3.8. Halvledare. [Understanding Physics: ] Den moderna fysikens grunder, Tom Sundius
|
|
- Arne Isaksson
- för 9 år sedan
- Visningar:
Transkript
1 3.8. Halvledare [Understanding Physics: ] Som framgår av fig , kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta energin i valensbandet. Vid absoluta nollpunkten är det högsta besatta energitillståndet i toppen av valensbandet, så att Fermienergin E F = E v. Då T > 0 K är Fermienergins definition inte lika självklar. Energin för det högsta besatta tillståndet verkar att befinna sig mellan E c och E v, men det finns inga tillåtna energinivåer i gapet. Vi skall se, hur man kan definiera E F i detta fall. En intrinsisk halvledare är ett fast ämne som är en ren halvledare (utan föroreningar och defekter), där varje valenselektron som flyttar till ledningsbandet lämnar efter sig ett hål i valensbandet. Antalet elektroner i ledningsbandet kommer därför att vara lika stort som antalet hål i valensbandet, dvs antalet elektroner vilkas energier är nära E c kommer att vara lika stort som antalet hål med energier nära E v. Vi kan uttrycka detta förhållande med hjälp av Fermi Diracs funktion genom att sätta F (E c ), som är sannolikheten för att en elektron i ledningsbandet skall ha en energi nära E c, lika med 1 F (E v ). Den moderna fysikens grunder, Tom Sundius
2 Det är sannolikheten för att inte finna en elektron i valensbandet med en energi nära E v. Vi får alltså ekvationen 1 e (E c E F )/kt + 1 = 1 1 e (E v E F )/kt + 1 Lösningen till denna ekvation är E F = 1 2 (E c + E v ), som man kan visa direkt, eller genom substitution. I en intrinsisk halvledare ligger alltså Fermienergin mitt i energigapet (se fig ). Den icke relativistiska energin för en fri elektron, uttryckt som funktion av rörelsemängden är en parabel: E = p 2 /(2m). I en halvledare beror inte elektronens energi av rörelsemängden på samma sätt, eftersom elektronerna växelverkar med gittrets joner (se fig ). Energin kan då uttryckas med ekvationen p2 E = E 0 + 2m, där m kallas elektronens effektiva massa 1, och E 0 är dess minimienergi, nämligen den minsta energi, som elektronen kan ha i ledningsbandet (E c ). Den effektiva massan kan definieras genom relationen m = F/a, där F betecknar den yttre kraften som verkar på elektronen, och a är den acceleration som alstras av den yttre kraften och växelverkan med gittrets joner. Vanligen är m < m, såsom t.ex. för galliumarsenid (GaAs), där m /m För germanium är förhållandet För hål är den effektiva massan ofta större, t.ex. för GaAs är m = 0.45m. 1 definierad som m = 2 2 E/ 2 k 2 Den moderna fysikens grunder, Tom Sundius
3 Växelverkan mellan hålen i valensbandet och gittrets joner är annorlunda än växelverkan mellan elektronerna i ledningsbandet och jonerna i gittret. Därför är den effektiva massan ofta större för hålen, än för elektronerna. För hål är E 0 = E v, hålets minimienergi (se fig , eller bilden nedan). Genom en process, som kallas dopning, kan man införa extra laddningsbärare (föroreningar) i en halvledare. En dopad halvledare kallas också extrinsisk halvledare. Som ett exempel skall vi betrakta dopning av en germaniumkristall med arsenikatomer. Enligt tabell 19.2 (s. 604) har en germaniumatom fyra valenselektroner (4s 2 4p 2 ), medan arsenik har fem valenselektroner (4s 2 4p 3 ). Varje arsenikatom medför därför en extra elektron till germaniumkristallen; den är en donator. Denna materialtyp kallas därför en halvledare av n typ. Den moderna fysikens grunder, Tom Sundius
4 Den extra elektronen är endast svagt bunden till arsenikjonen, vilket vi kan förstå om vi jämför dess bindningsenergi med bindningsenergin för en typisk atom. Enligt Bohrs modell är bindningsenergin för väte E = me4 32π 2 2 ɛ 2 0 Om vi tillägger en elektron till germaniumgittret, kommer energin därför att minska, eftersom m avtar till m. Dessutom kommer elektronens banradie (r = 4π 2 ɛ 0 e 2 m n2 ) att växa, då m minskar. Eftersom elektronerna passerar genom germaniumatomerna, så kommer den elektriska permittiviteten ɛ = ɛ r ɛ 0 att öka, och detta reducerar också bindningsenergin ytterligare. Det förefaller därför som om de extra, svagt bundna elektronerna besätter extra energinivåer, kallade donatornivåer, med energin E d strax under ledningsbandet E c (fig ). De extra elektronerna befinner sig mindre än kt från ledningsbandet, så att de kan lätt exciteras termiskt till ledningsbandet vid rumstemperatur (se fig b, där T > 0 K). Det är också möjligt att alstra hål i valensbandet genom att lägga till föroreningar med ett mindre antal elektroner i det yttersta skalet än vad gitteratomerna har. Dessa kallas för acceptor föroreningar. Bor har t.ex. tre valenselektroner 2s 2 2p, och medför ytterligare hål till en germaniumkristall. Därvid alstras en halvledare av p typ. Slutresultatet är att extra obesatta energinivåer (acceptornivåer) med energin E a uppkommer strax ovanför E v (se fig ). Elektroner från valensbandet exciteras lätt till dessa acceptornivåer vid rumstemperatur, och lämnar efter sig hål i valensbandet, som fungerar som p bärare av laddning. Den moderna fysikens grunder, Tom Sundius
5 Fermienergins läge i en extrinsisk halvledare beror på de relativa tätheterna för laddningsbärare av p och n typ. Dessa tätheter är inte längre lika stora som de var i intrinsiska halvledare. I en halvledare av n typ ligger E F strax under E c, dvs högre än i en intrinsisk halvledare. I en halvledare av p typ är E F däremot lägre, strax ovanför E v. En halvledare kan absorbera en foton endast om fotonen har tillräckligt med energi för att excitera en elektron från valensbandet (eller från en acceptor eller donator nivå, om det är fråga om en extrinsisk halvledare) till en obesatt nivå i ledningsbandet. Fotonens frekvens f måste således uppfylla villkoret hf > E g, där E g betecknar energigapet mellan valensbandet (eller en acceptor eller donatornivå, om det är fråga om en extrinsisk halvledare) och ledningsbandet. Om hf < E g, så kan fotonen inte absorberas på detta sätt, och passerar då igenom halvledaren. Halvledaren är därför genomskinlig för sådana frekvenser. Då en halvledare utsätts för fotoner med energin hf > E g, så kommer ett ökat antal laddningsbärare av n och p typ att alstras, vilket leder till ökad ledningsförmåga. Halvledare kan därför användas som fotodetektorer, apparater som t.ex. mäter ljusintensiteten i en kameras exponeringsmätare, eller kopplar på belysningen i skymningen och av vid gryningen. Den moderna fysikens grunder, Tom Sundius
6 3.9. Övergångar i ledare och halvledare I samband med den fotoelektriska effekten i avsnitt 13.3 definierades utträdesarbetet φ för en metall som elektronens bindningsenergi i metallen, dvs den minsta energi, som behövs för att frigöra en elektron. I bandmodellen kan utträdesarbetet tolkas som skillnaden i energi mellan Fermienergin och elektronens energi då den är just så stor, att den kan frigöra sig från metallen. Detta illustreras i fig , där den potentiella energin utanför metallen (dvs utanför lådan) antas vara E = 0. Den termojoniska emissionen (emission av elektroner i vakuum från metalliska ytor) kan nu förklaras (se fig ). Vid höga temperaturer, dvs stora värden av kt, kommer elektronernas fördelning över de tillgängliga energinivåerna att överskrida E F (jfr Fermi-Diracs fördelning). Om T är tillräckligt stor, får endel av elektronerna en energi som är större än E F + φ, och utträder ur metallen. Denna process, som kallas termojonisk emission, har stor praktisk betydelse, eftersom den leder till emission av elektroner från glödkatoden i elektronrör. Vi skall nu studera vad som händer med elektronerna, då två fasta ämnen placeras i kontakt. Vi betraktar först två ledare. Antag att utträdesarbetet för två metaller A och B är φ A, respektive φ B (φ A < φ B ). Då metallerna placeras i kontakt med varandra, kommer elektronerna att uppsöka de lägsta energitillstånden. Den moderna fysikens grunder, Tom Sundius
7 Då uppstår diffusion av elektroner mellan A och B genom övergången, gränsytan mellan de två metallerna. Processen fortskrider ända tills energin för den högsta besatta energinivån är lika stor i båda metallerna, dvs tills båda metallerna har lika stor Fermienergi E F (se fig ). I jämvikt kommer B att ha en negativ nettoladdning, och A en positiv nettoladdning. Det krävs energi för att flytta en positiv laddning från metallen B till metallen A, varför det finns en elektrisk potentialskillnad V C (kontaktpotential) i övergången mellan de två metallerna. Observera, att kontaktpotentialen inte kan mätas med en voltmätare som kopplas mellan A och B, eftersom det kommer att uppstå ytterligare potentialskillnader, då voltmätarens elektroder berör metallerna. Dessa potentialskillnader kommer att upphäva kontaktpotentialen vid övergången (annars skulle det uppstå en nettoström utan tillförsel av energi, vilket strider mot termodynamikens lagar). Kontaktpotentialerna förändras med temperaturen så, att om två övergångar mellan olika metaller, såsom koppar och järn, har olika temperatur, så upphäver kontaktpotentialerna inte längre varandra, och man kan observera en emk med en voltmätare (fenomenet upptäcktes av Thomas Seebeck år 1821). Energin som krävs för att alstra denna ström uppstår genom värmeutveckling. Den elektromotoriska kraften beror av temperaturskillnaden mellan övergångarna, och således kan apparaten (som kallas termoelement) användas för att mäta temperatur. Den moderna fysikens grunder, Tom Sundius
8 Observera, att det potentialsteg, som en elektron ser, då den rör sig från A till B (fig , se nedan), dvs e( V C ) = +ev C, är lika stort som det som ses av en positiv laddning +e, som rör sig från B till A. Positiva potentialsteg, som positiva laddningar utsätts för i övergångar av den typ som avbildas i fig , verkar således också som positiva potentialsteg på elektroner, som rör sig i motsatt riktning. Detta är ett allmänt resultat, som vi ofta skall dra nytta av. Potentialsteget i fig innebär en stigande potential både för positiva laddningar (såsom hål) som rör sig mot höger, och för negativa laddningar (såsom elektroner) som rör sig mot vänster. Å andra sidan är det ett potentialfall både för positiva laddningar, som rör sig mot vänster, och negativa laddningar, som rör sig mot höger. Den moderna fysikens grunder, Tom Sundius
9 Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra. Det är ett exempel på den allmänna termodynamiska principen att temperaturer (och energier) jämnas ut hos system i jämnvikt. Principen kan tillämpas på två intrinsiska halvledare i kontakt med varandra eller en enda halvledare, där två skilda regioner har dopats var för sig. Då en halvledare av n typ är i kontakt med en halvledare av p typ, uppstår en pn övergång. Vi skall studera en pn övergång där halvledarna av n och p typ har tillverkats genom att dopa olika delar av samma intrinsiska halvledare på olika sätt. Fermienergierna E F n och E F p för halvledarna av p och n typ är sinsemellan olika (fig ). Energigapen är däremot lika, emedan halvledarna har tillverkats genom dopning av samma intrinsiska halvledare. Då övergången uppstår, kommer både lednings och valensbandet att röra på sig, så att den interna potentiella energin ev C åstadkommer att Fermienergierna i de två områdena blir lika stora. Detta sker så, att hål i p sidan diffunderar till n sidan, och att elektroner på n sidan diffunderar till p sidan tills det elektriska fältet, som alstras på grund av laddningsseparationen, stoppar diffusionen. Om sålunda E F n och E F p är Fermienergierna i de två områden, där halvledarna inte är i kontakt, så kan ev c (energin som behövs för att flytta E F p till E F n) beräknas ur skillnaden E F n E F p = ev C Den moderna fysikens grunder, Tom Sundius
10 Antag nu, att E cp och E cn är de lägsta energierna i ledningsbanden i områdena av p, respektive n typ (sedan övergången uppstått). Vi får då E cp E cn = ev C. Den invändigt genererade potentialen V C kan anses verka över ett område av ändlig storlek, som kallas för utarmningsområdet. Som framgår av fig , så är detta det område där hålen och elektronerna samlas för att återförenas. Denna process åstadkommer den inre potentialskillnaden och jämnar ut Fermienergierna. Fastän V C är liten, av storleksordningen 1 V, så kan det elektriska fältet E = V c /d i utarmningsområdet vara mycket stort (eftersom utarmningsområdet är så smalt, ca 1 µm). Observera att i verkliga material är kanterna av utarmningsområdet oskarpa. Förutom n och p bärarna, som alstras genom dopning, kommer ett litet antal elektron hålpar att spontant bildas både i regionerna av p typ och n typ på grund av termisk excitation i halvledaren. Hål, som alstras på n sidan återförenas med elektroner, och på samma sätt kommer elektroner, som alstras på p sidan att återförenas med hål. Nettoresultatet är en ökning av den negativa laddningen på p sidan, och av den positiva laddningen på n sidan, vilket leder till en nettoström till höger, som kallas rekombinationsströmmen I r (se fig , eller figuren nedan). Den moderna fysikens grunder, Tom Sundius
11 I jämvikt balanseras rekombinationsströmmen av en termisk ström I t till vänster (fig ). Denna uppstår av hål, som alstras nära utarmningsområdet på n sidan, och sedan faller nedför potentialfallet V C till p-sidan, samt av elektroner, som alstras på p sidan och sedan rör sig uppför V C till n sidan. Den termiska strömmen ökar med temperaturen, men är oberoende av V C. Observera, att kontaktpotentialen V C inte är en yttre effekt, utan en egenskap för pn övergången. Den moderna fysikens grunder, Tom Sundius
12 Vi skall härnäst se vad som händer, då en yttre spänning V ext påläggs en pn övergång. Övergången sägs då vara förspänd. Vi skall till en början studera ett fall som avbildas i fig Där påläggs en yttre spänning V ext så, att potentialskillnaden mellan n och p sidan minskas från V C till V C V ext (framspänning). I figuren visas också bandenergierna. Av utseendet på potentialenergin framgår att framspänningen minskar på det potentialsteg, som hålen utsätts för då de rör sig från vänster till höger. Elektronerna diffunderar också mycket lättare från n sidan till p sidan. Det kommer alltså att finnas en positiv nettoström från p sidan till n sidan, som snabbt växer då V ext växer, och därmed V C V ext avtar. Dessutom finns det en mycket svag motverkande ström som beror på termiskt alstrade hål i n sidan och elektroner i p-sidan, som faller nedför potentialbarriären, men denna ström är helt försumbar jämfört med strömmen som alstras av framspänningen. Resultatet är, att framspänningen ökar rekombinationsströmmen, men förändrar inte den termiska strömmen, varför det finns en nettoström från p till n sidan. Samtidigt minskar också bredden av utarmningsskiktet. Då den yttre spänningen påläggs så, att potentialskillnaden mellan n och p sidorna ökas från V C till V C + V ext, så sägs övergången vara backspänd. Såsom fig visar, kommer både hålen som rör sig från vänster mot höger och elektronerna som rör sig från höger mot vänster att ha ett större potentialsteg att övervinna, och strömmen blir därför mycket liten. Den moderna fysikens grunder, Tom Sundius
13 Observera dock, att det finns en mycket svag termisk ström (oberoende av den pålagda spänningen) som beror på hål som alstras på n sidan och elektroner, som uppstår på p sidan och faller ned för potentialsteget. Observera därtill, att bredden av utarmningsskiktet ökar, då en backspänning påläggs, dvs då övergångens potentialskillnad växer. Strömmen (I) som produceras av framspänningen och backspänningen i en pn övergång har ritats som funktion av potentialskillnaden (V ) i fig (se nedan). Detta diagram kallas för pn övergångens I V karaktäristik. Övergångens motstånd V/I som beräknas i en godtycklig punkt på karaktäristiken, är i allmänhet litet för en framspänd övergång, men stort för en backspänd. En pn övergång följer inte Ohms lag, dvs resistansen förändras, då V ändras. Den moderna fysikens grunder, Tom Sundius
14 Approximativt kan kurvan beskrivas med ekvationen 2 I = I t (e ev/kt 1), som visar att strömmen också beror av absoluta temperaturen T. I V karaktäristiken i fig visar att ström endast kan passera i en enda riktning genom en pn övergång. En apparat, som endast leder ström i en bestämd riktning kallas diod (likriktare). Denna riktning kallas ledriktning, den motsatta riktningen kallas spärriktning. En ideal diod släpper endast igenom ström i ledriktningen, men en reell diod approximerar oftast ganska väl en ideal diod. Om en foton med frekvensen f > E g /h kommer i närheten av utarmningsskiktet av en pn övergång, kan en elektron exciteras upp till ledningsbandet, vilket ger upphov till ett hål elektronpar. Hål som alstras i n regionen nära en övergång och elektroner som produceras i p regionen faller ned för potentialbarriären och alstrar en ström, som läggs till den termiska strömmen I t. Processen åstadkommer en positiv nettoladdning på p sidan och en negativ nettoladdning på n sidan, så att potentialbarriären avtar till V C V där V är en potentialskillnad som bildas över dioden och kan mätas med en voltmätare. Emedan potentialbarriären är lägre vid övergången, kommer rekombinationsströmmen att växa, och jämvikt nås då I r = I t + I f, där I f betecknar strömmen som beror på de inkommande fotonerna. Då den yttre kretsen kortsluts, går V mot noll, och potentialbarriären ökar till V C. 2 Shockleys ekvation, uppkallad efter en av transistorns uppfinnare, William Shockley Den moderna fysikens grunder, Tom Sundius
15 Således blir I r = I t och en nettoström I f uppstår, som levererar kraft till den yttre kretsen. Effekten kan utnyttjas i en solcell för att alstra elkraft från solljus. Halvledare med mycket små bandgap används i solceller så att också solljus med den längsta våglängden absorberas. Produktion av elektron hålpar genom ljus som faller nära utarmningsskiktet kan också utnyttjas i en fotodiod för att detektera ljus. Övergången är då backspänd, så att den termiska strömmen I t växer, då ljusintensiteten ökar. Fotodioden kan användas för att mäta ljusets intensitet. Elektron hålpar alstras också av laddade partiklar då de passerar genom ett utarmningsskikt. Denna effekt används i partikeldetektorer för att detektera laddade partiklar, t.ex. sådana som alstras vid radioaktivt sönderfall. En lysdiod (ljusemitterande diod) (LED) är egentligen en solcell. Då en framspänning påläggs en pn övergång, så kommer elektroner att röra sig från n sidan till p sidan och hål från p sidan till n sidan. Då elektronerna kommer fram till p sidan kommer de att återförenas med tillgängliga hål strax utanför utarmningsskiktet, och avge sin energi i form av fotoner (dvs ljus). På samma sätt kommer hål som kommer fram till n sidan att förenas med elektroner och åstadkomma ljus. En sådan diod kan alltså användas som belysning i en elektronisk display. De är kompakta, använder lite energi och kan snabbt kopplas på och av. Den moderna fysikens grunder, Tom Sundius
16 Ett bra exempel på tunnelfenomenet är en annan typ av halvledardioder, nämligen tunneldioden, där både n och p regionerna är kraftigt dopade. Bandstrukturen för en sådan diod visas i fig (se ovan). Utarmningsskiktet är så tunt (ca 1 nm) att nedre delen av n sidans ledningsband delvis täcker övre delen av p sidans valensband. Eftersom det finns en hög koncentration av föroreningar, kommer donatornivåerna att blandas med nivåerna i nedre delen av ledningsbandet i n regionen, och Fermienergin flyttar till ledningsbandet. Motsvarigt blandas acceptornivåerna med nivåerna i övre delen av valensbandet på p sidan och Fermienergin för n sidan flyttar ned under bandets topp. Den moderna fysikens grunder, Tom Sundius
17 Emedan utarmningsskiktet har samma tjocklek som elektronens de Broglie våglängd i halvledaren, så kan elektronerna passera genom det förbjudna energibandet på grund av tunneleffekten (se fig ). Elektronerna kan röra sig i båda riktningarna utan pålagd spänning till följd av tunneleffekten. I jämvikt är Fermienergin densamma överallt i dioden. Då man pålägger en liten framspänning, så kommer bandstrukturen att förändras så, att den fyllda delen av ledningsbandet i n regionen är på samma nivå som den ofyllda delen av valensbandet i p regionen (se fig ). Då kan endast elektronerna i n regionen röra sig med hjälp av tunneleffekten till p regionen (den motsvarande strömmen rör sig mot höger). Då framspänningen ökas, kommer banden inte längre att täcka varandra, utan tunneleffekten upphör helt (se fig ). Dioden uppför sig då som en normal pn övergång. I V karaktäristiken för en tunneldiod visas i fig Då framspänningen är liten, uppstår en förstärkt ström pga tunnelfenomenet. Den praktiska betydelsen av tunneleffekten ligger i den hastighet varmed elektronerna kan röra sig, som är betydligt större än diffusionshastigheten genom utarmningsskiktet. Tunneldioder används därför som snabba omkopplare i datakretsar. Den moderna fysikens grunder, Tom Sundius
18 3.10. Transistorn Transistorer är halvledare med tre anslutningar. En ström som flyter mellan ett par anslutningar kan regleras av en potential mellan ett annat par. Vi skall studera två huvudtyper, nämligen den bipolära transistorn och fälteffekttransistorn. Det finns två olika typer av bipolära transistorer, nämligen n p n, där ett tunt skikt av en halvledare av p typ är inskjutet mellan två halvledare av n typ, samt p n p, där där ett tunt skikt av en halvledare av n typ är inskjutet mellan två halvledare av p typ (se fig ). Transistorn kallas bipolär, eftersom både elektroner och hål fungerar som bärare av laddning. En bipolär transistor består därför av två pn övergångar. De tre anslutningarna som kopplas, kallas emitter, bas och kollektor. Bandstrukturen för en n p n bipolär transistor utan yttre förspänning visas i fig Banden ordnar sig så, att Ferminivån hålls konstant på det sätt som vi tidigare har beskrivit. Om en framspänning V eb kopplas in mellan emitter och bas och en backspänning V bc sätts in mellan bas och kollektor, får vi en koppling som kallas gemensam bas koppling (fig ). Bandenergierna justerar sig såsom beskrivits för framspända och backspända övergångar. Emitterregionen är starkare dopad än basen, så att strömmen till största delen består av elektroner, som rör sig från vänster till höger (dvs från emitter till bas). Den moderna fysikens grunder, Tom Sundius
19 I fig visas de elektriska potentialer, som elektronerna och de positiva laddningarna påverkas av då de rör sig genom övergången. Eftersom basen är så tunn och har en låg koncentration av hål, så kan inte den bipolära n p n transistorn beskrivas som två oberoende ihopkopplade p n dioder. Emitter bas övergången är framspänd, så att en stor positiv ström I e flyter från bas till emitter, dvs en ström av elektroner kommer in i basområdet. På grund av att basområdet är så tunt, och hålkoncentrationen är där så låg, så kommer de flesta elektronerna inte att återförenas i basregionen, utan de diffunderar genom den till bas kollektor övergången där de faller ned för potentialsteget till kollektorn. Det obetydliga antalet elektroner som rekombineras i basen kan beskrivas av en svag basström I b, såsom visas i fig (se nedan). Strömmen genom emittern är därför huvudsakligen en kollektorström, och vi kan skriva I e = I b + I c. Den moderna fysikens grunder, Tom Sundius
20 Strömmarna i en gemensam bas koppling för en n p n bipolär transistor visas i fig Strömförstärkningen i denna koppling definieras som α = I c /I e. Eftersom I c alltid är något mindre än I e, så kommer strömförstärkningen att var något mindre än 1. En annan viktig koppling är gemensam emitter kopplingen, där framspänningen läggs över bas emitter och emitter kollektor övergångarna. Den visas i bilden nedan (20.55). Också i detta fall gäller I e = I b + I c. Strömförstärkningen i denna koppling definieras som β = I c /I b. Eftersom I e I c = I c + I b I c = 1 + I b I c så är varav följer β = α 1 α. 1 α = β, Den moderna fysikens grunder, Tom Sundius
21 Eftersom α är mycket nära 1 (0.97 eller 0.98), så blir strömförstärkningen i den gemensamma emitter kopplingen stor, vanligen Eftersom en liten ström (I b ) kommer att styra en stor ström (I e ) så kan transistorn i detta fall användas som en strömförstärkare. Transistorn har en vidsträckt användning som kretselement: strömbrytare, förstärkare, etc. Genom att insätta motstånd i kretsen, kan den användas som spänningsförstärkare. Den kan också användas för att koppla på en ström i ett yttre motstånd, som är kopplat till kollektorn. Vi skall nu se på fälteffekttransistorn. Vi har tidigare noterat, att resistansen i en framspänd pn övergång är låg. Därför är också resistansen för en polär transistor i gemensam bas koppling låg. Den är högre i gemensam emitter koppling, men inte tillräckligt hög för många användningar. Därför används istället en annan transistortyp, fälteffekttransistorn (FET): En n kanals FET (även kallad JFET, se fig ) kan konstrueras av ett halvledarblock av n typ med två anslutningar, source ( källa ) och drain ( utflöde ) i varsin ända (kallas även för emitter och kollektor) samt en halvledare av p typ, kallad styre eller grind, som är fäst längs den ena sidan. Då en spänning påläggs som i figuren, kommer elektronerna att röra sig från källan till utflödet genom n-kanalen. pn övergången är backspänd, så att halvledarna nära övergångsskiktet kommer att tömmas på laddningsbärare. Ju högre backspänningen är, desto mera kommer utarmningsområdet att utbreda sig mot n kanalen och desto mer minskar strömmen. Grindspänningen kommer således att kontrollera strömmen som går mellan kollektorerna. Den moderna fysikens grunder, Tom Sundius
22 Mycket litet ström går genom grinden på grund av backspänningen, så att denna transistortyp kommer att ha en mycket hög ingångsimpedans. Fälteffekttransistorn kommer därför att kontrolleras av spänningen, i motsats till den bipolära transistorn, som kontrolleras av strömmen. Strömmen transporteras endast av en typ av laddningsbärare, i detta fall elektroner, och fälteffekttransistorn kallas därför en unipolär transistor. I praktiken tillverkas transistorer inte genom att förena skilda stycken av dopade halvledare, utan genom att diffundera acceptor eller donatoratomer i gasform på en ytterst tunn halvledarkristall. Områdena, som skall dopas, avgränsas genom maskering. På detta sätt kan man konstruera integrerade kretsar (fig ), som innehåller miljontals transistorer och andra komponenter utgående från en enda halvledarkristall, som är på sin höjd några mm i genomskärning. Den moderna fysikens grunder, Tom Sundius
23 3.11. Hall effekten Då laddningsbärare i en ledare eller en halvledare placeras i ett magnetiskt fält, kommer de att utsättas för kraften F = qv B (se s. 497). Då de rör sig vinkelrätt mot ett likformigt magnetfält, uppträder därvid ett fenomen, som kallas Hall effekten efter Edwin Hall, som gjorde upptäckten 1879 under sina doktorandstudier. Denna effekt kan användas för att bestämma laddningsbärarnas drifthastighet, densitet och polaritet. Låt oss betrakta ett metallstycke med bredden b och tjockleken t som kopplas till en strömkälla (fig , och figuren nedan). Ett elektriskt fält i metallstycket kommer då att alstra en ström I, som rör sig mot höger. Den moderna fysikens grunder, Tom Sundius
24 Då ett likformigt magnetiskt fält B verkar vinkelrätt mot metallstyckets yta, så påverkas en positiv laddning q av kraften F B = qv d B; F B = qv d B i riktningen Q P. Här betecknar v d drifthastigheten, och P och Q är två punkter på var sin sida om metallstycket så att sträckan PQ är vinkelrät mot v d. På grund av denna kraft kommer de positiva laddningarna att röra sig mot P. Laddningarna, som samlat sig där alstrar ett elfält E y som till slut förhindrar att ytterligare laddningar rör sig i denna riktning. Potentialskillnaden som till följd härav uppstår mellan P och Q, kallas Hall spänningen: V H = V P V Q = E y b. Vid jämvikt kommer kraften som beror på det magnetiska fältet (F B ) att balansera F E, kraften som beror på det elektriska fältet E y. Således är qe y = qv d B, varav följer E y = v d B. Genom att substituera E y i uttrycket för Hall spänningen får vi V H = v d Bb. Som vi ser, kan drifthastigheten bestämmas genom att mäta V H, B och b. Uttrycket för strömtätheten, som vi använde för att beräkna den klassiska ledningsförmågan, kan skrivas J = I A = nqv d, där n är densiteten för laddningsbärarna. Den moderna fysikens grunder, Tom Sundius
25 Om vi substituerar uttrycket för v d ur den ekvation som nyss härleddes fås I = nqav H Bb Således kan n bestämmas genom att mäta I, A, V H, B och b. Vi har här antagit att laddningsbärarna är positiva, och att v d därför är riktad mot höger i fig Om laddningsbärarna är negativa, så är v d riktad mot vänster, och både q och v d byter förtecken i uttrycket för kraften F B. Således kommer F B också att verka i riktningen Q P om laddningsbärarna är negativa. I detta fall kommer alltså negativa laddningar att samlas i P. I punkten P är alltså den elektriska potentialen lägre än i Q, och Hall spänningens förtecken kommer alltså att ange polariteten för laddningsbärarna. Den moderna fysikens grunder, Tom Sundius
3.9. Övergångar... (forts: Halvledare i kontakt)
3.9. Övergångar... (forts: Halvledare i kontakt) [Understanding Physics: 20.9-20.12] Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra.
Läs mer3.4. Energifördelningen vid 0 K
3.4. Energifördelningen vid 0 K [Understanding Physics: 20.4-20.9] Vi skall först hitta på ett sätt att beräkna antalet energitillstånd för ett fermionsystem som funktion av energin. Vi kan göra detta
Läs merFöreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt
Läs merFöreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer
Läs merFöreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Läs merEtt materials förmåga att leda elektrisk ström beror på två förutsättningar:
Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt
Läs merMed ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:
530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Läs merAllmänt Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur. l A Allmänt. 8.1.
8.1.1. Allmänt 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Läs merMaterialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur
530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Läs merLösningar Tenta
Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål
Läs merOm inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande
Läs merInföra begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar
Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare
Läs merFöreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
Läs merTentamen i Komponentfysik ESS030, ETI240/0601 och FFF090
011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat
Läs mer4.3. Den kvantmekaniska fria elektronmodellen
4.3. Den kvantmekaniska fria elektronmodellen [Understanding Physics: 20.3-20.8] I kvantmekaniken behandlas ledningselektronerna som ett enda fermionsystem, på ett liknande sätt som elektronerna i flerelektronatomer.
Läs merVälkomna till kursen i elektroniska material!
Välkomna till kursen i elektroniska material! Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare, kursansvarig)
Läs merElektronik. Lars-Erik Cederlöf
Elektronik LarsErik Cederlöf 1 Ledare och isolatorer Ledare för elektrisk ström har atomer med fria rörliga laddningar i yttersta skalet. Exempel på ledare är metallerna koppar och aluminium. Deras atomer
Läs merKomponentfysik Introduktion. Kursöversikt. Hålltider --- Ellära: Elektriska fält, potentialer och strömmar
Komponentfysik 2014 Introduktion Kursöversikt Hålltider --- Ellära: Elektriska fält, potentialer och strömmar 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Lektor i nanoelektronik vid EIT sedan
Läs merFotoelektriska effekten
Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar
Läs merVälkomna till kursen i elektroniska material! Martin Leijnse
Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,
Läs merLecture 6 Atomer och Material
Lecture 6 Atomer och Material Bandstruktur Ledare Isolatorer Halvledare Påminnelse Elektronerna ordnas i skal (n) och subskal (l) En elektron specificeras med 4 kvanttalen n,lm l,m s Två elektroner kan
Läs merOm inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övning 1 VT-10 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande frågor: I Definiera
Läs merFöreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik
Läs merI princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.
Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del
Läs merVad är elektricitet?
Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret
Läs merTentamen i komponentfysik
Tentame komponentfysik 009-05-8 08 00-13 00 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat anges, så antag att det är kisel (Si),
Läs merVad är elektricitet?
Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret
Läs merIntroduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 7 Fälteffekttransistorer MOS-transistorn strömekvation MOS-transistorn kanal mobilitet Substrat bias effekt 7 Bipolar transistorn Introduktion Minoritets bärare
Läs mer3.7 Energiprincipen i elfältet
3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring
Läs merTILLÄMPAD ATOMFYSIK Övningstenta 1
TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Läs merMoment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1
Moment 1 - Analog elektronik Föreläsning 1 Transistorn del 1 Jan Thim 1 F1: Transistorn del 1 Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch
Läs merQ I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar.
Ellära 2 Elektrisk ström, kap 23 Eleonora Lorek Ström Ström är flöde av laddade partiklar. Om vi har en potentialskillnad, U, mellan två punkter och det finns en lämplig väg rör sig laddade partiklar i
Läs merIntroduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g
Läs merHALVLEDARES ELEKTRISKA KONDUKTIVITET
HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket
Läs merMätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.
Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan
Läs merHALVLEDARE. Inledning
HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa
Läs merAtomer, ledare och halvledare. Kapitel 40-41
Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet
Läs merÖvningsuppgifter i Elektronik
1 Svara på följande frågor om halvledarkomponenter. Övningsuppgifter i Elektronik a) Vad är utmärkande för ett halvledarmaterial? b) Vad innebär egenledning och hur kan den förhindras? c) edogör för dopning
Läs mer1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv.
1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv. Solution: Man ser efter ett tag att några kombinationer återkommer, till exempel vertikala eller horisontella
Läs merElektronik 2018 EITA35
Elektronik 2018 EITA35 Föreläsning 12 Halvledare PN-diod Kretsanalys med diodkretsar. 1 Labrapport Gratisprogram för att rita kretsar: http://www.digikey.com/schemeit/ QUCS LTSPICE (?) 2 Föreläsningen
Läs merCHALMERS TEKNISKA HÖGSKOLA Institutionen för Teknisk Fysik kl.: Sal : Hörsalar
CHALMERS TEKNISKA HÖGSKOLA 2007-10-26 Institutionen för Teknisk Fysik kl.:14 00-18 00 Sal : Hörsalar Tentamen i FYSIK 2 för E (FFY143) Lärare: Stig-Åke Lindgren, tel 7723346, 0707238333, 874836 Hjälpmedel:
Läs merUtredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.
Komponentfysik Övning VT-10 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i (a), men med en pålagd
Läs merHalvledare. Periodiska systemet (åtminstone den del som är viktig för en halvledarfysiker)
Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N: GaN, ngan Blå (& vita) LED, UV lasrar
Läs merFormelsamling för komponentfysik
Uppdaterad: 010-01-18 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A r r d Parallellkoppling:
Läs merFyU02 Fysik med didaktisk inriktning 2 - kvantfysik
FyU02 Fysik med didaktisk inriktning 2 - kvantfysik Rum A4:1021 milstead@physto.se Tel: 5537 8663 Kursplan 17 föreläsningar; ink. räkneövningar Laboration Kursbok: University Physics H. Benson I början
Läs merFormelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0
Uppdaterad: 01-05-5 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling:
Läs merBANDGAP 2009-11-17. 1. Inledning
1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive
Läs merStrålningsfält och fotoner. Kapitel 23: Faradays lag
Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar
Läs merRättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.
/5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad
Läs merKvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Läs mernmosfet och analoga kretsar
nmosfet och analoga kretsar Erik Lind 22 november 2018 1 MOSFET - Struktur och Funktion Strukturen för en nmosfet (vanligtvis bara nmos) visas i fig. 1(a). Transistorn består av ett p-dopat substrat och
Läs merIntroduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 6 Övergångar (pn och metal-halvledare) 2:a ordningens effekter Metal-halvledar övergångar 6 Fälteffekttransistorer JFET och MOS transistorer Ideal MOS kapacitans
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Heisenbergmodellen Måndagen den 0 augusti, 01 Teoridel 1. a) Heisenbergmodellen beskriver växelverkan mellan elektronernas spinn på närliggande
Läs merFysik. Laboration 3. Ljusets vågnatur
Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall
Läs mer3. Potentialenergi i elfält och elektrisk potential
3. Potentialenergi i elfält och elektrisk potential 3.1 Potentiell energi i elfält Vi betraktar en positiv testladdning som förs i närheten av en annan laddning. I det första fallet är den andra laddningen
Läs mer( ) = B 0 samt att B z ( ) måste vara begränsad. Detta ger
Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Londons ekvation Måndagen den augusti, 011 Teoridel 1. a) Från Amperes lag och det givna postulatet får vi att: B = m 0 j fi B = m 0 j
Läs mer3.3. Den kvantmekaniska fria elektronmodellen
3.3. Den kvantmekaniska fria elektronmodellen [Understanding Physics: 20.3-20.7] I kvantmekaniken behandlas ledningselektronerna som ett enda fermionsystem, på ett liknande sätt som elektronerna i flerelektronatomer.
Läs merTENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011
TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 Tid: Lokal: 2011-03-18 förmiddag VV salar Hjälpmedel: Hjälpmedel: Physics Handbook, bifogad formelsamling, typgodkänd räknare eller annan räknare i fickformat
Läs merPhysics to Go! Part 1. 2:a på Android
Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:
Läs merKomponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:
Komponen'ysik 2016 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora?oner Förberedelseuppgi=er inför
Läs merFysik 1 kapitel 6 och framåt, olika begrepp.
Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.
Läs merI: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn.
Komponentfysik Övning 4 VT-10 Utredande uppgifter: I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. II: Beskriv de fyra arbetsmoderna för en npn-transistor.
Läs merFöreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths
1 Föreläsning 8 7.1 i Griffiths Ohms lag (Kap. 7.1) i är bekanta med Ohms lag i kretsteori som = RI. En mer generell framställning är vårt mål här. Sambandet mellan strömtätheten J och den elektriska fältstyrkan
Läs merLaborationer i miljöfysik. Solcellen
Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.
Läs merFöreläsning 9 Bipolära Transistorer II
Föreläsning 9 ipolära Transistorer Funktion bipolär transistor Småsignal-modell Hybrid-p Designparametrar 1 Komponentfysik - Kursöversikt ipolära Transistorer pn-övergång: kapacitanser Optokomponenter
Läs mer12. Kort om modern halvledarteknologi
12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till
Läs mer12. Kort om modern halvledarteknologi
12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till
Läs merɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04
Tabell 1: Några utvalda naturkonstanter: Namn Symbol Värde Enhet Ljushastighet c 2,998.10 8 m/s Elementarladdning e 1,602.10 19 C Plancks konstant h 6,626.10 34 Js h 1,055.10 34 Js Finstrukturkonstanten
Läs merFysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt
Läs merLågtemperaturfysik. Maria Ekström. November Första utgåvan
F7 Lågtemperaturfysik Maria Ekström November 2014 - Första utgåvan Syfte Målet är att använda lågtemperaturfysik för studera hur den elektriska ledningsförmågan hos olika typer av material ändras med temperatur.
Läs merSvar och anvisningar
170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse
Läs merHalogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)
Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos
Läs merLösningar Heureka 2 Kapitel 14 Atomen
Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla
Läs merInnehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Läs mer4. Allmänt Elektromagnetiska vågor
Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen
Läs merFöreläsning 13 Fälteffekttransistor III
Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
Läs merBFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
Läs merBatteri. Lampa. Strömbrytare. Tungelement. Motstånd. Potentiometer. Fotomotstånd. Kondensator. Lysdiod. Transistor. Motor. Mikrofon.
Batteri Lampa Strömbrytare Tungelement Motstånd Potentiometer Fotomotstånd Kondensator Lysdiod Transistor Motor Mikrofon Högtalare Ampèremeter 1 1. Koppla upp kretsen. Se till att motorns plus och minuspol
Läs merr 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).
1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas
Läs merKomponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:
Komponen'ysik 2014 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora>oner Förberedelseuppgi>er inför
Läs merÖvningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)
Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda
Läs merTSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor
0/3/204 0:24 Nodanalys metod 0. Förenkla schemat. liminera ensamma TST20 lektronik 2. Jorda en nod 3. nför nodpotentialer 4. nför referensriktningar på strömmarna i nätet 5. Sätt upp ekvation för varje
Läs merKvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Läs merBFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 17 mars 2017 8:00 12:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4
Läs merElektronik 2015 ESS010
Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer
Läs merKvantfysik - introduktion
Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm
Läs merFysik TFYA68. Föreläsning 5/14
Fysik TFYA68 Föreläsning 5/14 1 tröm University Physics: Kapitel 25.1-3 (6) OB - Ej kretsar i denna kurs! EMK diskuteras senare i kursen 2 tröm Lämnar elektrostatiken (orörliga laddningar) trömmar av laddning
Läs merTentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 28/8 2014 kl. 14.00-18.00 i T1 och S25 Tentamen består av 2 A4-blad (inklusive
Läs merUtredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod?
Komponentfysik Uppgifter Bipolärtransistor VT-15 Utredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod? III: Definiera övergångsfrekvensen
Läs merStrålningsfält och fotoner. Våren 2016
Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt
Läs merStrålningsfält och fotoner. Våren 2013
Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt
Läs merGrindar och transistorer
Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.
Läs merSM Serien Strömförsörjning. Transistorn
Transistorn Transistorn är en av de viktigaste uppfinningar som gjorts under modern tid. Utan denna skulle varken rymdfärder eller PC-datorer vara möjliga. Transistorn ingår som komponent i Integrerade
Läs merTentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Onsdagen den 27/3 2013 kl. 08.00-12.00 i T1 och T2 Tentamen består av 2 A4-blad (inklusive detta)
Läs merSvar och anvisningar
15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är
Läs mer530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.]
530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E
Läs merLösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt
Läs merFöreläsning 9 Bipolära Transistorer II
Föreläsning 9 Bipolära Transistorer II Funktion bipolär transistor Småsignal-modell Hybrid-p 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser Optokomponenter pn-övergång:
Läs merLaborationer i miljöfysik. Solcellen
Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.
Läs merKaströrelse. 3,3 m. 1,1 m
Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna
Läs mer