Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Storlek: px
Starta visningen från sidan:

Download "Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel"

Transkript

1 Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysi Onsdagen den 5 maj, 011 Teoridel Magnetism i MnF 1. a) Vi ser från enhetscellen att den innehåller 8 1 =1 Mn-atom med spinn upp (hörnen) 8 och en Mn-atom med spinn ner (centralatomen). En ordnad strutur med lia många atomer av samma slag med spinn upp som med spinn ner är antiferromagnetis. b) Då struturen är antiferromagnetis under T N, så ommer den att vara paramagnetis ovanför T N. Eftersom den ordnade struturen av magnetisa moment under 67 K ommer att oordnas vid fasövergången, betyder detta att de magnetisa momenten hos Mn ommer att vara stoastist orienterade och helt oberoende av varandra ovanför 67 K, vilet leder till ett paramagnetist tillstånd (Mn har fortfarande ett magnetist moment!). c) Susceptibiliteten i det paramagnetisa tillståndet hos en antiferromagnet följer approximativt evationen: c = C T + q ; q ª T N fi 1 c ª T + T N C c c -1 T T T N -T N d) Att neutronerna är änsliga för magnetisa moment betyder att spridningen ommer att vara olia beroende på ifall Mn-atomerna i planen har spinn upp eller ifall de har spinn ner. Vid höga temperaturer är de magnetisa momenten helt oberoende av varandra och spridningen från Mn-atomerna ommer att avspegla deras inbördes lägen, vila ligger i en mittcentrerad tetragonal srtutur. I en sådan strutur ommer struturfatorn att ge utsläcning för samma typ av refletioner som i bcc, dvs. man ommer endast att se refletioner från de h, och l som uppfyller h++l är ett jämnt heltal. De lägsta refletionerna som sanas är (100), (001), (111) etc. Vid låga temperaturer (T<< 67 K), finns det en ordnad magnetis strutur. Refletionen (100) försvann på grund av att vi hade evivalenta atomer i de plan som går genom mittpositionerna i enhetscellen som i de plan som går genom hörnen av enhetscellen. I den ordnade magnetisa struturen är dessa båda atompositioner inte längre evivalenta, eftersom alla mittatomer har spinn ner och alla hörnatomer har spinn upp och därför har de olia spridningsfator för neutroner, vilet gör att man ommer att se (100)-refletionen i ett diffratogram då temperaturen är mindre än 67 K.

2 Kisel. a) Donatorer avger eletroner till ledningsbandet och har således en eletron mer än Si i sitt yttersta sal. Lämpliga atomslag är t.ex. P (fosfor) eller As (arseni). b) För att unna tillvera en halvledarlaser rävs ett diret bandgap och isel har indiret bandgap. En laser bygger dels på principen om populationsinvers, dvs. att det finns fler eletroner i ett högre energitillstånd än i ett lägre, och dels på principen om stimulerad emission, dvs. att en foton som rör sig genom materialet an stimulera utsändandet av ytterligare en foton med exat samma fas och energi. I en halvledare med diret bandgap an en foton emitteras diret vid en övergång mellan ledningsbandet och valensbandet (och därigenom ge stimulerad emission), medan i en halvledare med indiret bandgap rävs det medveran av en fonon för att en sådan övergång sa unna se. Därför ommer tillgången på fononer med lämplig vågvetor raftigt att reducera effeten av den stimulerade emissionen i en halvledare med indiret bandgap och omöjliggöra laserveran. c) Vid T = 0 K finns inga termist exciterade eletroner i isel och valensbandet är således fyllt. Fyllda band ger inga paramagnetisa bidrag. Dessutom finns det inga ledningseletroner, så Paulis paramagnetism ger inget bidrag. Doc, eftersom alla material har ett diamagnetist bidrag, är det enbart detta bidrag som återstår i isel vid T = 0 K. Blochs teorem 3. a) Eftersom vi har att potentialen U( r ) = U( r + T ) är gitterperiodis, så måste det gälla att =  U e U r Eftersom i r i r { e } =  U e = U r + T i r +T utgör en mängd av inbördes ortogonala funtioner, finns det inga linjärombinationer mellan funtionerna med olia och därför måste vi räva att e i T =1 för alla. Denna relation uppfylls om och endast om = G, eftersom relationen definierar det reciproa gittret med gittervetorer G. Detta visar påståendet. b) Insättning i Schrödingerevationen ger att: h m C ( ) e i r i ( +G ) r  + ÂÂC ( )U G e -  EC ( ) e i r = 0 G Om vi nu byter betecningar så att Æ i den första och den sista termen, samt Æ - G i den mellersta termen, så får vi att: e i r È h Â Í m C ( ) + ÂU G C( - G ) - EC( ) = 0 Î Í G i r Återigen utnyttjar vi att { e } utgör en mängd av inbördes ortogonala funtioner, varför det måste gälla att ( l - E)C + U G C( - G )  = 0 där vi har satt l = h G m.

3 Rimliga värden 4. a) Energigapet hos en halvledare: 0,5 ev b) Energigapet hos en supraledare: mev c) Mättnadsmagnetiseringen hos en ferromagnet: 0,5-3,5 T d) Penetrationsdjupet hos en supraledare: 0,1-10 mm Fermiytan hos en bcc-metall Beräningsdel 1. Det reciproa gittret till en bcc-strutur har fcc-strutur. De ortaste gittervetorerna ugörs av de 1 G (110)-vetorerna i reciproa gittret och BZ-gränsen ligger på halva avståndet mellan origo och dessa gittervetorer. Om a är gitterparametern i den ubisa enhetscellen, så = p ( x a ˆ + y ˆ ) (Kittel sid. 36). Detta ger minsta -värdet på BZ-gränsen bestäms av är G 110 BZ = 1 G ( 100 ) = p a Ê I frieletronmodellen har vi att Fermivågvetor an tecnas F = 3p N ˆ Á. Sätts dessa Ë V evationer samman med N V = Z ( atomer i enhetscellen hos bcc och Z fria eletroner per 3 a atom) får vi slutligen att: p a = Ê 3p ˆ Á Z Ë a ( fi Z = p 3 ) 6p = p 3 =1, Effetiv massa i (100)-ritningen hos Ge. Med den givna evationen och begränsningen att vi enbart sa titta i (100)-ritningen där y = z = 0, an evationen srivas om som: e( ) = h Ê m A ± B 4 ˆ Á = h Ë m ( A ± B ) Den effetiva massan definieras av evationen e( ) = h x m ( A ± B ) fi 1 vilet med insatta värden ger m* = m * = 1 h e x 1 m * = 1 h e = A ± B m fi m* = m A ± B, varför vi får att: m -13,38 + 8,48 = -0,04m respetive m* = m -13,38-8,48 = -0,046m

4 Paramagnetism i TmAgSn 3. a) Av de metaller som ingår i den intermetallisa föreningen gäller följande: Tm: har oparade inre f-eletroner, vila ger ett start magnetist bidrag Ag: har ett fullt sal av d-eletroner och avger endast sin 5s-eletron till eletrongasen vilet totalt sett ger ett litet magnetist bidrag Sn: avger sina oparade 5p-eletroner till eletrongasen, vilet ger ett litet magnetist bidrag Slutsatsen är att Tm står för det dominerande magnetisa bidraget i TmAgSn. b) Tm avger 3 eletroner till eletrongasen och har då den atomära onfigurationen 4f 1 5s p 6. Påfyllnad med 1 eletroner i enlighet med Hunds regler (maximera m s först och maximera m L sedan ger följande diagram: m L m S +1/ -1/ Totalt spinn respetive totalt banimpulsmoment för Tm blir således: S = Â m S = =1; L = Â m L = = 5 För mer än halvfullt sal gäller vidare enligt Hunds regler att: J = L + S = 6 Landé-fatorn för Tm an nu beränas g =1+ J J +1 + S( S +1) - L( L +1) J( J +1) fi g = =1,167 vilet medför att effetiva antalet Bohrmagnetoner är p = g J( J +1) fi p =1, = 7,56 c) Enligt Curies lag gäller att den ära susceptibiliteten ( N = N A ) hos ett paramagnetist flernivåsystem an tecnas (i CGS). c = C T ; C = N A p m B 3 B fi p = 3 B C N A m B È Í SI : p = Î Í 3 B C N A m 0 m B Curieonstanten beränas utgående från lutningen i grafen: 1 c = T C fi 1 C = emu K = 0,15 È emu K SI : 0,15 Í Î 4p 10-6 m 3 K =11937 m 3 K Mätningen ger således att: p = 3 1, = 7,30 0,15 6, ,

5 I SI-enheter: p = 3 1, = 7, , p , d) Ur figuren får man diret att den ära susceptibiliteten uttryct i CGS-enheter ges av: 1 = 43 c emu fi c = 1 emu 43 Enligt bildtexten betyder detta att den ära susceptibiliteten uttryc i m 3 / blir: c(si) = 4p p 10-6 c( CGS) = 43 m 3 För att räna om den ära susceptibiteten till volymsusceptibitet sa vi dividera med volymen. Eftersom vi vet att struturen är hexagonal, så är volymen av enhetscellen V c = 3 a c Eftersom varje enhetscell innehåller 3 formelenheter av materialet, så blir volymen hos en av materialet: V m = N A V c 3 = N A a c 3 fi fi V m = 6, , Slutligen får vi att: 443, p 10-6 c = = 7, ,07 10 m 3 = 4, m 3

( ) = B 0 samt att B z ( ) måste vara begränsad. Detta ger

( ) = B 0 samt att B z ( ) måste vara begränsad. Detta ger Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Londons ekvation Måndagen den augusti, 011 Teoridel 1. a) Från Amperes lag och det givna postulatet får vi att: B = m 0 j fi B = m 0 j

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ. Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Heisenbergmodellen Måndagen den 0 augusti, 01 Teoridel 1. a) Heisenbergmodellen beskriver växelverkan mellan elektronernas spinn på närliggande

Läs mer

Dispersionsrelation för fononer hos en diatomär atomkedja

Dispersionsrelation för fononer hos en diatomär atomkedja Dispersionsrelation för fononer hos en diatomär atomkedja Betrakta en endimensionell kedja av atomer med alternerande atomslag (massor M 1 respektive M ), dvs. kedjan består av ett endimensionellt gitter

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematisa Institutionen KTH Lösningar till tentamenssrivning på ursen Disret Matemati, moment A, för D2 och F, SF161 och SF160, den 9 mars 2009 l 14.00-19.00. DEL I 1. (p Lös reursionsevationen med

Läs mer

1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv.

1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv. 1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv. Solution: Man ser efter ett tag att några kombinationer återkommer, till exempel vertikala eller horisontella

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011

TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 Tid: 2012-08-24 kl. 08.30 Lokal: VV- salar Hjälpmedel: Physics Handbook, egen formelsamling på ett A4 blad (fram och baksidan), typgodkänd räknare eller

Läs mer

Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström

Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström UPPSALA UNIVERSITET Matematisa institutionen Anders Källström Prov i matemati Fristående urs Analys MN1 distans 6 11 Srivtid: 1-15. Hjälpmedel: Gymnasieformelsamling. Lösningarna sall åtföljas av förlarande

Läs mer

Tentamen SF1661 Perspektiv på matematik Lördagen 18 februari 2012, klockan Svar och lösningsförslag

Tentamen SF1661 Perspektiv på matematik Lördagen 18 februari 2012, klockan Svar och lösningsförslag Tentamen SF1661 Perspetiv på matemati Lördagen 18 februari 01, locan 09.00 1.00 Svar och lösningsförslag (1) Sissera den mängd i xy-planet som består av alla punter som uppfyller oliheten (x + ) + (y )

Läs mer

Lösningsförslag Dugga i Mekanik, grundkurs för F, del 2 September 2014

Lösningsförslag Dugga i Mekanik, grundkurs för F, del 2 September 2014 Lösningsförslag Dugga i Meani, grundurs för F, del 2 Septemer 2014 Till varje uppgift finns det ett lösningsförslag som exempel på hur uppgiften an lösas. Lösningsförslaget visar även hur lösningen ungefärligt

Läs mer

TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011

TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 Tid: Lokal: 2011-03-18 förmiddag VV salar Hjälpmedel: Hjälpmedel: Physics Handbook, bifogad formelsamling, typgodkänd räknare eller annan räknare i fickformat

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2017 Skrivtid 8:00 12:00

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2017 Skrivtid 8:00 12:00 Kurs: HF9 Matemati Moment TEN Linjär lgebra Datum: augusti 7 Srivtid 8: : Eaminator: rmin Halilovic För godänt betyg rävs av ma poäng. etygsgränser: För betyg D E rävs 9 6 respetive poäng. Komplettering:

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning det finns ett tal k så att A=kB

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning det finns ett tal k så att A=kB MATEMATISK MODELLERING Att ställa upp en differentialevation som besriver ett förlopp Följande uttryc används ofta i olia problem som leder till differentialevationer: Text A är proportionell mot B (A

Läs mer

( ) Räkneövning 3 röntgen. ( ) = Â f j exp -ir j G hkl

( ) Räkneövning 3 röntgen. ( ) = Â f j exp -ir j G hkl Räkneövning 3 röntgen 1. Natrium, Na, har en bcc-struktur med gitterparametern 4,225 Å. I ett röntgenexperiment på ett polykristallint Na-prov använder man sig av Cu-K a - strålning med våglängden 1,5405

Läs mer

Enligt Hunds första regel är spin maximal. Med tvνa elektroner i fem orbitaler tillνater

Enligt Hunds första regel är spin maximal. Med tvνa elektroner i fem orbitaler tillνater Problem. Vad är enligt Hunds reglar grundtillstνandet av deföljande fria joner? Använd spektroskopisk notation. Till exempel, i Eu + (4f 7 ) skulle rätt svar vara 8 S 7=.Gekvanttal för banrörelsemängdsmoment,

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematis analys 0820. Stationära punter. f (x, y) = 8x(x 2 y), f 2(x, y) = 4(y x 2 )). Vi ar alltså att f (x, y) = f 2(x, y) = 0 { x(x 2 y) = 0 y x 2 = 0. Första evationen ovan är uppfylld

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 9 jan 5, HF6 och HF8 Moment: TEN (Linjär algebra), hp, Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8.5-.5, Plats: Campus Haninge Eaminator:

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande

Läs mer

Lösningsförslag till tentamen MVE465, Linjär algebra och analys fortsättning K/Bt/Kf

Lösningsförslag till tentamen MVE465, Linjär algebra och analys fortsättning K/Bt/Kf Lösningsförslag till tentamen MVE4, Linjär algebra och analys fortsättning K/Bt/Kf 64 l. 8.3.3 Examinator: Thomas Wernstål, Matematisa vetensaper, Chalmers Telefonvat:, telefon: Hjälpmedel: Inga hjälpmedel

Läs mer

Föreläsning 1. Elektronen som partikel (kap 2)

Föreläsning 1. Elektronen som partikel (kap 2) Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner

Läs mer

Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysikaliska lagar.

Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysikaliska lagar. Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysialisa lagar. 1. Newtons gravitationslag och Newtons andra lag. Vi placerar ett rätvinligt oordinatsystem i solsystemet med solens medelpunt

Läs mer

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning. Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och

Läs mer

6.4 Svängningsrörelse Ledningar

6.4 Svängningsrörelse Ledningar 6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning

Läs mer

Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen

Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen 011-03-17 Tentamen i Meani SG1130, basurs P1. OBS: Inga hjälpmede förutom rit- och srivdon får användas! KTH Meani 1. Problemtentamen Ett tunt hyllplan (plana) med massan m är fäst i en led (gångjärn)

Läs mer

Uppgifter övning I8: Uppgift nr 1 Sealine AB

Uppgifter övning I8: Uppgift nr 1 Sealine AB Uppgifter övning I8: Uppgift nr 1 Sealine AB Rederiet Sealine AB har undersöt specialfartygsmarnaden under senaste året för 700 000 r och funnit en lämplig fartygsstorle, som det an tecna ontrat på. Vid

Läs mer

HALVLEDARE. Inledning

HALVLEDARE. Inledning HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på sammandragningarna.

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på sammandragningarna. Uppsala Universitet Matematisa Institutionen Bo Styf Basurs, 5 hp Distans 0-0-3 Genomgånget på sammandragningarna. Sammandragning, 5/ 0: Handlade om ombinatori multipliationsprincipen, permutationer, ombinationer,

Läs mer

IV. Ekvationslösning och inversa funktioner

IV. Ekvationslösning och inversa funktioner Analys 360 En webbaserad analysurs Grundbo IV. Evationslösning och inversa funtioner Anders Källén MatematiCentrum LTH andersallen@gmail.com IV. Evationslösning och inversa funtioner 1 (11) Introdution

Läs mer

Lösningsförslag envariabelanalys

Lösningsförslag envariabelanalys Lösningsförslag envariabelanalys 2 28-8-3. Evationen är linjär och har det arateristisa polynomet p(r) r 3 r 2 + 4r 4 (r 2 + 4)(r ). Således ges lösningarna till den homogena evationen p(d)y h av y h C

Läs mer

L HOSPITALS REGEL OCH MACLAURINSERIER.

L HOSPITALS REGEL OCH MACLAURINSERIER. L HOSPITALS REGEL OCH MACLAURINSERIER Läs avsnitten 73 och 8-82 Lös övningarna 78-75, 82, 84a,b, 85a,c, 89, 80 samt 8 Avsnitt 73 L Hospitals regel an ibland vara till en viss nytta, men de flesta gränsvärden

Läs mer

Binomialtal. Olof Bergvall. Algebra och Kombinatorik Stockholms Universitet 1 / 13

Binomialtal. Olof Bergvall. Algebra och Kombinatorik Stockholms Universitet 1 / 13 1 / 13 Olof Bergvall Algebra och Kombinatori Stocholms Universitet 2 / 13 Definition: Antalet sätt att välja en delmängd med element ur en mängd med n element betecnas. Talen ( n ) allas binomialtal eller

Läs mer

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden PROVET I MATEMATIK, LÅNG LÄROKURS 5.9. BESKRIVNING AV GODA SVAR De besrivningar av svarens innehåll som ges här är inte bindande för studenteamensnämndens

Läs mer

1 Föreläsning II, Vecka I, 5/11-11/11, avsnitt 2.3

1 Föreläsning II, Vecka I, 5/11-11/11, avsnitt 2.3 1 Föreläsning II, Veca I, 5/11-11/11, avsnitt 2.3 1.1 Kombinatori Ex 2.1 I ett rutnät går man åt höger eller uppåt. Hur många vägar finns det mellan A och B? B A Vi har 8 (del-)sträcor att välja uppåt

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 FK2003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du

Läs mer

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m LÖSNINGSFÖRSLAG 007 KVALIFICERINGS- OCH LAGTÄVLINGEN 1 februari 007 SVENSKA FYSIKERSAMFUNDET UPPGIFT 1. Enelspaltsproblem. Med sedvanliga betecningar erhålles: λ v / f 340/ 680 m 0,50 m Om α är vineln

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

IM2601 Fasta tillståndets fysik

IM2601 Fasta tillståndets fysik IM2601 Fasta tillståndets fysik Introduktion Kursen i ett större perspektiv Klassificering av fasta material Klassificering av kristallina material - atomstruktur 1 Forskning inom fysik idag - en översikt

Läs mer

RSA-kryptering. Torbjörn Tambour

RSA-kryptering. Torbjörn Tambour RSA-rytering Torbjörn Tambour RSA-metoden för rytering har den seciella och betydelsefulla egensaen att metoden för rytering är offentlig, medan metoden för derytering är hemlig. Detta an om man funderar

Läs mer

Digital signalbehandling Kamfilter och frekvenssamplande filter

Digital signalbehandling Kamfilter och frekvenssamplande filter Institutionen för eletroteni 999--9 Kamfilter och frevenssamplande filter I frevenssamplande filter utgår vi från en filterstrutur som har ett stort antal nollställen i frevensgången och modellerar filtrets

Läs mer

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag: 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Allmänt Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur. l A Allmänt. 8.1.

Allmänt Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur. l A Allmänt. 8.1. 8.1.1. Allmänt 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur

Materialfysik Ht Materials elektriska egenskaper 8.1 Bandstruktur 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIKPROV, LÅNG LÄROKURS 0..0 BESKRIVNING AV GODA SVAR De besrivningar av svarens innehåll som ges här är inte bindande för studenteamensnämndens bedömning.

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Materialfysik vt Materials struktur 3.2 Metallers struktur

Materialfysik vt Materials struktur 3.2 Metallers struktur 530117 Materialfysik vt 2007 3. Materials struktur 3.2 Metallers struktur 3.2.1 Grundämnes-metallers struktur Rena metall-grundämnen är alltid kristallina i fast form Ga är möjligen ett undantag Typiskt

Läs mer

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matemati Tentamen del 2 SF1511, 2017-03-16, l 800-1100, Numerisa metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p) Inga hjälpmedel Rättas endast om del 1 är godänd Betygsgränser

Läs mer

Svar till tentan

Svar till tentan UPPSALA UNIVERSITET Matematisa institutionen Sigstam, Styf Prov i matemati Alla program o frist urs ENVARIABELANALYS 0-08- Svar till tentan 0-08-. Del A Bestäm alla punter P 0 på urvan y = x + sådana att

Läs mer

Kursens mål är, förutom faktakunskaper om kursinnehållet, att ge:

Kursens mål är, förutom faktakunskaper om kursinnehållet, att ge: Inlämningsuppgifter i Funtionsteori För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa. Enligt

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2? FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

Lecture 6 Atomer och Material

Lecture 6 Atomer och Material Lecture 6 Atomer och Material Bandstruktur Ledare Isolatorer Halvledare Påminnelse Elektronerna ordnas i skal (n) och subskal (l) En elektron specificeras med 4 kvanttalen n,lm l,m s Två elektroner kan

Läs mer

Exciterat tillstånd hos β-naftol.

Exciterat tillstånd hos β-naftol. Exciterat tillstånd hos β-naftol. Laboration på ursen emis fysi Exciterat tillstånd hos β-naftol. nledning den här laborationen sa vi med hjälp av absorptions- och fluorescensmätningar studera protolysen

Läs mer

1 Föreläsning IV; Stokastisk variabel

1 Föreläsning IV; Stokastisk variabel 1 FÖRELÄSNING IV; STOKASTISK VARIABEL 1 Föreläsning IV; Stoastis variabel Vi har tidigare srivit P (1, 2, 3, 4, 5) = P (C) för sannoliheten för att få 1, 2, 3, 4 eller 5 vid ett tärningsast. Vi sall använda

Läs mer

Inlämningsuppgifter i Funktionsteori, ht 2018

Inlämningsuppgifter i Funktionsteori, ht 2018 Inlämningsuppgifter i Funtionsteori, ht 208 För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa.

Läs mer

Om användning av potensserier på kombinatorik och rekursionsekvationer

Om användning av potensserier på kombinatorik och rekursionsekvationer Om användning av potensserier på ombinatori och reursionsevationer Anders Källén MatematiCentrum LTH andersallen@gmailcom Sammanfattning Vid analys av både ombinatorisa problem och för att lösa reursionsevationer

Läs mer

Experiment Swedish (Sweden) Studsande kulor - En modell för fasövergångar och instabiliteter

Experiment Swedish (Sweden) Studsande kulor - En modell för fasövergångar och instabiliteter Q2-1 Studsande kulor - En modell för fasövergångar och instabiliteter (10 poäng) Läs de allmänna anvisningarna i det separata kuvertet innan du börjar. Inledning Många ämnen, exempelvis vatten, kan förekomma

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00 FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 9. Materiens magnetiska egenskaper [Callister, Ashcroft-Mermin, Kittel, etc. Se också anteckningarna för Fasta Tillståndets fysik kapitel 14-15] 9.0 Grunder: upprepning av

Läs mer

9. Materiens magnetiska egenskaper

9. Materiens magnetiska egenskaper 530117 Materialfysik vt 2010 9. Materiens magnetiska egenskaper [Callister, Ashcroft-Mermin, Kittel, etc. Se också anteckningarna för Fasta Tillståndets fysik kapitel 14-15] 9.0 Grunder: upprepning av

Läs mer

Övningar i Reglerteknik

Övningar i Reglerteknik Fysialisa esrivningar Övningar i eglerteni Inom reglertenien är det vitigt att unna ta fram ra esrivningar av verliga system. Oftast anlitas olia fysialisa lagar för detta ändamål. Vanliga typer av fysialisa

Läs mer

Materialfysik2010 Kai Nordlund

Materialfysik2010 Kai Nordlund 9.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 Magnetism har alltid dipolkaraktär Monopoler existerar ej! 9. Materiens magnetiska egenskaper Grundekvationer: (Yttre) magnetfält:

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik Curt Nyberg, Igor Zoric

GÖTEBORGS UNIVERSITET Institutionen för fysik Curt Nyberg, Igor Zoric GÖTEBORGS UNIVERSITET 06-11 10 Institutionen för fysik Curt Nyberg, Igor Zoric PROJEKTTENTAMEN I FASTA TILLSTÅNDETS FYSIK FYN160, ht 2006 Inlämningsuppgifterna ersätter tentamen. Du skall lösa uppgifterna

Läs mer

Potensserier och potensserieutvecklingar av funktioner

Potensserier och potensserieutvecklingar av funktioner Analys 36 En webbaserad analysurs Analysens grunder Potensserier och potensserieutveclingar av funtioner Anders Källén MatematiCentrum LTH andersallen@gmail.com Potensserier och potensserieutveclingar

Läs mer

Inlämningsuppgifter i Funktionsteori, vt 2016

Inlämningsuppgifter i Funktionsteori, vt 2016 Inlämningsuppgifter i Funtionsteori, vt 2016 För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa.

Läs mer

Ma B - Bianca Övning lektion 1. Uppgift nr 10. Uppgift nr 1 Givet funktionen f(x) = 4x + 9 Beräkna f(6) Rita grafen till ekvationen.

Ma B - Bianca Övning lektion 1. Uppgift nr 10. Uppgift nr 1 Givet funktionen f(x) = 4x + 9 Beräkna f(6) Rita grafen till ekvationen. Ma - ianca 2011 Uppgift nr 1 Givet funktionen f() = + 9 eräkna f(6) Uppgift nr 2 Givet funktionen f() = 5 + 3 eräkna f(7) Uppgift nr 3 Givet funktionen f() = -5 + 5 eräkna f(-3) Uppgift nr 10 Rita grafen

Läs mer

3.2.1 Grundämnes-metallers struktur Materialfysik vt CuAg nanostructur ed alloy. 3. Materials struktur 3.2 Metallers struktur

3.2.1 Grundämnes-metallers struktur Materialfysik vt CuAg nanostructur ed alloy. 3. Materials struktur 3.2 Metallers struktur 3.2.1 Grundämnes-metallers struktur 530117 Materialfysik vt 2010 Rena metall-grundämnen är alltid kristallina i fast form Ga är möjligen ett undantag 3. Materials struktur 3.2 Metallers struktur Typiskt

Läs mer

3.2.1 Grundämnes-metallers struktur

3.2.1 Grundämnes-metallers struktur 530117 Materialfysik vt 2010 3. Materials struktur 3.2 Metallers struktur 3.2.1 Grundämnes-metallers struktur Rena metall-grundämnen är alltid kristallina i fast form Ga är möjligen ett undantag Typiskt

Läs mer

TNA004 Analys II Tentamen Lösningsskisser

TNA004 Analys II Tentamen Lösningsskisser TNA004 Analys II Tentamen 07-06-0 - Lösningssisser. y ( ) y( ) e är linjär av första ordningen. Välj integrerande fator Multipliation av (*) med IF ger oss IF ln( ) e d e (Obs! ty vi har y(0) 0 ). ( )

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Institutionen för Teknisk Fysik kl.: Sal : Hörsalar

CHALMERS TEKNISKA HÖGSKOLA Institutionen för Teknisk Fysik kl.: Sal : Hörsalar CHALMERS TEKNISKA HÖGSKOLA 2007-10-26 Institutionen för Teknisk Fysik kl.:14 00-18 00 Sal : Hörsalar Tentamen i FYSIK 2 för E (FFY143) Lärare: Stig-Åke Lindgren, tel 7723346, 0707238333, 874836 Hjälpmedel:

Läs mer

Motivering av högerledet i Maxwells 4:e ekvation

Motivering av högerledet i Maxwells 4:e ekvation 1 Motivering av högerledet i Mawells 4:e evation tudera följande eletronisa rets: I J 1 3 Q -Q Gaussdosa 4 I Vi väljer att använda cirulationssatsen på urvan. Ytan i högerledet an ju väljas på ett otal

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

1 Föreläsning II, Vecka I, 21/1-25/11, 2019, avsnitt

1 Föreläsning II, Vecka I, 21/1-25/11, 2019, avsnitt 1 Föreläsning II, Veca I, 1/1-5/11, 019, avsnitt.3 1.1 Kombinatori Exempel 1.1 I ett rutnät går man åt höger eller uppåt. Hur många vägar finns det mellan A och B? B A Vi har 8 (del-)sträcor att välja

Läs mer

betecknas = ( ) Symmetriska egenskaper hos derivator av andra ordningen. (Schwarzs sats)

betecknas = ( ) Symmetriska egenskaper hos derivator av andra ordningen. (Schwarzs sats) PARTIELLA DERIVATOR Partiella derivator deinieras enom ränsvärden Deinition Låt vara en reellvärd untion deinierad på en öppen mänd n n Ω R Den partiella derivatan av i punten Aa a n Ω med avseende på

Läs mer

4 Signaler och system i frekvensplanet Övningar

4 Signaler och system i frekvensplanet Övningar Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern

Läs mer

Materialfysik vt Materials struktur 3.2 Metallers struktur

Materialfysik vt Materials struktur 3.2 Metallers struktur Materialfysik vt 2014 3. Materials struktur 3.2 Metallers struktur Nota bene Transparanger som omges med streckade parenteser innehåller data eller specifika strukturer som behandlas inte på föreläsningen,

Läs mer

SF2715 Tillämpad kombinatorik Kompletterande material och övningsuppgifter Del I

SF2715 Tillämpad kombinatorik Kompletterande material och övningsuppgifter Del I SF2715 Tillämpad ombinatori Kompletterande material och övningsuppgifter Del I Jaob Jonsson 2 augusti 2009 Detta häfte innehåller ompletterande material till Del I av ursen SF2715 Tillämpad ombinatori,

Läs mer

4.5 LOKALBUSSTERMINAL PÅ LAHOLMSVÄGEN, ALT B1, B2 OCH B3

4.5 LOKALBUSSTERMINAL PÅ LAHOLMSVÄGEN, ALT B1, B2 OCH B3 an Kungsgatan HALMSTADS 4.5 LOKALTERMINAL Å LAHOLMSVÄGEN, ALT B1, B2 OCH B3 Sysonhamnsgatan 30 05 65 +5 Lof Samtliga dessa förslag bygger på att man behåller befintlig järnvägsbro över. Docningsterminalen

Läs mer

Diagnostiskt test 1 tid: 2 timmar

Diagnostiskt test 1 tid: 2 timmar Diagnostist test tid: timmar Detta är ditt första diagnostisa test i matemati å den är reetitionsursen. Ge dig själv oäng för varje rätt svar. (ge inga ½ oäng). edömning: - oäng Du ar tillräcliga förunsaer

Läs mer

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.

Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Komponentfysik Övning 1 VT-10 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande frågor: I Definiera

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som

Läs mer

Identification Label. Student ID: Student Name: Elevenkät Fysik. Skolverket Bo Palaszewski, Projektledare 106 20 Stockholm

Identification Label. Student ID: Student Name: Elevenkät Fysik. Skolverket Bo Palaszewski, Projektledare 106 20 Stockholm Identification Label Student ID: h Student Name: Elevenät Fysi Solveret Bo Palaszewsi, Proetledare 106 20 Stocholm International Association for the Evaluation of Educational Achievement Copyright IEA,

Läs mer

Riktlinjer för rapportering av räntestatistikblankett MIR

Riktlinjer för rapportering av räntestatistikblankett MIR (5) Ritlinjer för rapportering av räntestatistiblanett MIR (200-09-30) 2 2(5) Innehållsförtecning sida Posternas innehåll... 3. Referensperiod... 3.2 Löptidsfördelning av utlåning... 4.3 Definition av

Läs mer

Fysik TFYA86. Föreläsning 11/11

Fysik TFYA86. Föreläsning 11/11 Fysik TFYA86 Föreläsning 11/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 40-42* (*) 40.1-4 (översikt) 41.6 (uteslutningsprincipen) 42.1, 3, 4, 6, 7 koncept enklare uppgifter Översikt

Läs mer

5 Klämkraft och monteringsmoment

5 Klämkraft och monteringsmoment 5 Klämraft och monteringsmoment 5 Klämraft och monteringsmoment Målsättningen med ett sruvförband är att sapa en lämraft mellan de sammanfogade delarna. Sruvförbandets målvärde är således dess lämraft.

Läs mer

x(t) =A cos(!t) sin(!t)

x(t) =A cos(!t) sin(!t) Lösningsförslag. Rörelseevationen för roen ger som vanligt ẍ +! =,! = som tillsamman med begynnelsevilloren () = A, ẋ() = ger a) Så varför mavärdet av hastighetens belo är!a. q m A (t) =A cos(!t) ẋ(t)

Läs mer

BANDGAP 2009-11-17. 1. Inledning

BANDGAP 2009-11-17. 1. Inledning 1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

Kvantmekanik och kemisk bindning I 1KB501

Kvantmekanik och kemisk bindning I 1KB501 Kvantmekanik och kemisk bindning I 1KB501 TENTAMEN, 013-06-05, 8.00-13.00 Tillåtna hjälpmedel: Miniräknare, bifogade formelsamlingar. Börja på nytt blad för varje nytt problem, och skriv din kod på varje

Läs mer