Digital signalbehandling Kamfilter och frekvenssamplande filter
|
|
- Lisa Larsson
- för 7 år sedan
- Visningar:
Transkript
1 Institutionen för eletroteni Kamfilter och frevenssamplande filter I frevenssamplande filter utgår vi från en filterstrutur som har ett stort antal nollställen i frevensgången och modellerar filtrets frevensgång genom att ta bort lämpliga nollställen. Filtret med många nollställen som vi utgår från allas amfilter. Det finns ett antal olia amfilterstruturer varav vissa innehåller ett stort antal poler i stället för nollställejn och vi ser på dessa innan vi går in på frevenssamplande filter Kamfilter Kamfilter med nollställen Vi ser på filtret med differensevation [] n x[] n x[ n ] dvs ett filter med överföringsfuntionen () som har stcen nollställen i π och stcen poler i origo. Figurerna visar pol/nollställesplacering och beloppsurvan för Tio poler CALMERS LIDOLME Sida Institutionen för eletroteni Sven Knutsson Box Göteborg Besösadress: örselgången Telefon: Telefax: E-post: sven@ios.chalmers.se Web: sven
2 Vi ser att vi har stcen nollställen vid f s frevenserna och toppar vid f s +.,. Vi an ocså utgå från differensevationen [] n x[] n + x[ n ]..... med överföringsfuntionen + () + som har stcen nollställen i π + och stcen poler i origo. Återigen visar figurerna pol/nollställesplacering och beloppsurvan för Vi ser att vi har stcen nollställen vid frevenserna f s + och toppar vid, dvs i jämförelse f s med det första filtret har nollställen och toppar btt plats. Båda är filtertperna är användbara då vi fill filtrera bot en frvensomponent med övertoner, t ex nätbrum ( ) och dess övertoner. Frevensurvan mellan utsläcningarna är doc som snes gansa olinjär. Vilen variant vi väljer beror på hur de önsade utsläcningsfrevenserna ligger i förhållande till lispänníng och om vi önsar utsläcning eller passband vid lispänning... Tio poler,..... Kamfilter och frevenssamplande filter Sida
3 Kamfilter med poler Vi an ocså bgga upp amfilter med poler och an då utgå från differensevationen [] n x[] n + r [ n ] r måste vara mindre än ett för stabilitet. Vi har överföringsfuntionen r r () som har stcen nollställen i origo π och stcen poler i r. Vi ser på pol/nollställesplacering och beloppsurvan för och r, 98. Vi ser att vi har stcen dämpningar vid frevenserna f s + och toppar vid f s, här an vi få smala toppar i stället för gansa smala notchar genom att välja stort r (nära enhetscireln). Tio nollställen,, r.98 Även här an vi bta tecen och utgå från differensevationen [] n x[] n r [ n ] med överföringsfuntionen r + r () Tio nollställen som har stcen nollställen i origo och stcen poler i π r +. Kamfilter och frevenssamplande filter Sida
4 Vi ser på pol/nollställesplacering och beloppsurvan för och r, 98. Vi ser att vi har stcen dämpningar vid frevenserna och toppar vid f s f s +, i jämförelse med den första tpen av amfilter med poler bter alltså dämpningar och toppar plats.,, r Frevenssamplande filter Idén baom frevenssamplande filter är att vi utgår från ett amfilter med nollställen, dvs en av de första tperna ovan, och eliminerar ett eller flera av nollställena och får därigenom ett passband vid denna frevens i stället. Genom att ta bort ett antal närliggande nollställen an vi ontrollera bredden på filtret. Bredden ontrolleras naturligtvis ocså av antalet fördröjlingssteg, dvs avståndet mellan nollställena. Metoden fungerar bäst för stora värden på, lämpligen över hundra, men i den efterföljande texten nöjer vi oss med för att få tdligare figurer. Vi använder ocså den första amfiltermodellen med [] n x[] n x[ n ] Vi avslutar med ett par mer realistisa exempel. ur tar vi nu bort ett nollställe? Vi eliminerar det genom att placera en pol i samma punt. Vi lägger alltså en pol i π för önsat värde på. Ligger inte det nollställe vi vill eliminera på reella axeln ( ± ) så får vi dessutom lägga en pol vid nollställets omplexonjugat för att få reella onstanter. Vi får vidstående figurer (för ice-reella poler) om vi ser till att ha lia många nollställen som poler (figurerna har och ). Den observante läsaren bör nu protestera och invända att vi inte an lägga en pol på enhetscireln om vi önsar ett stabilt sstem, vilet vi rimligen vill. I pratien har vi doc ingen pol på enhetscireln eftersom vi har ett nollställe i samma punt, de två tar ut varandra. Filtret med en pol på enhetscireln allas en resonator och får överföringsfuntionen () [ cos( Ω )] [ cos( Ω )] cos( Ω ) + Två nollställen Kamfilter och frevenssamplande filter Sida
5 Vi serieopplar alltså ett amfilter med en resonator och har den totala överföringsfuntionen Kamfilter Resonator () ( Ω ) [ cos( Ω ) + ] cos cos ( Ω ) + med differensevationen + [] n x[] n x[ n ] + + cos( Ω ) [ n ] [ n ] Åtta poler,, Medelvärdesbildande filter Lägg märe till att ett medelvärdesbildande filter är ett specialfall av ett frevenssamplande filter där vi eliminerar nollstället i. Vi ompletterar dessutom med salfatorn, där är antalet termer vi vill ta medelvärde över. Vi utgår då från amfiltret [] n x[] n x[ n ] med överföringsfuntionen ()..... och ompletterar med en resonator med en pol i och eftersom denna är reell behövs inget omplexonjugat. Vi har Kamfilter och frevenssamplande filter Sida
6 () och får då total, med salfatorn. [ ] ( ) () dvs evationen för ett termers medelvärdesbildande filter. Figurerna visar resultatet för., io poler Mer om frevensamplande filter Om vi återgår till det tidigare mer generella frevenssamplande filtret så vill vi nu öa bandbredden genom att ta bort ett nollställe till genom att lägga en resonator till parallellt med den första. Blocschemamässigt är det möjligt att x[n] rita ett enda amfilter och två parallella resonatorer men i pratien ombineras amfilter och resonator till ovanstående totala överföringsfuntion vilet innebär att hela evationen realiseras i varje parallell län. Lägg doc märe till att alla evationer har samma täljare varför denna räver en enda minnesarea. ämnarsamplen är doc inte de samma i de olia länarna, [] n är inte det samma som [] n +. x[n] Kamfilter Resonator Resonator + Filterlän Filterlän + [n] + [n] + [n] [n] + + [n] [n] Kamfilter och frevenssamplande filter Sida
7 Vi ser nu på pol/nollställesplacering och beloppsspetra om vi ompletterar ovanstående frevenssamplande filter med och med en parallell län som eliminerar nollstället vid. Resultatet blir inte det önsade. Vi ser att vi får ett nollställe mitt mellan de två topparna trots att vi har eliminerat två närliggande nollställen. Det na nollstället ligger alltså mitt emellan de två eliminerade nollställena. Vi har uppenbarligen förbisett något.,,..... Vi ser på belopp- och fasgång för det första filtret med och. Ur figuren ser vi att filtret inte har någon fasvridning vid mittfrevensen medan det har positiv fasvridning vid frevenser strax nedanför mittfrevensen och negativ fasvridning strax ovanför mittfrevensen Fre vens relativt fs) fasvinel relativt pi Fre vens relativt fs) Tittar vi nu på fasvridningen för båda länarna så ser vi att mitt emellan de två mittfrevenserna där de två urvorna borde samvera ommer de att släca ut varandra genom att ligga i motfas. fasvinel relativt pi Fre vens relativt fs) Fre vens relativt fs) fasvinel relativt pi. -. Kamfilter och frevenssamplande filter Sida Fre vens relativt fs) Fre vens relativt fs)
8 Vi fasvänder då den senare länen och ser på resultatet. Som snes har vi nu lcats få två samverande filter. 7,,..... För att göra ett filter som består av ett antal parallella länar så får vi alltså ha omvänt tecen på varannat filter. Vi an ocså förändra filtrets storle genom att ge de parallella länarna olia förstärning. x[n] A -A A Filterlän Filterlän + Filterlän + + [n] -A Filterlän + Realistisa exempel Vi ser på ett mer realistist exempel genom att öa till och eliminerar nollställe. Vi ser att vi får gansa stora svängningar i passbandet. Dessa svängningar an minimeras genom att orrigera förstärningen i de olia analerna. Vi ser ocså att passbandsförstärningen inte är ett utan den måste orrigeras., -, - (db) - 8 (db) Kamfilter och frevenssamplande filter Sida 8
9 Genom att ändra de olia analerna förstärning an vi ocså sapa frevensurvor som inte efterlinar den vanliga lådformen. Figurerna visar samma exempel som ovan men med orretionen (), [ () () + () + () + () + () + () + () + () ] + 9 () + () 7 8 +, -, - (db) - 8 (db) Pratisa hänsn I pratien sall vår differensevation implimenteras i en dator med begränsad ordlängd och då är sannoliheten stor att något nollställe och den pol som sall släca ut detta nollställe inte hamnar i exat samma punt. Resultatet blir då att vi får en pol på eller anse strax utanför enhetscireln som inte är utsläct av ett nollställe. Vi får alltså ett instabilt sstem. För att råda bot på detta så placerar ci nollställena och de ompenserande polerna på en cirel med radie strax under ett. Vi får då i respetive län () r r cos ( Ω ) + r Om vi använder r, 999 i det första realistisa exemplet ovan så får vi nedanstående figurer. Kamfilter och frevenssamplande filter Sida 9
10 , - r.999, - r.999 (db) - 8 (db) Som snes sjuner passbandsförstärningen något men filter formen består. Säner vi radien till r, 99 så blir figurerna, - r.99, - r.99 (db) - (db) Vi ser att nu händer en del med urvformen men inte så mcet. Kamfilter och frevenssamplande filter Sida
4 Signaler och system i frekvensplanet Övningar
Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern
Digital signalbehandling Digital signalbehandling
Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso
Övningar i Reglerteknik
Fysialisa esrivningar Övningar i eglerteni Inom reglertenien är det vitigt att unna ta fram ra esrivningar av verliga system. Oftast anlitas olia fysialisa lagar för detta ändamål. Vanliga typer av fysialisa
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden PROVET I MATEMATIK, LÅNG LÄROKURS 5.9. BESKRIVNING AV GODA SVAR De besrivningar av svarens innehåll som ges här är inte bindande för studenteamensnämndens
Analys av polynomfunktioner
Anals av polnomfuntioner Anals360 (Grundurs) Blandade uppgifter När du har löst dessa övningar, ta dig tid att gå igenom vad du gjort. Tän igenom att dina argument inte bara är rätt, utan att du tdligt
IV. Ekvationslösning och inversa funktioner
Analys 360 En webbaserad analysurs Grundbo IV. Evationslösning och inversa funtioner Anders Källén MatematiCentrum LTH andersallen@gmail.com IV. Evationslösning och inversa funtioner 1 (11) Introdution
1 Jag själv lärde om detta av en kollega som, kanske, heter Joel Andersson
1 Kryptering 11 Vi sall 1 idag titta lite på ryptering, och mera specifit hur elliptisa urvor används i ryptering, såallad ECDSA Vi sall ocså se ett atuelt exempel på hur detta inte sall användas 12 Problemet
Tentamen SF1661 Perspektiv på matematik Lördagen 18 februari 2012, klockan Svar och lösningsförslag
Tentamen SF1661 Perspetiv på matemati Lördagen 18 februari 01, locan 09.00 1.00 Svar och lösningsförslag (1) Sissera den mängd i xy-planet som består av alla punter som uppfyller oliheten (x + ) + (y )
L HOSPITALS REGEL OCH MACLAURINSERIER.
L HOSPITALS REGEL OCH MACLAURINSERIER Läs avsnitten 73 och 8-82 Lös övningarna 78-75, 82, 84a,b, 85a,c, 89, 80 samt 8 Avsnitt 73 L Hospitals regel an ibland vara till en viss nytta, men de flesta gränsvärden
Tentamen i Mekanik SG1130, baskurs. Problemtentamen
013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på
Lösningsförslag Dugga i Mekanik, grundkurs för F, del 2 September 2014
Lösningsförslag Dugga i Meani, grundurs för F, del 2 Septemer 2014 Till varje uppgift finns det ett lösningsförslag som exempel på hur uppgiften an lösas. Lösningsförslaget visar även hur lösningen ungefärligt
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Uppgifter övning I8: Uppgift nr 1 Sealine AB
Uppgifter övning I8: Uppgift nr 1 Sealine AB Rederiet Sealine AB har undersöt specialfartygsmarnaden under senaste året för 700 000 r och funnit en lämplig fartygsstorle, som det an tecna ontrat på. Vid
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på sammandragningarna.
Uppsala Universitet Matematisa Institutionen Bo Styf Basurs, 5 hp Distans 0-0-3 Genomgånget på sammandragningarna. Sammandragning, 5/ 0: Handlade om ombinatori multipliationsprincipen, permutationer, ombinationer,
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysikaliska lagar.
Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysialisa lagar. 1. Newtons gravitationslag och Newtons andra lag. Vi placerar ett rätvinligt oordinatsystem i solsystemet med solens medelpunt
Lösningar till Matematisk analys
Lösningar till Matematis analys 0820. Stationära punter. f (x, y) = 8x(x 2 y), f 2(x, y) = 4(y x 2 )). Vi ar alltså att f (x, y) = f 2(x, y) = 0 { x(x 2 y) = 0 y x 2 = 0. Första evationen ovan är uppfylld
Motivering av högerledet i Maxwells 4:e ekvation
1 Motivering av högerledet i Mawells 4:e evation tudera följande eletronisa rets: I J 1 3 Q -Q Gaussdosa 4 I Vi väljer att använda cirulationssatsen på urvan. Ytan i högerledet an ju väljas på ett otal
Prov i matematik Fristående kurs Analys MN1 distans UPPSALA UNIVERSITET Matematiska institutionen Anders Källström
UPPSALA UNIVERSITET Matematisa institutionen Anders Källström Prov i matemati Fristående urs Analys MN1 distans 6 11 Srivtid: 1-15. Hjälpmedel: Gymnasieformelsamling. Lösningarna sall åtföljas av förlarande
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Lösningar till problemtentamen
KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIKPROV, LÅNG LÄROKURS 0..0 BESKRIVNING AV GODA SVAR De besrivningar av svarens innehåll som ges här är inte bindande för studenteamensnämndens bedömning.
( ), så kan du lika gärna skriva H ( ω )! ( ) eftersom boken går igenom laplacetransformen före
Några allmänna kommentarer gällande flera av lösningarna: Genomgående används kausala signaler och kausala system, vilket innebär att det är den enkelsidiga laplacetransformen som används. Bokens författare
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2017 Skrivtid 8:00 12:00
Kurs: HF9 Matemati Moment TEN Linjär lgebra Datum: augusti 7 Srivtid 8: : Eaminator: rmin Halilovic För godänt betyg rävs av ma poäng. etygsgränser: För betyg D E rävs 9 6 respetive poäng. Komplettering:
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Svar till tentan
UPPSALA UNIVERSITET Matematisa institutionen Sigstam, Styf Prov i matemati Alla program o frist urs ENVARIABELANALYS 0-08- Svar till tentan 0-08-. Del A Bestäm alla punter P 0 på urvan y = x + sådana att
Biomekanik, 5 poäng Kinetik
Teori: F = ma Dessutom gäller, som i statien, Newtons 3: lag! Newtons lagar 1. Tröghetslagen: En ropp utan yttre raftpåveran förblir i sitt tillstånd av vila eller liformig, rätlinjig rörelse.. Accelerationslagen:
6.4 Svängningsrörelse Ledningar
6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning
Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 9 jan 5, HF6 och HF8 Moment: TEN (Linjär algebra), hp, Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8.5-.5, Plats: Campus Haninge Eaminator:
För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0
Övning 5 Introduktion Varmt välkomna till femte övningen i glerteknik AK! Håkan Terelius hakante@kth.se petition lativ dämpning För ett andra ordningens system utan nollställen, där överföringsfunktionen
Inlämningsuppgifter i Funktionsteori, ht 2018
Inlämningsuppgifter i Funtionsteori, ht 208 För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa.
Tentamen i Mekanik SG1130, baskurs P1. Problemtentamen
011-03-17 Tentamen i Meani SG1130, basurs P1. OBS: Inga hjälpmede förutom rit- och srivdon får användas! KTH Meani 1. Problemtentamen Ett tunt hyllplan (plana) med massan m är fäst i en led (gångjärn)
dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.
Lösningsförslag till tentamenssrivning i SF633 Differentialevationer I Måndagen den 5 otober 0, l 0800-300 Hjälpmedel: BETA, Mathematics Handboo Redovisa lösningarna på ett sådant sätt att beräningar och
Kursens mål är, förutom faktakunskaper om kursinnehållet, att ge:
Inlämningsuppgifter i Funtionsteori För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa. Enligt
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysi Onsdagen den 5 maj, 011 Teoridel Magnetism i MnF 1. a) Vi ser från enhetscellen att den innehåller 8 1 =1 Mn-atom med spinn upp (hörnen)
Snabba accelerationers inverkan på gods under transport
Snabba accelerationers inveran på gods under transport November 2001 Prof. Christian Högfors CENTRE FOR BIOMECHANICS P. O. Box 36046 SE-40013, Göteborg, Sweden 0 Eje Flodström, Anders Sjöbris MariTerm
Om användning av potensserier på kombinatorik och rekursionsekvationer
Om användning av potensserier på ombinatori och reursionsevationer Anders Källén MatematiCentrum LTH andersallen@gmailcom Sammanfattning Vid analys av både ombinatorisa problem och för att lösa reursionsevationer
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Föreläsning 5. Motkoppling och stabilitet bl. Stabilitetskriterier Stabilitetsmarginaler Kompensering Exempel. IE1202 Analog elektronik /BM
Föreläsning 5 Motkoppling och stabilitet bl Definition av termer Stabilitetskriterier Stabilitetsmarginaler Kompensering Exempel IE1202 nalog elektronik /BM Black s första idé U in 1 U ut Utspänning med
FREKVENSSPEKTRUM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1
FREKVENSSPEKTRUM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET JEAN BATISTE JOSEPH FOURIER 768-83 Fourier utveclade metoden att besriva periodisa förlopp genom summering av vitade ortogonala funtioner
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Lösningsförslag, v0.4
, v.4 Preliinär version, 6 februari 28, reservation för fel! Högsolan i Sövde Tentaen i ateati Kurs: MA52G Mateatis analys MA23G Mateatis analys för ingenjörer Tentaensdag: 27-5-2 l 8:3-3:3 Hjälpedel :
Lösningsförslag envariabelanalys
Lösningsförslag envariabelanalys 2 28-8-3. Evationen är linjär och har det arateristisa polynomet p(r) r 3 r 2 + 4r 4 (r 2 + 4)(r ). Således ges lösningarna till den homogena evationen p(d)y h av y h C
a k . Serien, som formellt är följden av delsummor
Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara
betecknas = ( ) Symmetriska egenskaper hos derivator av andra ordningen. (Schwarzs sats)
PARTIELLA DERIVATOR Partiella derivator deinieras enom ränsvärden Deinition Låt vara en reellvärd untion deinierad på en öppen mänd n n Ω R Den partiella derivatan av i punten Aa a n Ω med avseende på
TNA004 Analys II Tentamen Lösningsskisser
TNA004 Analys II Tentamen 07-06-0 - Lösningssisser. y ( ) y( ) e är linjär av första ordningen. Välj integrerande fator Multipliation av (*) med IF ger oss IF ln( ) e d e (Obs! ty vi har y(0) 0 ). ( )
5 Signaler och system i z-planet Övningar 5.1 Bestäm överföringsfunktionen i z-planet för ett system med impulssvaret
Sigler och sstem i -plet Övigr. Bestäm överförigsfutioe i -plet för ett sstem med impulssvret ) h[ ] [ ] 9 [ ] [ ] b) h [ ] u[ ] u[ ] h [] h[ ] c) d). Bestäm -trsforme för de sigler som besrivs v följde
DT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
+ + om systemet har M transversalkonstanter
9 Vi har tidigare ett att polera placerig har törre ivera på frevegåge ä vad olltällea placerig har, vilet gör att reuriva filter är effetivare ä traveralfilter. Vi a därför apa reuriva filter om a geerera
Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Inlämningsuppgifter i Funktionsteori, vt1 2012
Inlämningsuppgifter i Funtionsteori, vt1 01 För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa.
Poler och nollställen, motkoppling och loopstabilitet. Skrivet av: Hans Beijner 2003-07-27
Poler och nollställen, motkoppling och loopstabilitet Skrivet av: Hans Beijner 003-07-7 Inledning All text i detta dokument är skyddad enligt lagen om Copyright och får ej användas, kopieras eller citeras
10. MEKANISKA SVÄNGNINGAR
10. MEKANISKA SVÄNGNINGAR 10.1 Den enla harmonisa oscillatorn. Ett föremål med massan m, som hängs upp i en lätt fjäder, får svänga ring sitt jämvitsläge. Under svängningen påveras föremålet av en raft
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
vilket är intervallet (0, ).
Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten > 4 och uttrck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3( ) < (3 + ), och uttrck lösningen som ett intervall
EN 1990 Eurokod: Grundläggande dimensioneringsregler för bärande konstruktioner Elisabeth Helsing, Boverket
EN 1990 Eurood: Grundläggande dimensioneringsregler för bärande onstrutioner Elisabeth Helsing, Boveret EN 1990 den innehåller de grundläggande dimensioneringsreglerna för bärande onstrutioner och är uppdelad
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning det finns ett tal k så att A=kB
MATEMATISK MODELLERING Att ställa upp en differentialevation som besriver ett förlopp Följande uttryc används ofta i olia problem som leder till differentialevationer: Text A är proportionell mot B (A
Diagnostiskt test 1 tid: 2 timmar
Diagnostist test tid: timmar Detta är ditt första diagnostisa test i matemati å den är reetitionsursen. Ge dig själv oäng för varje rätt svar. (ge inga ½ oäng). edömning: - oäng Du ar tillräcliga förunsaer
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)
EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär
Informationsteknologi
Bengt Carlsson Informationstenologi En översit av Kap 7 Systemteni Informationstenologi Tillbaablic, återoppling Reglering av vätsenivån i en tan Nivågivare Reglerventil Inflöde TANK Varierande utflöde
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
TSDT18/84 SigSys Kap 4 Laplacetransformanalys av tidskontinuerliga system. De flesta begränsade insignaler ger upphov till begränsade utsignaler
9 Stabilitet för energifria LTI-system Marginellt stabilt system: De flesta begränsade insignaler ger upphov till begränsade utsignaler Kap 2, bild 4 h t h( t) dt /< < t gäller för marginellt stabila LTI-system
Exercises Matlab/simulink V
817/Thomas Munther IDE-sektionen Exercises Matlab/simulink V MA-filter ( Moving Average ) Detta är ju egentligen inget annat än ett FIR-filter fast där vi använder samma vikter på alla insignaltermer och
P03. (A) Visa, att om en aritmetisk serie med differensen d har a som första och b som sista term, så är seriens summa b + a 2.
Kap P. P0. (A) Rita följande kurvor a. = + = c. = [ + ], där [a] betecknar heltalsdelen av talet a d. sgn( ), där sgn(a) betecknar tecknet av talet a. P0. (B) För vilka reella gäller + + + 4? P0. (A) Visa,
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Inlämningsuppgifter i Funktionsteori, vt 2016
Inlämningsuppgifter i Funtionsteori, vt 2016 För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa.
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
4. TÄNKBARA LAYOUTER/ STRUKTURER
1 +3.2.4 Kungsgatan Kaptensgatan Sysonhamnsgatan 1 2 0 +2.3 +3.0 +1.6 +0.5 Laholmsvägen Kv Kranen behöver troligen rivas 28 Kungs Bredgatan Kaptensgatan Sysonhamnsgatan 1 2 2 0 1 28 09 Bolmensgatan Laholmsvägen
1 2 k = 1. Hz och de två första övertonerna med frekvenserna 3 f
Institutionen ör data- och elektroteknik 2-2-9 Diital sinalbehandlin Linjär as Hur påverkar asvridninen en sinal bestående av lera deltoner? Inlednin Vi skal se hur lå- och höpassilter med inen asvridnin,
Referens :: Komplexa tal
Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Ma B - Bianca Övning lektion 1. Uppgift nr 10. Uppgift nr 1 Givet funktionen f(x) = 4x + 9 Beräkna f(6) Rita grafen till ekvationen.
Ma - ianca 2011 Uppgift nr 1 Givet funktionen f() = + 9 eräkna f(6) Uppgift nr 2 Givet funktionen f() = 5 + 3 eräkna f(7) Uppgift nr 3 Givet funktionen f() = -5 + 5 eräkna f(-3) Uppgift nr 10 Rita grafen
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Deltentamen. TMA044 Flervariabelanalys E2
Deltentamen godäntdelen, del TMA44 Flervariabelanalys E 4-9-7 l. 8:3-:3 Eaminator: Peter Hegarty, Matematisa vetensaper, Chalmers Telefonvat: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Driftskostnader -150 tkr
Uppgift övning I4: Uppgift nr 1 Bima AB Bima AB tär öppna en biltvättanläggning och har därför öpt in en anläggning som är installerad och färdig att tas i drift vid årssiftet. Följande gäller för biltvättanläggningens
Lösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 8-8-8. (a) RGA(G()) = med y. ( ), dvs, vi bör para ihop u med y och u s+ (b) Underdeterminanter till systemet är (s+)(s+3), s+, s+3, s+, s (s+)(s+)(s+3). MGN är p(s) =
Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 6 Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Sammanfattning av förra föreläsningen 2 G(s) Sinus in (i stabilt system) ger sinus
Dubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
5 OP-förstärkare och filter
5 OP-förstärkare och filter 5.1 KOMPARATORKOPPLINGAR 5.1.1 I kretsen nedan är en OP-förstärkare kopplad som en komparator utan återkoppling. Uref = 5 V, Um= 13 V. a) Rita utsignalen som funktion av insignalen
Innehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
Läsanvisningar till kapitel
Läsanvisningar till kapitel 6. 6.7 6. Residuesatsen Hela kapitel 6 handlar om att beräkna olika typer av integraler på så gott som samma vis. Om ni kommmer ihåg från förra avsnittet om Laurentserieutvecklingar,
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Cirkelkriteriet (12.3)
Föreläsning 3-4 Cirkelkriteriet (12.3) En situation där global stabilitetsanalys kan utföras. r + u G(s) y f( ) där f( ) är en statisk olinjäritet, t ex f(y) = 1 y 0 1 y < 0 eller Antag att: f(y) = y 2
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Tentamen i Mekanik - partikeldynamik
Tentamen i Meani - partieldynami TMME08 011-08-17, l 8.00-1.00 Tentamensod: TEN1 Tentasal: TER4 Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 8 7 43, (Besöer salarna ca 9.00 och 11.00) Kursadministratör:
Multiplikationsprincipen
Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter
Föreläsning 10, Egenskaper hos tidsdiskreta system
Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering
x(t) =A cos(!t) sin(!t)
Lösningsförslag. Rörelseevationen för roen ger som vanligt ẍ +! =,! = som tillsamman med begynnelsevilloren () = A, ẋ() = ger a) Så varför mavärdet av hastighetens belo är!a. q m A (t) =A cos(!t) ẋ(t)
Lösningar kapitel 10
Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +