Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer
|
|
- Roland Alf Sundqvist
- för 8 år sedan
- Visningar:
Transkript
1 Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1
2 Lite om mig själv Erik Lind Civ. Ing. i Teknisk Fysik Doktorerade i Fasta Tillståndets Fysik Postdoktor vid UC Santa Barbara Forskarassistent och docent vid Fasta Tillståndets Fysik Lektor vid EIT i högfrekvent nanoelektronik 2011 Jobbar med högfrekvent nanoelektronik: tillverkning av transistorer och kretsar, pulsbaserade kommunikationssystem, mmstora antenner Samarbete med startups och TSMC Nystartat företag Acconeer AB Introduction, High Speed Devices
3 Kursöversikt 14 2 h föreläsningar h övningar 2 laborationer med rapporter Obligatoriska förberedelseuppgifter inför varje lab! Måndag 1012, E:B Fredag 1012 E:1406. Annorludna första veckan. Två grupper, E3336 (onsdag 810) E3319 (torsdag 1012) Börjar 24/4. Anmäl er via hemsidan..! 2 inlämningsuppgifter Deadlines: 30/3 och 4/5 Skriftlig tentamen 21/5 813 Formelsamling,Beteckningslista, Räknare, TeFyMa OBS! Laborationsrapporter OBS! Inlämning senast: En vecka efter labben Godkända senast: 15e juni! 3
4 Kurshemsida & Kompendium Uppdateras löpande med all information! Kompendium av Anders Gustafsson Uppdaterat till 2011 Delas ut i pausen! Finns att ladda ner: Föreläsningsslides (kommer efterhand) Kursprogram Övningsuppgifter + Lösningar 2 Inlämningsuppgifter (kommer efterhand) 2 Labhandledningar Extentor med lösningar 4
5 Lokaler för labbarna E:B Mitt kontor: E2123 Laborationer i H 200 Exakt plats på hemsidan! 5
6 Varför Komponentfysik? Digital IC Design Analog Elektronik Datorteknik Programmering Komponentfysik 6
7 Varför Komponentfysik? Hur uppför sig elektroner i ett material? Vad skiljer en metall/isolator/halvledare? Hur fungerar en pnövergång? Hur fungerar en bipolär transistor? Hur fungerar en Fälteffekttransistor? Hur fungerar DRAM? Hur fungerar Flashminnen? Vilka begränsningar / möjligheter finns för BJT/FETs? Föreläsning 1, Komponentfysik
8 Varför Komponentfysik Moores lag 8
9 Varför Komponentfysik II Lysdiod Omvandlar elektrisk energi till ljus Hur fungerar en lysdiod? Hur får man olika färger? Hur fungerar en halvledarlaser? Solceller Omvandlar ljus till elektrisk energi Hur fungerar en solcell? Varför är har en normal solcell bara ~20% effektivitet? Hur man kan göra den bättre? 9
10 För att bli godkänd på kursen Beskriva grundläggand begrepp inom halvledafysiken Förklara hur strömmar och inbyggd spänning uppkommer i en diod Förklara funktionen hos transistorer och dioder Göra enklare beräkningar på strömmar i dioder och transistorer Förklara orsaken till frekvensberoendet hos en transistor Skriva strukturerade labrapporter 10
11 Grundläggande förståelse för andra kurser Nanoelektronik Process och komponentteknologi Halvledarfysik Höghastighetselektronik Analog ICkonstruktion Fysiken för lågdimensionella strukturer och kvantkomponenter Fysik kvantfenomen och nanoteknologi Analog konstruktion Analoga projekt Process och komponentteknologi Halvledarfysik Analog ICkonstruktion ICprojekt och verifiering Radio, Radio Elektronik Digital mikroelektronik Digitala projekt Process och komponentteknologi VLSIarkitektur ICprojekt och verifiering Digital ICkonstruktion Mastersprogram: SystemonChip (SOCware) Allmänbildning för en E:are! 11
12 Föreläsningarnas struktur Svårigheter: Många nya begrepp Många nya beteckningar finns i beteckningslistan Många formler finns i formelsamlingen Bandstruktur, potential, diffusionsström, Fermienergi, dopning n, µ n, D n, D p, N D, N AB, E F, U th, kt, U bi, ev, Φ F. Hög nivå av abstraktion Relativt komplexa system Kursmaterial: Lärobok Föreläsningsslides Övningar Formelsamling, Beteckningslista Föreläsningarna: Få matematiska härledningar Illustrera & förklara begrepp Ge exempel 12
13 Komponentfysik Kursöversikt Bipolära Transistorer Optokomponenter pnövergång: strömmar och kapacitanser Minnen: Flash, DRAM MOSFET: strömmar MOSFET: laddningar pnövergång: Inbyggd spänning och rymdladdningsområde Dopning: noch ptyp material Laddningsbärare: Elektroner, hål och ferminivåer Halvledarfysik: bandstruktur och bandgap Ellära: elektriska fält, potentialer och strömmar 13
14 Ellära: Laddning Fält Potential Elektriska komponenter: Hur reagerar rörlig laddning (elektroner) på: Elektrisk potential/spänning (U) Elektriska fält (ε) Fast elektrisk laddningskoncentration ( ζ ) (zäta) Hur ser förhållandet ut mellan dessa? ε Studeras mer ingående i Elektromagnetisk Fältteori. 14
15 Illustration: Plattkondensator x=0 x=d x C ' ε rε 0 = d ( F / m 2 ) Q = CU ( Q / 2 m ) 15
16 Illustration: Plattkondensator x=0 x=d ζ εx ( x) ε( x = 1 ζ ε1 ( x) ( x) = ζ ( x) ε rε 0 ε rε 0 dx ε (V/m) x ) = ( x) U ( x) ( x) U x = x εdx U (V) x 16
17 Laddning Fält Potential Energi Laddning Elektriskt fält ζ ( x) ε ε r 0 = ε d (x) dx Poissons ekvationer: Elektriskt fält ε (x) = Elektrisk potential du ( x) dx Laddning ζ ( x) ε ε r 0 = Elektrisk potential d U ( x) 2 dx 2 Potentiell Energi: E pot ( x) eu ( x) = E pot [J] eller [ev] 1 ev = 1/e J 17
18 2 minuters övning: skissa ε(x) och U(x) x=0 x=d ε (V/m) ζ x x ( x) ε( x = 1 ζ εx ( x) ( x) = ζ ( x) 1 ε rε 0 ε rε 0 dx U x x εu(0)=0 ) x ( x) U ( x) ( x) dx C = = ε + U (V) x 18
19 Elektriska Strömmar I Q = t Ström: Mängd laddning ( Q) som passerar genom en yta under en viss tid ( t) Driftström: Diffusionsström: ε Elektroner rör sig i ett elektriskt fält Ohms lag Termisk energi orsakar slumpvis rörelse. Elektroner rör sig från hög mot låg koncentration 19
20 Elektriskt Fält och rörliga elektroner Ström ε J d ε= env ( ) 2 ( A/ m ) v d elektroners drifthastighet (m/s) J strömtäthet (A/m 2 ) n koncentration av elektroner (m 3 ) V d (m/s) v d µ n (V/m)εE v sat µ n elektronmobilitet (m 2 /Vs) 20
21 Driftström Ohms lag ε J = εn env d ( A/ 2 m ) v d µ ε=u DS /L I = eaµ nn ε1 L R = σ = enµ σ=1/ρ=konduktans (S/m) σ n A µ n mobilitet för elektroner (m 2 /Vs) J strömtäthet (A/m 2 ) n koncentration av elektroner (m 3 ) Ohms lag. Resistorer. Fälteffekttransistorer. Solceller. 21
22 Diffusionsström Diffusion är en ström av partiklar från en hög koncentration mot en låg koncentration Fysikalisk bakgrund slumpvis termisk rörelse hos partiklar Föreläsning 1, Komponentfysik
23 Diffusionsström matematiskt uttryck Diffusionsströmmen ges av gradienten av elektronkoncentrationen I n = ead n dn( x) dx = ea( kt e µ n ) dn( x) dx n(0)=n 0 n(l)=n L Om I n är konstant n(x)=ax+b! Kräver inget elektriskt fält n(0) n(l)=n L x 23
24 I n = ead Diffusionsström matematiskt uttryck Diffusionsströmmen ges av gradienten av elektronkoncentrationen n dn( x) dx = ea( Om I n är konstant n(x)=ax+b! kt e µ n dn( x) ) dx n(0)=n 0 n (m3) n(x) n(l)=n L x Diffusionsströmmen styr beteendet i en pnövergång och Bipolära transistorer! Gradienten av n(x) ger diffusionsströmmen! 24
25 Sammanfattning beteckningar U potential (V) ε elektriskt fält (V/m) ζ elektrisk laddning (koncentration) (C/m 3 ) n: laddningskoncentration elektroner (m 3 ) µ n : mobilitet (elektroner) (m 2 /Vs) I: ström (A) J: strömtäthet (A/m 2 ) ρ=1/σ = resistivitet (ohm m) D n : diffusivitet (m 2 /Vs) k: Boltzmans konstant (1.38e23) (J/K) e: elementarladdningen: (1.602e19) T: Temperature (K) 25
Komponentfysik Introduktion. Kursöversikt. Hålltider --- Ellära: Elektriska fält, potentialer och strömmar
Komponentfysik 2014 Introduktion Kursöversikt Hålltider --- Ellära: Elektriska fält, potentialer och strömmar 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Lektor i nanoelektronik vid EIT sedan
Komponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:
Komponen'ysik 2014 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora>oner Förberedelseuppgi>er inför
Komponen'ysik Dan Hessman Lektor i fasta tillståndets fysik. Tel:
Komponen'ysik 2016 Dan Hessman Lektor i fasta tillståndets fysik dan.hessman@ftf.lth.se Tel: 046-222 0337 man 1 Kursöversikt 14 2 h föreläsningar 5 2 h övningar 2 labora?oner Förberedelseuppgi=er inför
Föreläsning 11 Fälteffekttransistor II
Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik
Föreläsning 9 Bipolära Transistorer II
Föreläsning 9 ipolära Transistorer Funktion bipolär transistor Småsignal-modell Hybrid-p Designparametrar 1 Komponentfysik - Kursöversikt ipolära Transistorer pn-övergång: kapacitanser Optokomponenter
Föreläsning 13 Fälteffekttransistor III
Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
Föreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt
Välkomna till kursen i elektroniska material! Martin Leijnse
Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,
Välkomna till kursen i elektroniska material!
Välkomna till kursen i elektroniska material! Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare, kursansvarig)
Föreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
Föreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer
Föreläsning 9 Bipolära Transistorer II
Föreläsning 9 Bipolära Transistorer II Funktion bipolär transistor Småsignal-modell Hybrid-p 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser Optokomponenter pn-övergång:
Föreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik
Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090
011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat
Föreläsning 8 Bipolära Transistorer I
Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor 1 Komonentfysik - Kursöversikt iolära ransistorer n-övergång:
Formelsamling för komponentfysik. eller I = G U = σ A U L Småsignalresistans: R = du di. där: σ = 1 ρ ; = N D + p n 0
Uppdaterad: 01-05-5 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A ε r ε r d Parallellkoppling:
Elektronik EITA35: Elektronik. Erik Lind
Elektronik 2017 EITA35: Elektronik Erik Lind 1 Elektronik 2017 Föreläsning 0 Lite introduktion till elektronik Kort laboration 2 Elektronik Hur vi utnyttjar elektrisk energi för att göra nyttiga saker
Lösningar Tenta
Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål
Fasta tillståndets fysik FFFF05
Fasta tillståndets fysik FFFF05 Carina Fasth; carina.fasth@ftf.lth.se Rum B108 www.ftf.lth.se/courses/ffff05 Kurslitteratur Kompendium säljs hos Media-Tryck (ungefär 150 kr) pdf på hemsidan På hemsidan
Formelsamling för komponentfysik
Uppdaterad: 010-01-18 Anders Gustafsson Formelsamling för komponentfysik Halvledare och Ström (transport) Kapacitans: C = Q Småsignalkapacitans: C = dq U du Plattkondensator: C = A r r d Parallellkoppling:
Föreläsning 8 Bipolära Transistorer I
Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor G. alla 1 Komonentfysik - Kursöversikt iolära ransistorer
Utredande uppgifter. 2: Räkna ut utsträckningen av rymdladdningsområdet i de tre fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.
Komponentfysik Övning VT-10 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i (a), men med en pålagd
Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övning 1 VT-10 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande frågor: I Definiera
Tentamen i komponentfysik
Tentame komponentfysik 009-05-8 08 00-13 00 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat anges, så antag att det är kisel (Si),
2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.
Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men
Om inget annat anges så gäller det kisel och rumstemperatur (300K)
Komponentfysik Uppgifter pn del VT-15 Om inget annat anges så gäller det kisel och rumstemperatur (300K Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.
Fysik TFYA68 (9FY321) Föreläsning 6/15
Fysik TFYA68 (9FY321) Föreläsning 6/15 1 ammanfattning: Elektrisk dipol Kan definiera ett elektriskt dipolmoment! ~p = q ~d dipolmoment [Cm] -q ~ d +q För små d och stora r: V = p ˆr 4 0 r 2 ~E = p (2
Föreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Elektronik ESS 010 Elektronik. Erik Lind
Elektronik 2015 ESS 010 Elektronik Erik Lind 1 Elektronik 2015 Föreläsning 0 Lite introduktion 2 Elektronik Hur vi utnyttjar elektrisk energi för att göra nyttiga saker Manipulera elektroner elektriska
Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande
Fysik TFYA68. Föreläsning 5/14
Fysik TFYA68 Föreläsning 5/14 1 tröm University Physics: Kapitel 25.1-3 (6) OB - Ej kretsar i denna kurs! EMK diskuteras senare i kursen 2 tröm Lämnar elektrostatiken (orörliga laddningar) trömmar av laddning
Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal?
Komponentfysik Övningsuppgifter MOS del II VT-5 Beskrivande uppgifter: I: Vad skiljer det linjära området och mättnadsområdet i termer av inversionskanal? II: Vad skiljer en n-mosfet från en p-mosfet när
Om inget annat anges så gäller det kisel och rumstemperatur (300K)
Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.
Elektronik 2018 EITA35
Elektronik 2018 EITA35 Föreläsning 12 Halvledare PN-diod Kretsanalys med diodkretsar. 1 Labrapport Gratisprogram för att rita kretsar: http://www.digikey.com/schemeit/ QUCS LTSPICE (?) 2 Föreläsningen
Sensorer och elektronik. Grundläggande ellära
Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans
Kvantfysikaliska koncept
FAFA 55, Ht2016 Kvantfysikaliska koncept Heiner Linke, heiner.linke@ftf.lth.se Kvantfysik: Vad handlar kursen om? Kursprogram: inlärningsmål, betygsättning etc. Kvant -fysik: Alla former av energi och
Kvantfysikaliska koncept
FAFA 55, Ht2013 Kvantfysikaliska koncept Heiner Linke, heiner.linke@ftf.lth.se Kvantfysik: Vad handlar kursen om? Kursprogram: inlärningsmål, betygsättning etc. Kvant -fysik: Alla former av energi och
Föreläsning 7 Fälteffek1ransistor IV
Föreläsning 7 Fälteffek1ransistor IV PMOS Småsignal FET A, f t MOS- Kondensator D/MOS- kamera Flash- minne 1 PMOS U Gate U - 0.V 1.0V 0.4V Source Isolator SiO Drain U - 1V P ++ N- typ semiconductor P ++
Elektronik 2015 ESS010
Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer
Föreläsning 7 Fälteffek1ransistor IV
Föreläsning 7 Fälteffek1ransistor IV måsignal FET A, f t MO- Kondensator D/MO- kamera Flash- minne 1 måsignalmodell A kapacitanser i mä1nadsmod δu Isolator io 2 D N ++ N ++ P- typ halvledare δ Q δu >>
Komponentfysik ESS030. Den bipolära transistorn
Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket
Föreläsning 3 Extrinsiska Halvledare
Föreläsig 3 xtrisiska Halvledare ergibad Driftström Dopig xtrisisk halvledare ffekt av temperatur Fermi-ivå 1 Kompoetfysik - Kursöversikt Bipolära Trasistorer Optokompoeter p-övergåg: strömmar och kapacitaser
Elektronik 2017 EITA35
Elektronik 2017 EITA35 OP-Amp Komplex Återkoppling. Klippning. Maximal spänning/ström. Gain-bandwidthproduct. Offset. Slewrate Avkopplingskondensator Transistorer - MOSFETs Lab 4 Anmälan på hemsidan Projektnummer
Laboration: pn-övergången
LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer
Introduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 7 Fälteffekttransistorer MOS-transistorn strömekvation MOS-transistorn kanal mobilitet Substrat bias effekt 7 Bipolar transistorn Introduktion Minoritets bärare
I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn.
Komponentfysik Övning 4 VT-10 Utredande uppgifter: I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. II: Beskriv de fyra arbetsmoderna för en npn-transistor.
Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken
Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika
Kursprogram för Elektronik E, ESS010, 2009/20010
Institutionen för elektro- och informationsteknik Kursprogram för Elektronik E, ESS010, 2009/20010 Kurslitteratur 1. A. R. Hambley Electrical engineering 4th ed. Säljes av KFS. 2. Exempelsamling kretsteori.
Laborationer i miljöfysik. Solcellen
Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.
Komponentfysik. - En introduktion. Anders Gustafsson Fasta tillståndets fysik Lunds Tekniska Högskola
Komponentfysik - En introduktion Anders Gustafsson Fasta tillståndets fysik Lunds Tekniska Högskola Sjunde reviderade upplagan 2011 Halvledarkomponenter finns i ett antal olika former. Bilden nedan visar
Physics to Go! Part 1. 2:a på Android
Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:
Kursprogram för Elektronik E, ESS010, 2010/2011
Institutionen för elektro- och informationsteknik Kursprogram för Elektronik E, ESS010, 2010/2011 Kurslitteratur 1. A. R. Hambley Electrical engineering 5th ed. Säljes av KFS. 2. Exempelsamling kretsteori.
Kursprogram för Elektronik E, ESS010, 2011/2012
Institutionen för elektro- och informationsteknik Kursprogram för Elektronik E, ESS010, 2011/2012 Kurslitteratur 1. A. R. Hambley Electrical engineering 5th ed. Säljes av KF-Sigma. 2. Exempelsamling kretsteori.
Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.
/5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad
Fysik TFYA86. Föreläsning 8/11
Fysik TFYA86 Föreläsning 8/11 1 nduktion och elektromotorisk kraft (emk) University Physics: Kapitel 29, 30.1, (30.2 självinduktion) 2 ntroduktion Tidigare i kursen: Tidsberoende förändring, dynamik Elektrostatik
Kursprogram för Elektronik E, ESS010, 2013/2014
Institutionen för elektro- och informationsteknik Kursprogram för Elektronik E, ESS010, 2013/2014 Kurslitteratur och kursmaterial 1. A. R. Hambley Electrical engineering 6th ed. Säljes av KF-Sigma. 2.
Föreläsning 12 Bipolära Transistorer II. Funk<on bipolär transistor
Föreläsning 1 Bipolära Transistorer II Funk
Introduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g
Kursprogram för Elektronik E, ESS010, 2014/2015
Institutionen för elektro- och informationsteknik Kursprogram för Elektronik E, ESS010, 2014/2015 Kurslitteratur och kursmaterial 1. A. R. Hambley Electrical engineering 6th ed. Säljes av KF-Sigma. 2.
Utredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod?
Komponentfysik Uppgifter Bipolärtransistor VT-15 Utredande uppgifter: I: Beskriv de fyra arbetsmoderna för en npn-transistor. II: Vad är orsaken till strömförstärkningen i normal mod? III: Definiera övergångsfrekvensen
Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning
Föreläsning 11 ipolära ransistorer J ipolar JuncDon ransistor FunkDon bipolär transistor Geometri npn D operadon, strömförstärkning OperaDonsmoder Early- effekten pnp transistor G. alla 1 deal transistor
12. Kort om modern halvledarteknologi
12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till
12. Kort om modern halvledarteknologi
12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till
Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:
Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:
Kursinformation Grundkurs i programmering med Python
Hösten 2009 Två kurser i en 5DV105 - Programmeringsteknik med Python och MATLAB Programmeringsteori Föreläsningar om Python Färdighetsövning Laborationer i Python 5DV106 - Programmering i Python Praktisk
Institutionen för Fysik
Institutionen för Fysik KURS-PM KURS: Elektronik 1: Ellära FYD101 LÄSÅR: 16/17 HT16 FÖR: Datorstödd Fysikalisk Mätteknik (samt fristående kurs) EXAMINATOR: Vitali Zhaunerchyk 031-786 9150 KURSANSVARIG:
1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv.
1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv. Solution: Man ser efter ett tag att några kombinationer återkommer, till exempel vertikala eller horisontella
Föreläsning 3 Extrinsiska Halvledare
Föreläsig 3 xtrisiska Halvledare ergibad Drift/Diffusio Doig xtrisisk halvledare ffekt av temeratur Fermi-ivå 013-03-13 Föreläsig 3, Komoetfysik 013 1 Komoetfysik - Kursöversikt Biolära Trasistorer Otokomoeter
Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)
Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda
Kvantfysikaliska koncept
FAFA 55, Ht2017 Kvantfysikaliska koncept Heiner Linke, heiner.linke@ftf.lth.se Kvantfysik: Vad handlar kursen om? Kursprogram: inlärningsmål, betygsättning etc. Vågor och interferens NanoLund student membership
Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar
Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare
Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna
FÖRELÄSNING 2 Repetition: Nätanalys för AC Repetition: Elektricitetslära Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(49) Repetition: Nätanalys
Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00
LE1460 Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00 pprop. Föreslagen kurslitteratur Elkretsanalys av Gunnar Petersson KTH Det finns en många böcker inom detta område. Dorf, Svoboda ntr to Electric Circuits
Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.
Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan
Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2
Moment 1 - Analog elektronik Föreläsning 2 Transistorn del 2 Jan Thim 1 F2: Transistorn del 2 Innehåll: Fälteffekttransistorn - JFET Karakteristikor och parametrar MOSFET Felsökning 2 1 Introduktion Fälteffekttransistorer
8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss
Upplägg och planering för NanoIntro 15; Lars Samuelson (lars.samuelson@ftf.lth.se): Måndag 31/8: Presentationer av deltagarna 8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss
Elektronik 2018 EITA35
Elektronik 2018 EITA35 Föreläsning 1 lp2 Tenta Förstärkare Differentiella Förstärkare Negativ Återkoppling 1 Tenta Rättning pågår klar imorgon (?) Lösningar finns på hemsidan. 2 LP 2 Förstärkare (4) Transistorer
Kvantfysikaliska koncept
FAFA 55, Ht2015 Kvantfysikaliska koncept Heiner Linke, heiner.linke@ftf.lth.se Kvantfysik: Vad handlar kursen om? Kursprogram: inlärningsmål, betygsättning etc. Lindenberg i södra Tyskland Att spela biljard
Elektronik 2017 EITA35
Elektronik 2017 EITA35 Föreläsning 15 Repetition Information inför tentamen 1 Resistornätverk: Definition av potential, spänning och ström. Ohms lag, KCL och KVL Parallell och seriekoppling av resistanser
TSTE05 Elektronik & mätteknik Föreläsning 1 Introduktion och inledande likströmsteori
TSTE05 Elektronik & mätteknik Föreläsning 1 Introduktion och inledande likströmsteori Mikael Olofsson Institutionen för Systemteknik (ISY) Ämnesområdet Elektroniska kretsar och system TSTE05 Elektronik
Mätteknik (ESSF10) Kursansvarig: Johan Nilsson Översiktligt kursinnehåll
Biomedicinsk teknik Mätteknik (ESSF10) Kursansvarig: Johan Nilsson (johan.nilsson@bme.lth.se) Översiktligt kursinnehåll Metoder för mätning av elektriska storheter som: Spänning, Ström, Impedans, Tid,
Mätteknik (ESSF10) Kursansvarig: Johan Nilsson Översiktligt kursinnehåll
Biomedicinsk teknik Mätteknik (ESSF10) Kursansvarig: Johan Nilsson (johan.nilsson@bme.lth.se) Översiktligt kursinnehåll Metoder för mätning av elektriska storheter som: Spänning, Ström, Impedans, Tid,
Halvledare. Periodiska systemet (åtminstone den del som är viktig för en halvledarfysiker)
Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N: GaN, ngan Blå (& vita) LED, UV lasrar
ɛ r m n/m e 0,43 0,60 0,065 m p/m e 0,54 0,28 0,5 µ n (m 2 /Vs) 0,13 0,38 0,85 µ p (m 2 /Vs) 0,05 0,18 0,04
Tabell 1: Några utvalda naturkonstanter: Namn Symbol Värde Enhet Ljushastighet c 2,998.10 8 m/s Elementarladdning e 1,602.10 19 C Plancks konstant h 6,626.10 34 Js h 1,055.10 34 Js Finstrukturkonstanten
Elektriska och magnetiska fält Elektromagnetiska vågor
1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,
Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in
Dugga i Elektromagnetisk fältteori för F2. EEF031 2013-11-23 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori. Valfri kalkylator, minnet måste raderas
Kursen är en obligatorisk kurs på grundnivå för en naturvetenskaplig kandidatexamen Fysik.
Naturvetenskapliga fakulteten Ellära, 7.5 credits Grundnivå / First Cycle Fastställande Kursplanen är en skiss men ännu ej fastställd. Allmänna uppgifter Kursen är en obligatorisk kurs på grundnivå för
Tentamen ellära 92FY21 och 27
Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för
Grundutbildning vid EIT. Lunds universitet
Grundutbildning vid EIT Lunds universitet Organisatoriskt 431 helårsstudenter i uppdrag 2010 71 kurser under 2010/2011 19 heltidsekvivalenter lärare (fördelat på totalt 93 lärare) 3 kursadministratörer
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Tentamen i Elektronik grundkurs ETA007 för E
Lars-Erik Cederlöf Tentamen i Elektronik grundkurs ETA007 för E 003-0-4 Tentamen omfattar poäng. 3 poäng per uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa. För full poäng krävs
Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:
Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt
Lablokalerna är i samma korridor som där ni gjorde lab1.
Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitel i kompendiet
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 204 08 28. Beräkna den totala kraft på laddningen q = 7.5 nc i origo som orsakas av laddningarna q 2 = 6 nc i punkten x,y) = 5,0) cm och q 3 = 0 nc i x,y) = 3,4) cm.
Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric
Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:
Introduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 6 Övergångar (pn och metal-halvledare) 2:a ordningens effekter Metal-halvledar övergångar 6 Fälteffekttransistorer JFET och MOS transistorer Ideal MOS kapacitans
Vad är elektricitet?
Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret
12. Kort om modern halvledarteknologi
12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till
( y) ( L) Beräkning av ström nmos: Lång kanal (L g >1µm) di dy. Oxid U GS U DS. Kanal. 0<U cs (y)<u DS. Lös med:
Beräkning av ström nmos: ång kanal ( g >1µm Oxid 0< cs (y< y Kanal ε Q N ( ( y th ( y Z µ ε ( y y n ( y ( y Q ( y N ös med: cs cs d dy (0 0 ( 0 15-04- 15 Föreläsning 6, Komponen7ysik 015 1 Ström och kanal
Optiska och elektriska egenskaper hos pn- övergången
FASTA TILLSTÅNDETS FYSIK och ELEKTRONISKA MATERIAL 2013 Optiska och elektriska egenskaper hos pn- övergången Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom