FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E
|
|
- Ingegerd Lund
- för 9 år sedan
- Visningar:
Transkript
1 FORMLER TILL NTIONELLT PROV I MTEMTIK KURS D OH E LGER Rgl dgdsktio kdigsgl kojugtgl Ektio p q ött p p p q o dä p o q p q RITMETIK Pi T G M k d m µ p t gig mg kilo kto di ti milli miko o piko Pots Logitm Fö ll tl o o positi tl o gäll Fö positi tl o gäll: lg l lg lg lg lg lg lg lg p p lg Gomtisk summ k k... k k dä k k Skolkt
2 DIFFERENTIL- OH INTEGRLKLKYL Dits diitio lim lim Diigsgl Fuktio Dit dä ä tt llt tl > l > l k k k si os os si t t os g g g g g g g g g g Kdjgl Om z o z g ä tå di uktio så gäll ö d smmstt uktio g tt d d dz g g ll d dz d Någ pimiti uktio F ä ll kostt k k l > l si os os si Skolkt
3 DIFFERENTILEKVTIONER Homog ktio : odig: Lösig k skis : odig: D kktistisk ktio ött o Om o ä ll tl o så k lösig skis Om o ä ll tl o så k lösig skis Om s it o s it k lösig skis s s os t si t si t ϕ Iomog ktio Gllt stäms d llmä lösig som p dä p ä ptikulälösig till d iomog ktio o d llmä lösig till motsd omog ktio. Spl ditilktio: g Löss ligt g d d FUNKTIONSLÄR Rät lij Epotiluktio Potsuktio k Riktigskoiit ö lij gom pukt o dä k m Lij gom pukt m md iktigskoiit k k Lij gom pukt md iktigskoiit k k k Villko ö iklät lij o ä kostt > o o ä kostt Skolkt
4 4 GEOMETRI Ptgos sts Tigl Pllllogm Plllltpts ikl πd π 4 omkts π πd d α iklskto åg π 6 α π 6 α Pism olm lid Rk ikulä lid olm π mtl π Skolkt
5 5 Pmid olm Ko Rk ikulä ko olm π s mtl πs Klot olm 4 π 4π Likomigt Fö likomig gomtisk igu gäll tt motsd ikl ä lik sto o tt öålldt mll motsd sido ä lik. F Tigl o DEF ä likomig. d Då gäll D E Skl skl Lägdskl Volmskl Lägdskl Vikl Nä tå ät lij skä d ä sidoikls summ 8º t.. u 8º o tiklikl lik sto t.. w. w u Nä lij L skä tå d iöds pllll lij L o L så ä likläg ikl lik sto t.. w o lttikl lik sto t.. u w w u L L L Omät gäll tt om lttikl ll likläg ikl ä lik sto så ä lij L o L pllll. Skolkt
6 6 Topptigl- o tsslsts Om DE ä pllll md gäll DE D E o D E D E D E isktissts D D D Kodsts d d Rdiklsts Mdlpuktsikl till iklåg ä dult så sto som dikl till smm iklåg u u KOMPLEX TL iϕ Rpsttio z i osϕ i siϕ dä o ϕ ä ll tl smt i gumt solutloppt g z ϕ z t ϕ Kojugt Tl z i o z i klls kojugd tl z i ϕ ϕ Räklg z z z os ϕ ϕ i si ϕ ϕ i ϕϕ os ϕ ϕ isi ϕ ϕ d Mois oml z osϕ i siϕ os ϕ i si ϕ Euls oml i os i si os i i si i i i Skolkt
7 7 Skolkt NUMERISK METODER Ektioslösig Nwto-Rpsos ittiosoml: Itgl Itllt dls i i dlitll. Mittpukt i j dlitll tks... Rktglmtod:... d Tptsmtod:... d Ditilktio stglägd Euls mtod tgtmtod: Mittpuktsmtod: k dä k TRIGONOMETRI Diitio ä ätiklig tigl. äliggd ktt motståd ktt potus äliggd ktt potus motståd ktt t os si OP ä di i tsikl. Koodit ö P ä t os si o P
8 8 Siussts si si si osiussts os sts si Tigoomtisk oml si os si α β siα os β osα si β si α β siα os β osα si β os α β osα os β siα si β os α β osα os β siα si β tα t β t α β tα t β si α siα osα os α os α si α os α si α osα α osα si os si os si dä α o t Ekt äd Vikl gd π π π π π π 5π di π si os t 6 4 Ej d Skolkt
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D
(7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + ) = + + ( ) = + (kdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ektio + p+ q = 0 ) ) ött p p p =
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E
(8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D
(7 FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + = + + ( = + (kdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ektio + p+ q = ött p p p = + q o = dä + = p o = q
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D
(7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdskvtio ( + ) = + + ( ) = + (kvdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ekvtio + p+ q = ött p p p = + q
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C
FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C ALGEBRA Kdeigsegle ( + ) + + ( ) + Kojugtegel ( + )( ) Adgdsektioe Ektioe + p + q 0 ötte p p p p + q o 4 4 id + p o q q ARITMETIK Pefi Tiopotes
Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov
Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen
FORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats:
TRIGONOMETRISKA FORMLER... si 0 si 6 FORMELBLAD HF700, Bggproduktio 6. si cos 7. si45 si 4 si( ) t( ), cos( ) cos( ) cot( ) si( ) 8. cos( ) coscos sisi si 60 si 4. 9. cos( ) coscos sisi cos 0 cos 6 5.
ρ. Farten fås genom integrering av (2):
LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt
Facit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal
1 Tal Arbetsblad 1:1 1 a) 18 9 06 b) 85 10 00 c) 0 1 080 9 060 d) 5 105 6 780 e) 78 8 970 9 05 f) 990 75 102 5 2 a) 0 = 2 2 2 5 b) 75 = 5 5 c) 6 = 2 2 a) 8 = 2 2 2 2 b) 28 = 2 2 7 c) 90 = 2 5 a) = 2 2
ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.
ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst
1 Armin Halilovic: EXTRA ÖVNINGAR
Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger
============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def
Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt
Vågräta och lodräta cirkelbanor
Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel
Tentamen i Flervariabelanalys F/TM, MVE035
Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg
Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor
Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:
F F idid - - LLöö 55 7 -- S mil: j: Söö nn0-0- Dgs fö ås s å Bc ch Cl Jun fäg Vi fi md å mängd v yl! g å vy fsdh c s s å fån ngöing l C s c B ch Jun å Gön-fi ch ic-fi Mögl-fi Kn j mbins md nd b. Dmid l
Innehåll. Kopieringsunderlag Breddningsdel Formelblad
Innehåll Information till lärare inför breddningsdelen i det nationella kursprovet i Matematik kurs A våren 1999...1 Inledning...1 Tidsplan våren 1999...1 Nyheter i kursprovet för Matematik kurs A vårterminen
Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden.
Armi Hlilovic: EXRA ÖVNINGAR ylors ormelör evribeluktioer AYLORS FOREL FÖR FUNKIONER AV EN VARIABEL ylors ormel väds bl vid i umerisk beräkigr ii optimerig och iii härledigr iom olik tekisk och mtemtisk
Kap.7 uppgifter ur äldre upplaga
Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti
vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6
Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Målsättning: modell. Kvinnor kan uppnå fantastisk fysik genom att lyfta tunga vikter och äta bra mat utan att svälta sig själva.
Målättig: dll E plig tä tä kvi bö fku på tt lä ut följd: Kvi k it v ädd fö tug vikt, Få kvi tt i tt d k b ut vtt kppvikt å läg d ä fit, D k it bt fölit ig på våg fö tt utväd i ftg, D bö lägg tö fku på
6 Strukturer hos tidsdiskreta system
6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.
ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Mattekonvent. Matematik. Keep calm and do math. Innehåll: Pluggtips Formelsamling Nationella prov. Plugga inför nationella provet med Mattecentrum!
Keep clm d do mth Mttekoet Plgg iför tioell proet med Mttecetrm Mtemtik Iehåll: Plggtips Formelsmlig Ntioell pro 5 mtteoke.se plggkte.se formelsmlige.se Så lcks d med det tioell proet För tt få t så mcket
TATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n
g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil
dalafrisören Dalarna nr 2 2012 Planket Hösten 2012 God Jul & Gott Nytt År!!! Håll dig uppdaterad på Dalafrisörena forumet & gruppen på Facebook!
dlfisöe 2 2012 Plket Höste 2012 Håll dig uppdted på lfisöe fouet & guppe på Fcebook! Augusti 23/8 Aftewok Leksd 28/8 Aftewok Boläge 29/8 Aftewok Mo 30/8 Aftewok Ludvik 30/8 Aftewok Ggef Septebe 25/9 Aftewok
Mekanik. Fysik 4, Rörelselagarna. En kropps rörelse. Grafer. Likformig rörelse. Herman Norrgrann Sir Isaac Newton, 1643-1727. 1.1 Likformig rörelse
Meknik sik 4, Rörelselgrn Hermn Norrgrnn Sir Isc Newon, 1643-1727 lileo lilei, 1564-1642 En kropps rörelse 1.1 Likformig rörelse Rörelse r Hsighe (ekor) Likformig rörelse rfer Likformig rörelse om hsigheen
Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi
Itegrler Frå le: Itegrler Beräkigsveteskp I/KF Trpetsformel oc Simpsos formel Itegrler Itegrler Frå le: Frå le: Adptiv metod (dptiv Simpso) Lösig v itegrl i Mtl: är itegrde är kotiuerlig fuktio: väd itegrl.
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso
Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4
Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)
EGENVÄRDEN och EGENVEKTORER
rmi Hliloic: EXTR ÖVNINGR EGENVÄRDEN och EGENVEKTORER Defiitio. Egeektor och egeärde för e lijär bildig Låt V r ett ektorrum och T : V V e lijär bildig frå V till V. Om det fis e ollskild ektor och e sklär
16.3. Projektion och Spegling
6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.
Höstvisa. I k k k k k kkk k j kz. l l l l. l l l l
Höstvis Musik: E. Tur, Text: Tve Jss S1 S2 A1 G =70 4 k 1.Vä-ge hem vr mc -ket låg ch ig e 4 k 4 kk k j - hr jg mött, srt blir kväl- lr- k-li - g ch se -. Km kk k j 1.Vä-ge hem vr mc -ket låg ch ig-e hr
( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3.
Envariabelanalys med Matlab Under denna kurs kommer vi framförallt att använda Matlab som verktyg i Envariabelanalys. Bl.a skall vi se hur man mha Matlab kan vi rita kurvor i xy-planet, rita grafer till
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
som gör formeln (*) om vi flyttar första integralen till vänsterledet.
Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl
Mat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
ZA5888. Flash Eurobarometer 372 (Women in Developing Countries) Country Questionnaire Sweden
ZA888 Flash Euobaomt 7 (Womn in Dvloping Countis) County Qustionnai Swdn FL 7 Womn in dvloping countis - SE D Hu gammal ä du? (SKRIV NER OM "VÄGRAR" KOD '99') D Kön Man Kvinna Euopés åsikt om situationn
REKLAMARTIKLAR TILL BÄSTA PRIS!
REKLAMARTIKLAR TILL BÄSTA PRIS! 2016 Innhåll PRONTO At.n. 108 Gummigpp md tyckmknism. Jumbopton. 40 x 13 mm. Fäg: gul, ong, öd, blå, gön, gå, svt/vit, svt. Pnno Tänd Rflx Nyckling Mdi Mäss Elktonic Giv
Kompletterande formelsamling i hållfasthetslära
Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr
Åsen Nytt J U L - S P E C I A L. J u l e t i d
Åsen Nytt December 2015, årgång 18, nummer 12 Utgivare: Auvin ekonomiska förening Åsen Nytt J U L - S P E C I A L Varm julcider Varm cider med julkryddor är lite lättare i smaken än glögg men ger samma
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Adagio. œ œ œ œ œ œ œ. œ œ œ œ. & bb 4 4 œ. & bb. œ œ œ œ œ œ œ œ Œ. & bb œ œ œ œ œ œ œ œ. & bb œ œ œ œ œ b D. q = 72. och nar. var 1ens.
q = 72 & bb 4 4 1. Vatt 2. Mol net rörs nen gli & bb der vin lätt dagio m den spe lar, vind som vi ta sva nar vat ö ten tar ver him F B b Text: Bo Bergman Musik: Lasse ahlberg var 1ens ann. sjö, Bak men
HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER
HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm
Skydda dricksvattnet. Att bo och verka i ett vattenskyddsområde
Skydd dcksv A bo och vk vyddsoåd R v ä vå vkgs ullgåg V äo k vså d s, v kl oss u v Vyddsoåd fs ydd vå dcksv D g oss llgåg ll dcksv v god kvl också fd E vyddsoåd bä oåd ä vspä ll bjud vss M ll vksh so ugö
Höst- och vinter- STUNDER 2012/2013. Tävla & vinn. Årets julklapp! Snow Electric 31 895:- Se även paket- erbjudandet på sista sidan.
STUNDER 2012/2013 Tävl & vi på www.tibtik. Åt jlklpp! Sow Elti 31 Höt- o vit- 895:- S äv pkt- bjddt på it id. www.tibtik. www.tibtik. MADE IN SWEDEN Åt t md Sti Vill 12 + 85 Svk klik md Bi & Sttto-moto,
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
2416 ARB.RUM PERSONAL SKRIVARE HYLLOR DROPPSTÄLL VÅRDRUM/ METODÖVN. SÄNGGAVLAR SÄNGBORD 2422 FRD TILL VÅRDRUM PROVT.VAGNAR B B KROKLIST 10 PERS.
0 00 0 ET T ÄRIE VSER TUM SI FÖRKLRIR IREI PLL F FX KROKLI RETSOL OL S K SKRIVRE KOPITOR HYLL OLV HYLL ÖVER ORSHÖJ ISKÄK KRMOL SKÅP FÅTÖLJ OR SKÅP SOFF HYLL H9 RTS ÄKSKIV HÖJ I M RULLOL KOTORSR. PLTS T
Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning
Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6
Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00
0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:
Geometrisk optik reflektion och brytning
Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:
Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...
Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................
9 Storheter och enheter
9 Storheter och enheter 9.1 SI - DET INTERNATIONELLA ENHETSSYSTEMET SI (Systeme Internationale d'unites), det internationella måttenhetssystemet, är inte ett helt nytt måttsystem. Det bygger på tidigare
H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.
H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen
Uppsala Summer Heat Blues
Inspirerad av den mellansvenska sommaren 200 (och av ohn Fogertys "A Hundred and Ten in the Shade"). Text och musik: Eva Toller 200 "Uppsala" och "Fyrisån" kan ytas ut mot lokala varianter. Soprano c Alto
Läsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab
Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp
Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system
Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology
Exempelsamling :: Vektorintro V0.95
Exempelsamling :: Vektorintro V0.95 Mikael Forsberg :: 2 noember 2012 1. eräkna summan a ektorerna (1, 2) och (3, 1) mha geometrisk addition 2. Tå ektorer u = ( 2, 3) och adderas och blir ektorn w = (1,
Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Så här gör du för att få biljett
Nu f öjgh fö dg o ä dg hdppd och v Hby Hch på T 2 äg p. Nd ä pch fö d ch Så hä gö du fö få bj 1. Ko Gö Tgö på 48 ch och gö bäg: Ad: Go.Tgo@HbyFobo. 2. Hä u bj vd Hby Fobo T2 hv ch. Nä du h bo bj fobo få
SNS 22 januari 2014. Catharina Lagerstam S N S. j a n u a r i
K ås: Klväg A, 3 tockholm Mobl: 73-9 9 9 cth.lgstm@gml.com Cth Lgstm Cth Lgstm, vå, All ghts sv 9 s Ekoomsk / st boföstå It: Rovsgstkk Jsk övväg ttpkt Cth Lgstm, vå, All ghts sv ttpkt Rvsos fl? V som skll
Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Addition och subtraktion
Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik
Vi önskar er ett trevligt Speedwaymöte i Norrköping denna helg
g E o E E o g Vi öskr r tt trvligt Spwymöt i Norrköpig hlg Su Björk, Support Your Tm o g E o E E o g Vi kämpr ihop! o Välk till prsttio s pssr i på ll Spwyförigr i hl Svrig m mottot VI KÄMPAR IHOP m st
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund
Dagordning. Pågående planering Information om kommunalt VA Hur påverkar VA utbyggnaden fastighetsägaren? Information om avgifter mm Frågor
Daordi Pååede plaeri Iformatio om kommualt VA Hur påverkar VA utbyade fastihetsäare? Iformatio om avifter mm Fråor Pååede plaeri yv ä V ä yv sb ä l v ä me sb y lv Ka a d ö T3 by rs kv ä E ä rsb å e l v
Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.
TNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =
SKOLRESA. På Gotland!
2016 * SKOLRESA På Gotld! Skolpkt I pktt igå följd: Båt t/, luch/middg v på övft. Butf Viby Hm-KippbyViby Hm. Logi i um/tugo md hlpio. Fi té hl vitl till Kippby Somm- & Vttld. Eklt pivät fö hl kl! Miigolf
Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid
2011-10-29 Provpass 4 Svarshäfte nr. Högskoleprovet Kvantitativ del m Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),
Kurvlängd och geometri på en sfärisk yta
325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,
Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8
Höstlov i Motala 2010
Höstlv i Mtl 2010 1-5 vbr S prgrt ch läs tt s sr udr årt på: tl.s/ug Bwlig Mtl Bwlighll Öppttidr Mådg 1/11 13.00-16.00 Tisdg 2/11 12.00-16.00 Osdg 3/11 13.00-16.00 Trsdg 4/11 12.00-16.00 Frdg 5/11 12.00-16.00
ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)
Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir
lr Dagordning till årsmötet för
- ll Dgrning ill årsmöe för Rsklubben för Gs 'Aur Clå Dum 20L-02-06 klckn 13.00 Pls: ässjö Ärenen: 1. Jusering v röslängen' 2. Vl v rförne för årsmöe. 3r/r7 inr+ef 3. Syrelsens nmäln m prkllförre för möe'
Den stabila människan
Dn sbl männskn Igå v jg på ylg n kus på Klvgnn, dnn gång om kokv änng och sblsngsänng. Effkv änng fö smä, spännng, nsbl och nds syk. Vd kn v gö fö höfn skll ö sg opml, fö skuldon skll må b och fö knän
Berga köpcentrum - Djurängen - Giraffen - Stortorget - Tegelviken och omvänt
- Djuräge - Giraffe - - och omvät Så här kör lije Dessa hållplatser trafikeras: (i båda riktigara) N Björkeäs Norrlide Bergavik Trafikerig på Kvarholme Fr sk rik ed sg. Ös ata ta jög ga as Sjö str Vä tra
5 % rab 50% Guldtvätt. Stöd Din förening, Ditt Lag eller Din klass genom att köpa Klubbrabatten. för. t batt 10% rabatt. för
60 k 0% j spl Kn 8 dl och g, läkm om 5-0-, idnin j ok dndn Gilig n Gä ju ill uik Riv u och s nd komin köp hck Vädc Hös Guldvä dn COOP Foum 0 k fö 50 så j spl Kn dl och -0-8 g, läkm om 5, idnin j ok dndn
FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST
STNSUNSVÄN Ø Ø : Ø OSTÄR S TRO RK ST 3 RK 3 ST RK ST SUMM 7 ST 663 ILPLTSR +. +.3 R 6 ST -3 /. +.7 MRK Lr 5 ST SUMM ST.5 + IV. > VI SO P 3 677 b 3 3 UN SL TRO +.5 + 3.5 + 6. VÄ PL NN g V S +7 +3. +.6.5
a t a 21 50% Guldtvätt Guldtvätt Stöd Din förening, Ditt Lag eller Din klass genom att köpa Klubbrabatten. för Betala för 100
50 k b 0% j spl K dl och, läk to 204-08-3, tidi j tobk dd Gilti Gäll ll bju till butik t b Riv ut och s d kobi j spl K dl och, läk to 204-08-3, tidi j tobk dd Gilti Gäll ll bju till butik t b Riv ut och
TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.
Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
En ny utmaning till leverantörer och entreprenörer av bostadshus
E y utmig till lvtö och tpö v bostdshus å cks o otm d dlig s m lt ty och v k ifi c lt lt lö p k vä. H tt s å tt m mått gp tt om stäm ll p sl läg öj c é fö id ch M. tt o tt pt. o lig. tt få på lmå s g t
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Resa den 6 juni 2010 till Hofsnäs, Torpa och Limmared.
P P P 1 : 5 1 F P1452-251. 1 P 1452-251. 2 1 : 1 9 Na b b e 1 :2 n K v i n n o ö n P T o rp a s te n h u s M å s ö n Ä s p i n g s u d d Åk e rs ö r B j ö rk e b a c k e n S ä l g h å l a n F ru n s ö
27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.
27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u
Föreläsning 10. java.lang.string. java.lang.string. Stränghantering
Föläig Stäghtig j.lg.stig E täg btå tt tl tc Stäg i ht om objt l Stig E täg it modifi ft tt d h pt! Stig - l : ch[] - cot : it + lgth(): it + chat(it): ch + idxof(ch): it E täg h: Ett äd och lägd Ett tl
för att uppdatera dina produkter dagligen på LeGuide.com Groups webbplatser
för att uppdatera dina produkter dagligen på LeGuide.com Groups webbplatser Innehållsförteckning Beroende på ditt utgångsläge följer du alla eller en del av stegen i detta dokument för att enkelt skapa
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8
Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr
INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp
rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Leica Lino. Noggranna, självavvägande punkt- och linjelasers
Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter
Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.
öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede