Atomer, ledare och halvledare. Kapitel 40-41
|
|
- Sten Fransson
- för 8 år sedan
- Visningar:
Transkript
1 Atomer, ledare och halvledare Kapitel 40-41
2 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet l (och dess projektion på z axeln som definieras av m l ) och spinn (inre impulsmoment), som karakteriseras av kvanttalet s (och dess projektion på z axeln som definieras av m s ). l = 0,1,2,, n 1 m l = 0, ±1, ±2,, ±l s = 1 2 m l = ± 1 2 Pauliprincipen Elektroner bundna till samma potentialgrop kan inte ha samma set av kvanttal. Periodiska systemet Grundämnen är ordnade enligt ökande kärnladdning Ze där Z står för båda antalet protoner och elektroner i den neutrala atomen.
3 Centrala begrepp Dopade halvledere Fasta ämnen energiband Då atomerna i ett fastämne ordnar sig i en väldefinierad kristallstruktur förändras också elektronernas tillåtna energinivåer. n-typs halvledare p-typs halvledare pn-diod Passpänning Spärrspänning Utan spänning 3
4 1. Vilket av följande påståenden angående elektronen i väteatomens grundtillstånd är sant, då man ser på atomens kvantmekaniska modell? A. Joniseringsenergin för grundtillståndet är noll. B. Elektronens banimpulsmoment L i grundtillståndet är noll. C. Bindningsenergin för elektronen i grundtillståndet är noll. D. Elektronen i grundtillståndet har noll kinetisk energi. E. Inget av påståendena 1-4 är sant. 4
5 1. Vilket av följande påståenden angående elektronen i väteatomens grundtillstånd är sant, då man ser på atomens kvantmekaniska modell? A. Joniseringsenergin för grundtillståndet är noll. B. Elektronens banimpulsmoment L i grundtillståndet är noll. C. Bindningsenergin för elektronen i grundtillståndet är noll. D. Elektronen i grundtillståndet har noll kinetisk energi. E. Inget av påståendena 1-4 är sant. 5
6 2. En elektron i en väteatom beskrivs av kvantalen n = 8 och Vilka är de möjliga värdena på bankvantalet l? A. 0 eller 4 B. 0, 1, 2, 3 eller 4 C. 4 eller 7 D. 5, 6, 7 eller 8 E. 4, 5, 6, eller 7 m 4 6
7 2. En elektron i en väteatom beskrivs av kvantalen n = 8 och Vilka är de möjliga värdena på bankvantalet l? A. 0 eller 4 B. 0, 1, 2, 3 eller 4 C. 4 eller 7 D. 5, 6, 7 eller 8 E. 4, 5, 6, eller 7 m 4 7
8 3. Vilket av de följande påståenden beskriver bäst Paulis uteslutningsprincip? A. Två elektroner kan inte occupera atomens lägsta energinivå. B. Två elektroner kan inte ha samma spinkvanttal. C. Elektroner bundna till samma energinivå kan inte ha samma kvanttal. D. Då T = 0 K befinner sig alla elektroner bundna till en atom på den lägsta energinivån. 8
9 3. Vilket av de följande påståenden beskriver bäst Paulis uteslutningsprincip? A. Två elektroner kan inte occupera atomens lägsta energinivå. B. Två elektroner kan inte ha samma spinkvanttal. C. Elektroner bundna till samma energinivå kan inte ha samma kvanttal. D. Då T = 0 K befinner sig alla elektroner bundna till en atom på den lägsta energinivån. 9
10 4. En elektron går från ett högre till ett lägre energitillstånd utan yttre påverkan. I transitionen emitteras en foton i en slumpmässig riktning. Vad kallas denna emissionsprocess. A. stationär emission B. spontan emission C. spektral emission D. stimulerad emission E. riktad emission 10
11 4. En elektron går från ett högre till ett lägre energitillstånd utan yttre påverkan. I transitionen emitteras en foton i en slumpmässig riktning. Vad kallas denna emissionsprocess. A. stationär emission B. spontan emission C. spektral emission D. stimulerad emission E. riktad emission 11
12 5. Figuren illustrerat en väteatoms energidiagram. Olika övergångar visas i figuren (märk att diagrammet inte är i skala). Vilken av övergångarna svarar mot en absorption av en foton med den längsta respektive kortaste våglängden? A B C D E 12
13 5. Figuren illustrerat en väteatoms energidiagram. Olika övergångar visas i figuren (märk att diagrammet inte är i skala). Vilken av övergångarna svarar mot en absorption av en foton med den längsta respektive kortaste våglängden? A B C D Längst Kortast E 13
14 6. Vilket av följande påståenden stämmer överens för elektromagnetisk strålning som atomer (av samma grundämne) emitterar? A. En samling atomer emitterar elektromagnetisk strålning med en kontinuerlig fördelning av våglängder. B. Atomer emitterar endast strålning i den synliga delen av det elektromagnetiska spektret. C. Fria atomer har 3n unika linjer i dess spektra där n är antalet elektroner. D. Den elektromagnetiska strålningen som emitteras av fria atomer är specifik för den ifrågavarande atomens grundämne. 14
15 6. Vilket av följande påståenden stämmer överens för elektromagnetisk strålning som atomer (av samma grundämne) emitterar? A. En samling atomer emitterar elektromagnetisk strålning med en kontinuerlig fördelning av våglängder. B. Atomer emitterar endast strålning i den synliga delen av det elektromagnetiska spektret. C. Fria atomer har 3n unika linjer i dess spektra där n är antalet elektroner. D. Den elektromagnetiska strålningen som emitteras av fria atomer är specifik för den ifrågavarande atomens grundämne. 15
16 Energi 7. Vilken/vilka av följande schematiska energibandsstrukturer kan vara en isolator? Den röda färgen indikerar fulla elektrontillstånd
17 Energi 7. Vilken/vilka av följande schematiska energibandsstrukturer kan vara en isolator? Den röda färgen indikerar fulla elektrontillstånd
18 Energi 8. Vilken/vilka av följande schematiska energibandsstrukturer kan vara en metall? Den röda färgen indikerar fulla elektrontillstånd
19 Energi 8. Vilken/vilka av följande schematiska energibandsstrukturer kan vara en metall? Den röda färgen indikerar fulla elektrontillstånd
20 Energi 9. Vilken/vilka av följande schematiska energibandsstrukturer kan vara en halvledare? Den röda färgen indikerar fulla elektrontillstånd
21 Energi 9. Vilken/vilka av följande schematiska energibandsstrukturer kan vara en halvledare? Den röda färgen indikerar fulla elektrontillstånd
22 Energi 10. Vilken/vilka av följande schematiska energibandsstrukturer är ofysikalisk? Den röda färgen indikerar fulla elektrontillstånd
23 Energi 10. Vilken/vilka av följande schematiska energibandsstrukturer är ofysikalisk? Den röda färgen indikerar fulla elektrontillstånd
24 11. Vad är orsaken till att resistiviteten i en metall ökar med ökande temperatur? A. Elektroner kan inte exiteras till högre energinivåer fast temperaturen ökar. B. Elektronerna genomgår fler kollisioner då temperaturen ökar. C. Ferminivån för metaller beror inte av temperaturen. D. Energiavståndet till nästa fria energiband är för stort. E. Inget av påståendena 1-4 är korrekt. 24
25 11. Vad är orsaken till att resistiviteten i en metall ökar med ökande temperatur? A. Elektroner kan inte exiteras till högre energinivåer fast temperaturen ökar. B. Elektronerna genomgår fler kollisioner då temperaturen ökar. C. Ferminivån för metaller beror inte av temperaturen. D. Energiavståndet till nästa fria energiband är för stort. E. Inget av påståendena 1-4 är korrekt. 25
26 12. Vilken av följande egenskaper är huvudskillnaden mellan isolatorer och halvledare? 1. Energigapet mellan ledningsbandet och valensbandet är större för isolatorer. 2. Energigapet mellan ledningsbandet och valensbandet är mindre för isolatorer. 3. Valensbandets bredd är större för halvledare. 4. Ledningsbandets bredd är större för halvledare. 5. Inget av påståendena 1-4 är korrekt. 26
27 12. Vilken av följande egenskaper är huvudskillnaden mellan isolatorer och halvledare? 1. Energigapet mellan ledningsbandet och valensbandet är större för isolatorer. 2. Energigapet mellan ledningsbandet och valensbandet är mindre för isolatorer. 3. Valensbandets bredd är större för halvledare. 4. Ledningsbandets bredd är större för halvledare. 5. Inget av påståendena 1-4 är korrekt. 27
28 13. Vad finns det mera av i odopat kisel, hål i valensbandet eller elektroner i ledningsbandet? 1. hål i valensbandet 2. elektroner i ledningsbandet 3. lika mycket av både hål och ledningselektroner 28
29 13. Vad finns det mera av i odopat kisel, hål i valensbandet eller elektroner i ledningsbandet? 1. hål i valensbandet 2. elektroner i ledningsbandet 3. lika mycket av både hål och ledningselektroner 29
30 14. Varför ökar ledningsförmågan i kisel då man blander lite bor (B) i en kiselkristall? Bor hittas i grupp III i periodiska tabellen. 1. Bor leder bättre ström än kisel. 2. Boratomen joniseras i kiselgittret och leder därför ström. 3. Boratomen joniseras och donerar en elektron till ledningsbandet i kisel. 4. Inget av påståendena 1-3 är korrekt. 30
31 14. Varför ökar ledningsförmågan i kisel då man blander lite bor (B) i en kiselkristall? Bor hittas i grupp III i periodiska tabellen. 1. Bor leder bättre ström än kisel. 2. Boratomen joniseras i kiselgittret och leder därför ström. 3. Boratomen joniseras och donerar en elektron till ledningsbandet i kisel. 4. Inget av påståendena 1-3 är korrekt. 31
32 15. Vad indikerar +/- tecknen i nedanstående schematiska pnskikt? p n 1. negativt och positivt laddade gitteratomer 2. negativt och positivt laddade dopatomer 3. negativa och positiva laddningsbärare, dvs. hål och ledningselektroner 4. positiv och negativ spänning 32
33 15. Vad indikerar +/- tecknen i nedanstående schematiska pnskikt? p n 1. negativt och positivt laddade gitteratomer 2. negativt och positivt laddade dopatomer 3. negativa och positiva laddningsbärare, dvs. hål och ledningselektroner 4. positiv och negativ spänning 33
34 16. Ett pn-skik består av en n-typs halvledare på vänstra sidan och p-typs halvledare på högra sidan. Kommer ett elfält att bildas över skiktet? Vad är riktingen på detta elfält i så fall? 1. Inget elfält bilas om inte skiktet kopplas till ett batteri. 2. Fältet går från vänster till höger. 3. Fältet går från höger till vänster. 4. Inget elfält existerar på grund av utarmningsskiktet. 34
35 16. Ett pn-skik består av en n-typs halvledare på vänstra sidan och p-typs halvledare på högra sidan. Kommer ett elfält att bildas över skiktet? Vad är riktingen på detta elfält i så fall? 1. Inget elfält bilas om inte skiktet kopplas till ett batteri. 2. Fältet går från vänster till höger. 3. Fältet går från höger till vänster. 4. Inget elfält existerar på grund av utarmningsskiktet. 35
36 17. Vad begränsar bredden L på utarmningsområdet i en okopplad halvledardiod? L p n A. antalet hål på p-sidan och antalet ledningselektroner på n- sidan B. antalet hål på n-sidan och antalet ledningselektroner på p- sidan C. antalet dopatomer på n- och p-sidan D. elfältet i utarmningsområdet E. halvledarens bandgap 36
37 17. Vad begränsar bredden L på utarmningsområdet i en okopplad halvledardiod? L p n A. antalet hål på p-sidan och antalet ledningselektroner på n- sidan B. antalet hål på n-sidan och antalet ledningselektroner på p- sidan C. antalet dopatomer på n- och p-sidan D. elfältet i utarmningsområdet E. halvledarens bandgap 37
38 18. I nedanstående figurer syns samma schematiska halvledardiod okopplad, kopplad i passriktningen och kopplad i spärriktningen. Para ihop rätt figurer med rätt koppling. p n 1 p n 3 p n 2 38
39 18. I nedanstående figurer syns samma schematiska halvledardiod okopplad, kopplad i passriktningen och kopplad i spärriktningen. Para ihop rätt figurer med rätt koppling. p Passkopplad n 1 p Spärrkopplad n 3 p Okopplad n 2 39
Föreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer
Föreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt
HALVLEDARE. Inledning
HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa
Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:
Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt
Fysik TFYA86. Föreläsning 11/11
Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt
Lecture 6 Atomer och Material
Lecture 6 Atomer och Material Bandstruktur Ledare Isolatorer Halvledare Påminnelse Elektronerna ordnas i skal (n) och subskal (l) En elektron specificeras med 4 kvanttalen n,lm l,m s Två elektroner kan
Föreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:
530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Allmänt Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur. l A Allmänt. 8.1.
8.1.1. Allmänt 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur
530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans
Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 8/9 Atom-, Molekyl- och Fasta Tillståndets Fysik Flerelektronatomer På motsvarande sätt som för väteatomen kommer elektronerna i atomerna hos grundämnen som har två eller fler elektroner också
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
7. Atomfysik väteatomen
Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta
8. Atomfysik - flerelektronatomer
Flerelektronatomer På motsvarande sätt som för väteatomen kommer elektronerna i atomerna hos grundämnen som har två eller fler elektroner också att vara instängda inom ett litet område runt kärnan. Det
I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.
Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del
Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övning 1 VT-10 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande frågor: I Definiera
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella
KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.
Föreläsning 5 Att bygga atomen del II
Föreläsning 5 Att bygga atomen del II Moseleys Lag Pauliprincipen Det periodiska systemet Kemi på sidor Vad har vi lärt hittills? En elektron hör till ett skal med ett kvanttal n Varje skal har en specifik
Instuderingsfrågor, Griffiths kapitel 4 7
Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor
c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning
Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska
3.4. Energifördelningen vid 0 K
3.4. Energifördelningen vid 0 K [Understanding Physics: 20.4-20.9] Vi skall först hitta på ett sätt att beräkna antalet energitillstånd för ett fermionsystem som funktion av energin. Vi kan göra detta
Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande
Vad är elektricitet?
Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret
4.3. Den kvantmekaniska fria elektronmodellen
4.3. Den kvantmekaniska fria elektronmodellen [Understanding Physics: 20.3-20.8] I kvantmekaniken behandlas ledningselektronerna som ett enda fermionsystem, på ett liknande sätt som elektronerna i flerelektronatomer.
Halvledare och funktionella material i vår vardag. Mikael Syväjärvi. Linköpings universitet Underlag för sommarkurs juni-augusti 2007.
Mikael Syväjärvi Linköpings universitet Underlag för sommarkurs juni-augusti 2007 Version 070619 msy@ifm.liu.se; people.ifm.liu.se/misyv Innehåll: Halvledare vad är det och vad används de till? Grundläggande
Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7/8 Atom-, Molekyl- och Fasta Tillståndets Fysik Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus
8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss
Upplägg och planering för NanoIntro 15; Lars Samuelson (lars.samuelson@ftf.lth.se): Måndag 31/8: Presentationer av deltagarna 8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss
1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv.
1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv. Solution: Man ser efter ett tag att några kombinationer återkommer, till exempel vertikala eller horisontella
Strålningsfält och fotoner. Kapitel 23: Faradays lag
Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar
TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!
TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Del: QSM Göteborgs Universitet Datum: 111206 Tid: 8.30 14.30 Ansvariga: Gunnar Nyman tel: 786 9035 Jens Poulsen tel: 786 9089 Magnus Gustafsson
Kapitel 7. Atomstruktur och periodicitet
Kapitel 7 Atomstruktur och periodicitet Avsnitt 7.1 Elektromagnetisk strålning Fyrverkeri i olika färger Copyright Cengage Learning. All rights reserved 2 Avsnitt 7.2 Materians karaktär Illuminerad saltgurka
Vad är elektricitet?
Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret
TILLÄMPAD ATOMFYSIK Övningstenta 3
TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 28/8 2014 kl. 14.00-18.00 i T1 och S25 Tentamen består av 2 A4-blad (inklusive
Utveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
Lösningar Heureka 2 Kapitel 14 Atomen
Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla
Kvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
Välkomna till kursen i elektroniska material!
Välkomna till kursen i elektroniska material! Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare, kursansvarig)
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Heisenbergmodellen Måndagen den 0 augusti, 01 Teoridel 1. a) Heisenbergmodellen beskriver växelverkan mellan elektronernas spinn på närliggande
Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet
Avsnitt 7.1 Elektromagnetisk strålning Kapitel 7 Fyrverkeri i olika färger Atomstruktur och periodicitet Copyright Cengage Learning. All rights reserved 2 Illuminerad saltgurka Kapitel 7 Innehåll Kvantmekanik
9. Molekyl- och fasta tillståndets fysik
Kort om fleratomsystem molekyler Både den enklaste av alla atomer väteatomen och dess energinivåer samt atomer med flera elektroner har översiktligt behandlats tidigare. Hela tiden har det handlat om fria
3.3. Den kvantmekaniska fria elektronmodellen
3.3. Den kvantmekaniska fria elektronmodellen [Understanding Physics: 20.3-20.7] I kvantmekaniken behandlas ledningselektronerna som ett enda fermionsystem, på ett liknande sätt som elektronerna i flerelektronatomer.
Physics to Go! Part 1. 2:a på Android
Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:
Andra föreläsningen kapitel 7. Patrik Lundström
Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den
KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från
KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet
Välkomna till kursen i elektroniska material! Martin Leijnse
Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,
3.7 Energiprincipen i elfältet
3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring
2.6.2 Diskret spektrum (=linjespektrum)
2.6 Spektralanalys Redan på 1700 talet insåg fysiker att olika ämnen skickar ut olika färger då de upphettas. Genom att låta färgerna passera ett prisma kunde det utsända ljusets enskilda färger identifieras.
Kvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1
3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysi Onsdagen den 5 maj, 011 Teoridel Magnetism i MnF 1. a) Vi ser från enhetscellen att den innehåller 8 1 =1 Mn-atom med spinn upp (hörnen)
HALVLEDARES ELEKTRISKA KONDUKTIVITET
HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket
3.9. Övergångar... (forts: Halvledare i kontakt)
3.9. Övergångar... (forts: Halvledare i kontakt) [Understanding Physics: 20.9-20.12] Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra.
Tentamen, Kvantfysikens principer FK2003, 7,5 hp
Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera
Elektronik 2018 EITA35
Elektronik 2018 EITA35 Föreläsning 12 Halvledare PN-diod Kretsanalys med diodkretsar. 1 Labrapport Gratisprogram för att rita kretsar: http://www.digikey.com/schemeit/ QUCS LTSPICE (?) 2 Föreläsningen
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
elektrostatik: laddningar I vila eller liten rörelse utan acceleration
Ellära 1 Elektrostatik, kap 22 Eleonora Lorek Begrepp elektricitet (franska électricité, till nylatin ele ctricus, till latin ele ctrum, av grekiska ē lektron 'bärnsten'), ursprungligen benämning på den
2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.
Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men
TILLÄMPAD ATOMFYSIK Övningstenta 1
TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 17 mars 2017 8:00 12:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4
CHALMERS TEKNISKA HÖGSKOLA Institutionen för Teknisk Fysik kl.: Sal : Hörsalar
CHALMERS TEKNISKA HÖGSKOLA 2007-10-26 Institutionen för Teknisk Fysik kl.:14 00-18 00 Sal : Hörsalar Tentamen i FYSIK 2 för E (FFY143) Lärare: Stig-Åke Lindgren, tel 7723346, 0707238333, 874836 Hjälpmedel:
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Elektronik. Lars-Erik Cederlöf
Elektronik LarsErik Cederlöf 1 Ledare och isolatorer Ledare för elektrisk ström har atomer med fria rörliga laddningar i yttersta skalet. Exempel på ledare är metallerna koppar och aluminium. Deras atomer
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Miljöfysik. Föreläsning 6. Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller
Miljöfysik Föreläsning 6 Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller I-U karakteristik för solceller Förluster En solcells verkningsgrad Hur solceller påverkar
Vågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet
Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.
Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan
Föreläsning 1. Metall: joner + gas av klassiska elektroner. e m Et. m dv dt = ee v(t) =v(0) 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Föreläsning 1 Efter lite information och en snabbgenomgång av hela kursen började vi med en väldigt kort repetition av några grundbegrepp inom ellära. Sedan gick vi igenom kapitel 2.1 och började med kapitel
3.13. Supraledning. [Understanding Physics: 20.13, ] Den moderna fysikens grunder, Tom Sundius
3.13. Supraledning [Understanding Physics: 20.13,21.1-21.3] Supraledare kallas material som har en speciell ledningsförmåga, då de kyls ned under en temperatur, som kallas den kritiska temperaturen T c.
Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet
Kapitel 7 Innehåll Kapitel 7 Atomstruktur och periodicitet Kvantmekanik Aufbau Periodiska systemet Copyright Cengage Learning. All rights reserved 2 Kapitel 7 Innehåll 7.1 Elektromagnetisk strålning 7.2
Optiska och elektriska egenskaper hos pn-övergången
FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2017 Optiska och elektriska egenskaper hos pn-övergången Labben bygger mest på kapitel 6 och 7 i kompendiet. Lös förberedelseuppgift 1-8 innan labben
Appendix B LED - Funktion
1 Appendix B LED - Funktion 2 3 Följande information har erhållits via personlig kommuniktion med representanter från Philips. Härmed riktas ett varmt tack till dessa och Philips LED Funktion Injection
Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).
LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell
Laboration: Optokomponenter
LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: Optokomponenter Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer
Vilken av dessa nivåer i väte har lägst energi?
Vilken av dessa nivåer i väte har lägst energi? A. n = 10 B. n = 2 C. n = 1 ⱱ Varför sänds ljus av vissa färger ut från upphettad natriumånga? A. Det beror på att ångan är mättad. B. Det beror på att bara
Föreläsning 1. Metall: joner + gas av klassiska elektroner. e m Et. m dv dt = ee v(t) =v(0) 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Föreläsning 1 Vi började med en väldigt kort repetition av några grundbegrepp inom ellära. Sedan gick vi igenom kapitel 2.1 och började med kapitel 2.2. Vi betraktade en mycket enkel modell av en metall,
Nmr-spektrometri. Matti Hotokka Fysikalisk kemi
Nmr-spektrometri Matti Hotokka Fysikalisk kemi Impulsmoment Storlek = impulsmomentvektorns längd, kvanttalet L Riktning, kvanttalet m Vektorn precesserar Kärnans spinnimpulsmoment Kvanttalet betecknas
Föreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
Optiska och elektriska egenskaper hos pn-övergången
FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2018 Optiska och elektriska egenskaper hos pn-övergången Labben bygger mest på kapitel 6 och 7 i kompendiet. Lös förberedelseuppgift 1-8 innan labben
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Onsdagen den 27/3 2013 kl. 08.00-12.00 i T1 och T2 Tentamen består av 2 A4-blad (inklusive detta)
Kemi Grundläggande begrepp. Kap. 1. (Se även repetitionskompendiet på hemsidan.)
Föreläsning 1. Kemins indelning Enheter Atomer, isotoper och joner Grundämnen och periodiska systemet Atomernas elektronstruktur och atomorbitaler Periodiska egenskaper Kemi Grundläggande begrepp. Kap.
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Kap 2. Elektroner som partikel
Kap. Elektroner som partikel.1 ström, spridning och diffusion Antar elektronerna som en klassisk gas. I denna model har elektronerna ensdast kinetisk energi (termisk) kraften. Laddningsbärare kommer separeras
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Måndagen den 19/12 2011 kl. 14.00-18.00 i KÅRA, T1, T2 och U1 Tentamen består av 2 A4-blad (inklusive
När man förklarar experiment för andra finns det en bra sekvens att följa:
Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben! De mest relevanta kapitlena i kompendiet är kapitel 6 och 7 om
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 12. Kärnfysik 1 2014. Kärnfysik 1
Kärnfysik 1 Atomens och atomkärnans uppbyggnad Tidigare har atomen beskrivits som bestående av en positiv kärna kring vilken det i den neutrala atomen befinner sig lika många elektroner som det finns positiva
Elektronik 2015 ESS010
Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer
Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar
Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare
Lablokalerna är i samma korridor som där ni gjorde lab1.
Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitel i kompendiet
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Föreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik
BANDGAP 2009-11-17. 1. Inledning
1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Fredagen den 13/4 2012 kl. 08.00-12.00 i TER2 Tentamen består av 1 A4-blad (detta) med 6 stycken
530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.]
530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E
Föreläsning 1. Metall: joner + gas av klassiska elektroner. e m Et. m dv dt = ee v(t) =v(0) 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Föreläsning 1 Vi började med en väldigt kort repetition av några grundbegrepp inom ellära. Sedan gick vi igenom kapitel 2.1 och började med kapitel 2.2. Vi betraktade en mycket enkel modell av en metall,
Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)
Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos
TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP
TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP Avsikten med detta problem är att ta fram en enkel teori för att förstå så kallad laserkylning och optisk sirap. Detta innebär att en stråle