): ersätt N D med N A

5 Formelsamling 5[8] Komponentfysik Bipolär npn-transistor: Normal mod: U BE > 0 och U BC < 0 Kollektorström: I C = e A U t µ n n i W B N AB Basström: I B = e A U t µ p n i Emitterström: I E = I C + I B W E N DE U BE U t U BE U t Strömförstärkning, gemensam emitter: β = I C I B = h FE β = µ n N D E W E µ p N AB W B För en pnp-transistor: Byt index n mot p och vice versa och A mot D och vice versa. Byt tecken på strömmar och spänningar, t.ex. är U BE <0 i normal mod. För en npn-transistor i inverterad mod: Byt index: E mot C. Exempel: β npn normal = µ n N D E W E β npn µ p N AB W invl = µ n N D C W C β pnpnormal = µ p N A E W E B µ p N AB W B µ n N DB W B Inverterad mod: U BE < 0 & U BC > 0; Bottnad mod: U BE > 0 & U BC > 0 Strypt mod: U BE < 0 & U BC < 0 Hybrid π:

6 Formelsamling 6[8] Komponentfysik Basresistans: R B = ρ L 3 W B B = L 3 e µ p N AB W B B Diffusionskapacitans: C diff = di C W B I C du BE U t µ n U W B = g m t bb t µ n Utarmningskapacitans: Emitter: C je = A ε r ε 0 d tot A ε r ε 0 d pb (d tot från pn-övergången) Kollektor: C jc = A ε r ε 0 d tot A ε r ε 0 d n C Transkonduktans: Utgångskonduktans: g m = di C I C ; du BE Ut Ingångsresistans r π = h fe, g m g out = di C I = C du CE U CE + U A AC-förstärkning: h fe = di C di B Övergångsfrekvens: f t = g m π (C jc + C je + C diff ) MOSFET: p-substrat: Φ F = U t ln N A n i n-substrat: Φ F = U t ln N D n i Gatekapacitans per ytenhet: C ox ( ) E F = E V + E i Φ F ( ) E F = E V + E i + Φ F = ε ox ε 0 t ox Utarmningskapacitans per ytenhet: C D Gatekapacitans: C ox = A C ox = ε r ε 0 d p ; Utarmningskapacitans: C D = A C D Flatbandsspänning:U fb = E F sub E Fgate q Tröskelspänning (U yta = Φ F ): OBS! För en ideal MOSFET är U fb =0 p-substrat: U th = U fb + Φ F + 1 C ox 4 ε r ε 0 Φ F e N A d p = 4 ε r ε 0 e N A n-substrat: U th = U fb Φ F 1 4 ε r ε 0 Φ F e N D d n = 4 ε r ε 0 Φ F C ox e N D Φ F n-mos på p-substrat har en n-kanal p-mos på n-substrat har en p-kanal

7 Formelsamling 7[8] Komponentfysik Drain-source-ström (n-mos = p-substrat, µ=µ n ): U GS U th Strypt: U GS <U th : I DS = 0 Linjära området: U DS (U GS -U th ): Mättnadsområdet: U DS (U GS -U th ): Transkonduktans (di DS /du GS vid mättnad): g m = µ n Z C ox L ( U GS U th ) Övergångsfrekvens (vid mättnad): g f t = m 1 = π C ox π t sd I DS = µ n Z C ox L ( U GS U th ) U DS U DS I DS = µ n Z C ox ( U GS U th ) L För MOSFET på n-substrat: µ Z C p ox U DS <0, I DS <0, U GS U th. Ersätt µ n med µ p => I = [ ] L Linjära området: U DS (U GS -U th ) Mättnadsområdet: U DS (U GS -U th ) DS

8 Formelsamling 8[8] Komponentfysik E g [ev] µ n [m /Vs] µ p [m /Vs] ε r Si 1,11 0,1350 0,045 11,8 Ge 0,67 0,39 0,19 16,0 AlAs,16 0, GaP,6 0,03 0,015 11,1 GaAs 1,43 0,85 0,04 13, GaN 3,36 0,038-1, InP 1,35 0,46 0,015 1,4 InAs 0,36 3,30 0,046 14,6 C(diamant) 5,47 0,18 0,1 5,7 SiO ,9 (ε ox ) Några konstanter: e = 1, As q = 1 ev/v = 1, J/V k = 1, J/K = 8, ev/k ε 0 =8, F/m kt=0,059 ev vid 300K U t =0,059 V vid 300K U t (T) = T 8, V N C [m -3 ] N V [m -3 ] n i [m -3 ] (300K) Si, , , Ge 1, ,1 10 4, GaAs 4, , , Logaritmer och Exponenter: ln( A B)= ln( A)+ ln( B) ln A n ln A = ln( A) ln B B e A+B = e A B e A ( ) ln 1 B = e A e ln A Periodiska systemet (valda delar): ( )= n ln A = ln( B) ( e A ) B = e A B ( ) = A Grupp III Grupp IV Grupp V B (bor) Al (aluminium) Ga (gallium) In (indium) C (kol) Si (kisel) Ge (germanium) Sn (tenn) N (kväve) P (fosfor) As (arsenik) Sb (antimon) ( )

Formelsamling för komponentfysik

Formelsamling för komponentfysik Uppdaterad: 010-01-18 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A r r d Parallellkoppling:

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 Bipolära Transistorer II Funktion bipolär transistor Småsignal-modell Hybrid-p 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser Optokomponenter pn-övergång:

Läs mer

Tentamen i komponentfysik

Tentamen i komponentfysik Tentame komponentfysik 009-05-8 08 00-13 00 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat anges, så antag att det är kisel (Si),

Läs mer

Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal?

Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal? Komponentfysik Övningsuppgifter MOS del II VT-5 Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal? II: Vad skiljer en n-mosfet från en p-mosfet när

Läs mer

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Komponentfysik Övning 1 VT-10 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande frågor: I Definiera

Läs mer

Utredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod?

Utredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod? Komponentfysik Uppgifter Bipolärtransistor VT-15 Utredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod? III: Definiera övergångsfrekvensen

Läs mer

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande

Läs mer

I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn.

I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. Komponentfysik Övning 4 VT-10 Utredande uppgifter: I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. II: Beskriv de fyra arbetsmoderna för en npn-transistor.

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Uppgifter pn del VT-15 Om inget annat anges så gäller det kisel och rumstemperatur (300K Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Föreläsning 11 Fälteffekttransistor II

Föreläsning 11 Fälteffekttransistor II Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV PMOS Småsignal FET A, f t MOS- Kondensator D/MOS- kamera Flash- minne 1 PMOS U Gate U - 0.V 1.0V 0.4V Source Isolator SiO Drain U - 1V P ++ N- typ semiconductor P ++

Läs mer

Komponentfysik Introduktion. Kursöversikt. Hålltider --- Ellära: Elektriska fält, potentialer och strömmar

Komponentfysik Introduktion. Kursöversikt. Hålltider --- Ellära: Elektriska fält, potentialer och strömmar Komponentfysik 2014 Introduktion Kursöversikt Hålltider --- Ellära: Elektriska fält, potentialer och strömmar 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Lektor i nanoelektronik vid EIT sedan

Läs mer

Utredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

Utredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Övning VT-10 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i (a), men med en pålagd

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Föreläsning 13 Fälteffekttransistor III

Föreläsning 13 Fälteffekttransistor III Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 ipolära Transistorer Funktion bipolär transistor Småsignal-modell Hybrid-p Designparametrar 1 Komponentfysik - Kursöversikt ipolära Transistorer pn-övergång: kapacitanser Optokomponenter

Läs mer

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning Föreläsning 11 ipolära ransistorer J ipolar JuncDon ransistor FunkDon bipolär transistor Geometri npn D operadon, strömförstärkning OperaDonsmoder Early- effekten pnp transistor G. alla 1 deal transistor

Läs mer

Tentamen i komponentfysik Halvledare 6,0p. 2. Dioder 7,5p.

Tentamen i komponentfysik Halvledare 6,0p. 2. Dioder 7,5p. Tentamen i komponentfysik 2010-05-31 08 00-13 00 Hjälpmeel: TEFYMA, orlista, beteckningslista, formelsamlingar och räknare. Max 25p, för gokänt resultat krävs 10p. Om inget annat anges, antag att et är

Läs mer

Komponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:

Komponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel: Komponen'ysik 2016 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora?oner Förberedelseuppgi=er inför

Läs mer

( y) ( L) Beräkning av ström nmos: Lång kanal (L g >1µm) di dy. Oxid U GS U DS. Kanal. 0<U cs (y)<u DS. Lös med:

( y) ( L) Beräkning av ström nmos: Lång kanal (L g >1µm) di dy. Oxid U GS U DS. Kanal. 0<U cs (y)<u DS. Lös med: Beräkning av ström nmos: ång kanal ( g >1µm Oxid 0< cs (y< y Kanal ε Q N ( ( y th ( y Z µ ε ( y y n ( y ( y Q ( y N ös med: cs cs d dy (0 0 ( 0 15-04- 15 Föreläsning 6, Komponen7ysik 015 1 Ström och kanal

Läs mer

Komponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:

Komponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel: Komponen'ysik 2014 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora>oner Förberedelseuppgi>er inför

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade

Läs mer

Föreläsning 8 Bipolära Transistorer I

Föreläsning 8 Bipolära Transistorer I Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor 1 Komonentfysik - Kursöversikt iolära ransistorer n-övergång:

Läs mer

Övningsuppgifter i Elektronik

Övningsuppgifter i Elektronik 1 Svara på följande frågor om halvledarkomponenter. Övningsuppgifter i Elektronik a) Vad är utmärkande för ett halvledarmaterial? b) Vad innebär egenledning och hur kan den förhindras? c) edogör för dopning

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 7 Fälteffekttransistorer MOS-transistorn strömekvation MOS-transistorn kanal mobilitet Substrat bias effekt 7 Bipolar transistorn Introduktion Minoritets bärare

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 6 Övergångar (pn och metal-halvledare) 2:a ordningens effekter Metal-halvledar övergångar 6 Fälteffekttransistorer JFET och MOS transistorer Ideal MOS kapacitans

Läs mer

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1 Moment 1 - Analog elektronik Föreläsning 1 Transistorn del 1 Jan Thim 1 F1: Transistorn del 1 Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch

Läs mer

Föreläsning 8 Bipolära Transistorer I

Föreläsning 8 Bipolära Transistorer I Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor G. alla 1 Komonentfysik - Kursöversikt iolära ransistorer

Läs mer

Pla$kondensator - Fälteffekt

Pla$kondensator - Fälteffekt Pla$kodesator - Fälteffekt gs 1V gs V gs V gs 3V + + + + + + + + + + + + + Metall P- typ halvledare Joiserade acceptoratomer (N A Hål Elektroer 16-4- 6 Föreläsig 5, Kompoe7ysik 16 1 Tröskelspäig stark

Läs mer

Elektronik. Lars-Erik Cederlöf

Elektronik. Lars-Erik Cederlöf Elektronik LarsErik Cederlöf 1 Ledare och isolatorer Ledare för elektrisk ström har atomer med fria rörliga laddningar i yttersta skalet. Exempel på ledare är metallerna koppar och aluminium. Deras atomer

Läs mer

Föreläsning 3 Extrinsiska Halvledare

Föreläsning 3 Extrinsiska Halvledare Föreläsig 3 xtrisiska Halvledare ergibad Driftström Dopig xtrisisk halvledare ffekt av temperatur Fermi-ivå 1 Kompoetfysik - Kursöversikt Bipolära Trasistorer Optokompoeter p-övergåg: strömmar och kapacitaser

Läs mer

Laboration: pn-övergången

Laboration: pn-övergången LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Halvledare. Transistorer, Förstärkare

Halvledare. Transistorer, Förstärkare Halvledare Transistorer, Förstärkare Om man har en två-ports krets v in (t) ~ v ut (t) R v ut (t) = A v in (t) A är en konstant: Om A är mindre än 1 så kallas kretsen för en dämpare Om A är större än 1

Läs mer

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13. /5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad

Läs mer

Halvledare. Periodiska systemet (åtminstone den del som är viktig för en halvledarfysiker)

Halvledare. Periodiska systemet (åtminstone den del som är viktig för en halvledarfysiker) Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N: GaN, ngan Blå (& vita) LED, UV lasrar

Läs mer

Föreläsning 8. MOS transistorn. IE1202 Analog elektronik KTH/ICT/EKT HT09/BM

Föreläsning 8. MOS transistorn. IE1202 Analog elektronik KTH/ICT/EKT HT09/BM Föreläsning 8 MOS transistorn Förstärkare med MOS transistorn t Exempel, enkel förstärkare med MOS IE1202 Analog elektronik KTH/ICT/EKT HT09/BM 1 Varför MOS transistorn Förstå en grundläggande komponent

Läs mer

Föreläsning 8. MOS transistorn Förstärkare med MOS transistorn Exempel, enkel förstärkare med MOS. IE1202 Analog elektronik KTH/ICT/EKT VT11/BM

Föreläsning 8. MOS transistorn Förstärkare med MOS transistorn Exempel, enkel förstärkare med MOS. IE1202 Analog elektronik KTH/ICT/EKT VT11/BM Föreläsning 8 MOS transistorn Förstärkare med MOS transistorn Exempel, enkel förstärkare med MOS 1 Varför MOS transistorn Förstå en grundläggande komponent för både digitala och analoga kretsar Är idag

Läs mer

nmosfet och analoga kretsar

nmosfet och analoga kretsar nmosfet och analoga kretsar Erik Lind 22 november 2018 1 MOSFET - Struktur och Funktion Strukturen för en nmosfet (vanligtvis bara nmos) visas i fig. 1(a). Transistorn består av ett p-dopat substrat och

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Elektronik 2017 EITA35

Elektronik 2017 EITA35 Elektronik 2017 EITA35 OP-Amp Komplex Återkoppling. Klippning. Maximal spänning/ström. Gain-bandwidthproduct. Offset. Slewrate Avkopplingskondensator Transistorer - MOSFETs Lab 4 Anmälan på hemsidan Projektnummer

Läs mer

Föreläsning 1. Elektronen som partikel (kap 2)

Föreläsning 1. Elektronen som partikel (kap 2) Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV måsignal FET A, f t MO- Kondensator D/MO- kamera Flash- minne 1 måsignalmodell A kapacitanser i mä1nadsmod δu Isolator io 2 D N ++ N ++ P- typ halvledare δ Q δu >>

Läs mer

FÖRELÄSNING 3. Förstärkaren. Arbetspunkten. Olika lastresistanser. Småsignalsschemat. Föreläsning 3

FÖRELÄSNING 3. Förstärkaren. Arbetspunkten. Olika lastresistanser. Småsignalsschemat. Föreläsning 3 FÖRELÄSNING 3 Förstärkaren Arbetspunkten Olika lastresistanser Småsignalsschemat Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(36) Förstärkaren (S&S4 1.4, 5.2, 5.4, 5.5, 5.6/

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

Physics to Go! Part 1. 2:a på Android

Physics to Go! Part 1. 2:a på Android Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2 Moment 1 - Analog elektronik Föreläsning 2 Transistorn del 2 Jan Thim 1 F2: Transistorn del 2 Innehåll: Fälteffekttransistorn - JFET Karakteristikor och parametrar MOSFET Felsökning 2 1 Introduktion Fälteffekttransistorer

Läs mer

Elektronik 2015 ESS010

Elektronik 2015 ESS010 Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer

Läs mer

Föreläsning 9 Transistorn och OP-förstärkaren

Föreläsning 9 Transistorn och OP-förstärkaren Föreläsning 9 Transistorn och OP-förstärkaren /Krister Hammarling 1 Transistorn Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch Felsökning

Läs mer

Fasta Tillståndets Fysik - Elektroniska material

Fasta Tillståndets Fysik - Elektroniska material Fasta Tillståndets Fysik Elektroniska material Formelsamling 00 Elektroner klassiskt F q( E+ v B) U R I, J σe N J ( e)v V d Lorentzkraft Ohms lag v d ee τ m Drifthastighet τ kollisionstid md + dt τ v F

Läs mer

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna FÖRELÄSNING 2 Repetition: Nätanalys för AC Repetition: Elektricitetslära Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(49) Repetition: Nätanalys

Läs mer

Föreläsning 3 Extrinsiska Halvledare

Föreläsning 3 Extrinsiska Halvledare Föreläsig 3 xtrisiska Halvledare ergibad Drift/Diffusio Doig xtrisisk halvledare ffekt av temeratur Fermi-ivå 013-03-13 Föreläsig 3, Komoetfysik 013 1 Komoetfysik - Kursöversikt Biolära Trasistorer Otokomoeter

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors Transistorswitchen. Laboration E25 ELEKTRO

UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors Transistorswitchen. Laboration E25 ELEKTRO UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors 1997-01-14 Transistorswitchen Laboration E25 ELEKTRO Laboration E25 Transistorswitchen 2 Nyckelord Switch, bottnad- och strypt

Läs mer

Elektronik 2018 EITA35

Elektronik 2018 EITA35 Elektronik 2018 EITA35 Föreläsning 12 Halvledare PN-diod Kretsanalys med diodkretsar. 1 Labrapport Gratisprogram för att rita kretsar: http://www.digikey.com/schemeit/ QUCS LTSPICE (?) 2 Föreläsningen

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentamen ETE5 Ellära och elektronik för F och N, 2009 0602 Tillåtna hjälpmedel: formelsamling i kretsteori och elektronik. Observera att uppgifterna inte är ordnade i svårighetsordning. Alla lösningar

Läs mer

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper FÖRELÄSNING 4 MOSFET:ens in och utimpedanser Småsignalsmodeller Spänning och strömstyrning Stora signaler MOSFET:ens högfrekvensegenskaper Per LarssonEdefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor 0/3/204 0:24 Nodanalys metod 0. Förenkla schemat. liminera ensamma TST20 lektronik 2. Jorda en nod 3. nför nodpotentialer 4. nför referensriktningar på strömmarna i nätet 5. Sätt upp ekvation för varje

Läs mer

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag: 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Allmänt Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur. l A Allmänt. 8.1.

Allmänt Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur. l A Allmänt. 8.1. 8.1.1. Allmänt 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur

Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Labb-PM MCC086 Mikroelektronik 2016

Labb-PM MCC086 Mikroelektronik 2016 Labb-PM MCC086 Mikroelektronik 2016 Syfte med labben: Att få praktisk och experimentell erfarenhet av mätningar på pn-dioden och MOSFET, samt uppleva komponenternas egenskaper. Mäta på dioder och transistorer

Läs mer

Nanoelektronik. FAFA10 Kvantfenomen och nanostrukturer HT Martin Magnusson.

Nanoelektronik. FAFA10 Kvantfenomen och nanostrukturer HT Martin Magnusson. Nanoelektronik FAFA10 Kvantfenomen och nanostrukturer HT 2014 Martin Magnusson martin.magnusson@ftf.lth.se Fält, potentialer mm i vakuum Lägg en spänning mellan två elektroder Stoppa dit en elektron e

Läs mer

Grindar och transistorer

Grindar och transistorer Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.

Läs mer

12. Kort om modern halvledarteknologi

12. Kort om modern halvledarteknologi 12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till

Läs mer

12. Kort om modern halvledarteknologi

12. Kort om modern halvledarteknologi 12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till

Läs mer

ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04

ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04 Tabell 1: Några utvalda naturkonstanter: Namn Symbol Värde Enhet Ljushastighet c 2,998.10 8 m/s Elementarladdning e 1,602.10 19 C Plancks konstant h 6,626.10 34 Js h 1,055.10 34 Js Finstrukturkonstanten

Läs mer

CMOS-inverteraren. CMOS-logik. Parasitiska kapacitanser. CMOS-variationer: Pseudo-NMOS och PTL

CMOS-inverteraren. CMOS-logik. Parasitiska kapacitanser. CMOS-variationer: Pseudo-NMOS och PTL FÖRELÄSNING 6 CMOS-inverteraren CMOS-logik Parasitiska kapacitanser CMOS-variationer: Pseudo-NMOS och PTL Per Larsson-Edefors, Chalmers tekniska högskola ED351 Kretselektronik 1(46) CMOS-inverteraren (S&S4:

Läs mer

Bilaga 2. Ackrediteringens omfattning. Kemisk analys /1313

Bilaga 2. Ackrediteringens omfattning. Kemisk analys /1313 Ackrediteringens omfattning Laboratorier Degerfors Laboratorium AB Degerfors Ackrediteringsnummer 1890 A003432-001 Kemisk analys Oorganisk kemi Aluminium, Al ASTM E1086:2014 OES Stål ASTM E1621:2013 XRF

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar Översikt Pietro Andreani Institutionen för elektro- och informationsteknik unds universitet ite historik nmofet Arbetsområden pmofet CMO-inverterare NOR- och NAN-grindar MO-teknologi å och nu Metal-e-silicon

Läs mer

Elektriska och magnetiska fält Elektromagnetiska vågor

Elektriska och magnetiska fält Elektromagnetiska vågor 1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 204 08 28. Beräkna den totala kraft på laddningen q = 7.5 nc i origo som orsakas av laddningarna q 2 = 6 nc i punkten x,y) = 5,0) cm och q 3 = 0 nc i x,y) = 3,4) cm.

Läs mer

HALVLEDARES ELEKTRISKA KONDUKTIVITET

HALVLEDARES ELEKTRISKA KONDUKTIVITET HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket

Läs mer

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1 3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta

Läs mer

Den bipolä rä tränsistorn

Den bipolä rä tränsistorn Komponentfysik ESS3 Laborationshandledning av: Martin Berg Elvedin Memišević Den bipolä rä tränsistorn VT-213 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

Välkomna till kursen i elektroniska material!

Välkomna till kursen i elektroniska material! Välkomna till kursen i elektroniska material! Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare, kursansvarig)

Läs mer

Definition av kraftelektronik

Definition av kraftelektronik F1: Introduktion till Kraftelektronik Definition av kraftelektronik Den enegelska motsvarigheten till kraft elektronik är Power electronics. På Wikipedia kan man hitta följande definition: Power electronics

Läs mer

Laboration N o 1 TRANSISTORER

Laboration N o 1 TRANSISTORER Institutionen för tillämpad fysik och elektronik Umeå universitet Patrik Eriksson 22/10 2004 Analog elektronik 2 Laboration N o 1 TRANSISTORER namn: datum: åtgärda: godkänd: Målsättning: Denna laboration

Läs mer

Formelsamling i kretsteori, ellära och elektronik

Formelsamling i kretsteori, ellära och elektronik Formelsamling i kretsteori, ellära och elektronik Elektro- och informationsteknik Lunds tekniska högskola Februari FORMELSAMLING I KRETSTEORI, ELLÄRA OCH ELEKTRONIK Kretsteori Komplexvärden Realdelskonvention:

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

Tentamen i Krets- och mätteknik, fk, ETEF15. Exempeltentamen

Tentamen i Krets- och mätteknik, fk, ETEF15. Exempeltentamen Lunds Tekniska Högskola, Institutionen för Elektro- och informationsteknik Ingenjörshögskolan, Campus Helsingborg Tentamen i Krets- och mätteknik, fk, ETEF15 Exempeltentamen Uppgifterna i tentamen ger

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i

Läs mer

Tentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07

Tentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07 Tentamen i Elektronik, ESS00, del 4,5hp den 9 oktober 007 klockan 8:00 :00 För de som är inskrivna hösten 007, E07 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00,

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren FÖRELÄSNING 12 Olika sätt att bygga förstärkare Differentialförstärkaren (översikt) Strömspegeln Till sist: Operationsförstärkaren Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer