1Mer om tal. Mål. Grunddel K 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "1Mer om tal. Mål. Grunddel K 1"

Transkript

1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna skriva tal i potensform Ingressen Ingressen tar upp talet åtta på olika sätt. Att kunna betydelsen av ord som t.ex. okto ger en kunskap som kan generera ny kunskap i många olika sammanhang. Att oktober var den åttonde månaden i den romerska kalendern är då inte så konstigt. November var den nionde månaden och december den tionde. Jämför med deci tiondel, deca tio och decennium årtionde. Den klassiska historien om riskornen på schackbrädet introducerar potenser som tas upp i kapitlet. I Utmaningen, som ligger sist i kapitlet, ska eleverna på olika sätt räkna ut hur mycket ris det blir. I Verktygslådan får man tips om hur beräkningarna kan göras med hjälp av Excel. Det är inte ovanligt att en del elever kastar sig över problemet och vill räkna hur mycket ris det är på brädet redan när de läser ingressen. Ta då vara på intresset. Varför inte låta dem göra utmaningen först? Grunddel Sidan 8. I vårt talsystem, tiosystemet, har vi 0 siffror och med dessa siffror kan vi skriva oändligt många tal. 8 kan vara både en siffra och ett tal medan 88 är ett tal som består av två siffror. En del elever har svårt att förstå tal skrivna med decimaler. Det bottnar antagligen i en brist i förståelsen för hur vårt talsystem är uppbyggt. En bra övning är att låta dessa elever arbeta med tallinjer. Använd gärna Arbetsbladen : och :2. Låt dem också själv rita tallinjer och markera olika decimaltal. I Lärarhandledningen för år 7 finns det fler tallinjer på Arbetsblad :3 och :4. Sidorna 2 3. Att något kan bli större när man dividerar har många elever har svårt att acceptera. Det är inte heller så konstigt. Om man enbart tänker på division som delningsdivision så är det riktigt att det inte kan bli större när man delar. Det går heller inte att dela något 0,5 gånger. För att division med ett positivt tal mindre ett ska ha en innebörd måste man istället tänka på divisionen som en innehållsdivision. Man får tänka: Hur många gånger går det i.. Hur många får plats i. Följande exempel visar skillnaden mellan delningsdivision och innehållsdivision. Mer om tal

2 Delningsdivision Ett rep som är 2 m långt ska delas i 7 lika långa bitar. Hur lång blir varje bit? 2 m 7 Innehållsdivision 2 m 3 m 3 st 7 m Hur många bitar som är 7 m kan man få ut av ett rep som är 2 m långt? Härifrån är det lätt att gå över till division med positiva tal som är mindre än. Hur många bitar som är 0,7 m kan man få ut av ett rep som är 2 m långt? 2 m 0,7 30 st Sidan 4. Här visas hur man kan skriva om bråk så att nämnaren blir ett heltal. Introduktionen med enhetsbyte gör att eleverna lättare kan förstå att värdet på bråket är detsamma när man multiplicerar eller dividerar täljare och nämnare med samma tal. För mer övningar använd Arbetsblad :4. Sidan 5. Multiplikation och division av positiva tal mindre än i praktisk användning. Fler övningar på att räkna ut priset och jämförpriset finns på Arbetsblad :5 och :6. Sidorna 6 9. Negativa tal är något som många elever har svårt att acceptera. Inte kan väl något vara mindre än noll? Dessa elever är verkligen i fint sällskap. De flesta matematiker på 500- och 600-talet kände till negativa tal, men vägrade att acceptera dem som tal eller som lösningar till ekvationer. Man kallade dem för absurda eller uppdiktade tal. Varken Descartes eller Fermat accepterade dem som tal, eftersom man ansåg det absurt att försöka ta bort 4 från 2. Francis Masères skrev 759 att negativa rötter endast krånglar till det som egentligen är enkelt. Han önskade att negativa tal aldrig hade tillåtits i algebran och att de borde förvisas därifrån. (Nystedt: På tal om tal.) Vi introducerar negativa tal med exempel ur elevens vardag: Man kan ligga minus på kontot. För att eleverna sedan ska kunna få en bild av de negativa talen är det viktigt att de kan placera dem på tallinjen och då är en termometer ett utmärkt exempel. Vi har valt att skriva de negativa talen med parentes, t.ex. ( 3), för att skilja de negativa talen från vanlig subtraktion. På grunddelen nöjer vi oss med att räkna addition och subtraktion med negativa tal. På Arbetsblad :8 finns fler övningar till att minus minus blir plus. På Arbetsblad :7 finns ett spel som övar addition och subtraktion med negativa tal. Låt eleverna spela spel. De uppskattas nästan alltid och har en hög inlärningseffekt, speciellt om man gör eleverna uppmärksamma på vilken matematik man vill lära ut genom spelet. Sidan 20. Här introducerar vi tal i potensform. Mer om tiopotenser kommer i kapitel 7. Det är bra om eleverna inser vad potensform innebär innan de arbetar med tiopotenser. Annars blir det lätt att 2 3 kan bli Eleverna tror att exponenten visar antalet nollor och inser inte att det endast gäller i specialfallet där basen är 0. Arbeta tillsammans Sidan 9. Luffarschack med tal. Spelet är en introduktion till multiplikation med positiva tal mindre än. Låt eleverna spela spelet! Det är mycket väl använd tid eftersom de flesta av eleverna verkligen lär sig att multiplicera med positiva tal mindre än under spelets gång. 2 Mer om tal

3 Facit till diagnosen ommentar till uppgift 3 på diagnosen: En del elever kan behöva hjälp med vilket tal som ska stå istället för rutan. De kan sedan ta reda på vilket av uttrycken som är lika stort som talet i rutan. a), b) 32 c) 8050 d) 0,62 s a),2 b) 4,05 c) 0,76 d) 2,4 s a),2 b) 0,34 c) 0,2 d),2 s 26 4 a) 48 kr b) 2,80 kr c) 3,20 kr s 27 5 a) 2 st b) 0 st c) 00 st s 28 6 a) 28 b) 270 c) 800 s 28 7 a) 24,544 b) 304,44 c) 482, a) b) 0,,03 s s 30 0 ( 2) ( 3) 0,7 47 s 29 a) 7 b) ( 7) c) 30 s 30 2 a) 3 5 b) 7 3 s 3 3 a) 0 3 b) c) d) s 3 Facit till kluringar Hur gamla är dina barn? Svar: Skriv upp multiplikationen av tre heltal vars produkt blir 36. Skriv också upp summan av de tre talen: Då finner man att både 6 6 och ger summan 3. Det är den enda summan som förekommer mer än en gång, det är därför som B inte klarar av att svara på frågan utifrån husnumret. Husnumret bör alltså varit 3. När han får ledtråden att det äldsta barnet är en flicka förstår han att barnen är 2 år, 2 år och 9 år. I det andra alternativet är det ju tvillingar som är äldst. Mer om tal 3

4 Fisken luring på engelska Mandys gammelfarfar brukade säga att han var A år gammal året A 2. Vilket år föddes han? Ledtråd: A är ett tal mellan 40 och 50. Lösning: Man prövar sig fram genom att kvadrera 4, 42, 43 osv. 4, 42 och 43 innebär att gammelfarfar skulle vara född 68, 764 eller 844. Eftersom han står och berättar detta, är det en omöjlighet. 44 ger år och äldre ger ett årtal som innebär att gammelfarfar ännu inte skulle vara född. Han är alltså född 892. Blå kurs Fler övningar med fokus på talsystemet. omplettera gärna med Arbetsbladen som hör till kapitlet. Röd kurs Det är bra om eleverna arbetar med uppslagen i bokens ordning. Sidorna behandlar räkning med potenser. Fler övningar på Arbetsblad :9. Sidorna behandlar multiplikation och division med negativa tal. Fler övningar på Arbetsblad :0. Sidan 37 presenterar övningar på Fibonacci-tal. Det finns många olika övningar på Fibonacci-tal i Bengt Ulins bok: Att finna ett spår. Sidorna Uppslaget kan vara en utmaning även för de duktiga. Eleverna är säkert bekanta med det binära talsystemet med ettor och nollor. Det blir svårare när man inför ett annat talsystem, t.ex. femsystemet. Att omvandla från tiosystemet till femsystemet är lätt om man använder samma metod som i det lösta exemplet överst på sidan 39, som omvandlar från tiosystemet till tvåsystemet. Uppgift 49 a) löses då på följande sätt: rest 0 2 rest 3 0 rest 2 65 tio 230 fem Utmaning Överslaget ger st riskorn på brädet. Räknar man exakt blir svaret st riskorn på den sista rutan. 2 Överslaget ger st på den sista rutan. Exakt blir svaret st riskorn på brädet. 3 Riset skulle väga 84,5 miljarder ton. 4 Alla människor på jorden skulle få ca 30 ton ris var. 5 Cirka 300 år. 4 Mer om tal

5 Arbetsblad Innehållsförteckning över Arbetsblad och koppling till motsvarande sidor i boken. Namn Sid Nivå : Tal i decimalform 8, 24 blå :2 Decimaltal på tallinjen 8, 24 blå :3 Multiplikation med positiva tal mindre än 0-, 26 blå grön :4 Division med positiva tal mindre än 2 4, 28 grön :5 Räkna ut vad det kostar 5, 27 blå grön :6 Räkna ut jämförpriset 5 grön :7 Vilken skillnad! 8-9, 30 grön :8 Räkna med tal i potensform röd :9 Räkna med negativa tal röd Mer om tal 5

6 Arbetsblad : Tal i decimalform Skriv talen i decimalform. Skriv siffrorna i rätt position. A 5 tiondelar 5 0,Ental Tusendelar Tiondelar Hundradelar D 6 tiondelar Ental Tusendelar Tiondelar Hundradelar 9 tiondelar 5 hundradelar 0 tiondelar 2 tusendelar 5 tiondelar 34 hundradelar 34 tiondelar 567 tusendelar B 2 hundradelar Ental Tusendelar Tiondelar Hundradelar E 2 tiondelar Ental Tusendelar Tiondelar Hundradelar 8 hundradelar 65 hundradelar hundradelar 84 tusendelar 98 hundradelar 03 hundradelar 02 hundradelar tusendelar C 3 tusendelar Ental Tusendelar Tiondelar Hundradelar F tusendelar Ental Tusendelar Tiondelar Hundradelar 7 tusendelar 27 tiondelar 0 tusendelar 48 tiondelar 00 tusendelar 23 hundradelar 450 tusendelar 375 hundradelar 983 tusendelar 462 tusendelar 003 tusendelar 6 tusendelar 75 tusendelar tiondelar 6 Mer om tal

7 Arbetsblad :2 Decimaltal på tallinjen Skriv rätt tal på linjen ,6 2,7 6,,2 7 3,2 3,3 8 0,0 0,02 9 5,24 5,25 Mer om tal 7

8 Arbetsblad :3 Multiplikation med positiva tal mindre än 0, 0,0 0, Räkna med huvudräkning. Rätta sedan med din räknare. a) 0, 4 3 a) 0,0 6 5 a) 0,5 2 b) 0, 8 b) 0,0 9 b) 0,5 8 c) 0, 23 c) 0,0 67 c) 0, a) 0, 54 4 a) 0, a) 0,5,2 b) 0, 6,3 b) 0,0 40,2 b) 0,5 2,2 c) 0, 20,4 c) 0,0 607 c) 0,5 0, , ,4 0,5 0,2 7 a) a) a) 8 0,2 b) 0,3 4 b) 0,6 8 b) 6 0,4 c) 0,3 0,4 c) 0,6 0,8 c) 7 0,7 0 a) 9 0,2 a) 0,9 0,2 2 a) 0,3 0,5 b) 6 0,3 b) 0,6 0,3 b) 0,9 0,9 c) 7 0,6 c) 0,7 0,6 c) 0,6 0,6 3 a) 3,25 0, b) 80,56 0, c) 40,3 0,0 4 a) 0,03 2 b) 0,03 5 c) 0, a) 0,8 5 b) 0,7 0,6 c) 7 0,03 6 a) 45 0,2 b) 0,04 0,3 c) 0,8 0,02 7 a) 0,5 3 b) 0,25 4 c) 0,2 0,4 8 Mer om tal

9 Arbetsblad :4 Division med positiva tal mindre än Skriv om bråket så att nämnaren blir ett heltal. Multiplicera täljare och nämnare med 0, 00 eller ,6 5, ,4 0, a) b) 0, 0, a) b) 0,0 0,0 3 0,6 35 a) b) 0, 0,0 4 a) 4,5 7,5 b) 0,5 0,5 5 a) 4,2 5,4 b) 0,3 0,6 6 a) 7,2 7,2 b) 0,8 0,4 7 3,2 6,4 a) b) 0,04 0,08 8 4,05,08 a) b) 0,05 0,03 9 5,04 5,22 a) b) 0,08 0,06 0 a) 0,36 4,5 b) 0,003 0,005 a) 0,48 0,8 b) 0,008 0,006 2 a) 3,6 0,45 b) 0,003 0,05 3 a),75 3,06 b) 0,7 0,09 4 a) 0,272 0,324 b) 0,08 0,06 5 a) 3,32 5,95 b) 0,4 0,007 Mer om tal 9

10 Arbetsblad :5 Räkna ut vad det kostar Exempel ilopriset för äpplen är 5 kr/kg. Det betyder att kilo äpplen kostar 5 kr. 325 gram kostar 0,325 5 kr Skriv vikten i kilo och multiplicera med kilopriset. Hur mycket kostar a) 3 kg c) 200 g b) 0,5 kg d) 3 hg 2 Hur mycket kostar a) 2,5 kg c) 475 g b) 0,4 kg d) 6 hg 3 Hur mycket kostar a) 0,8 kg c) 625 g b) 0,75 kg d) 4,5 hg 4 Hur mycket kostar a),4 kg c) 890 g b) 0,25 kg d) 7,4 hg 5 Hur mycket kostar a) 3 hg c) 245 g b) 645 g d) 705 g Här är jämförpriset per hekto! 20 Mer om tal

11 Arbetsblad :6 Räkna ut jämförpriset Läsk säljs i olika storlekar och förpackningar. Det är ofta stor skillnad i literpris! a) Hur många flaskor finns i en back? b) Varje flaska rymmer 33 cl. Hur många liter läsk innehåller en back? c) Vad blir literpriset om man köper en back läsk? 2 a) Hur många förpackningar Mer behöver man för att det ska bli en liter? b) Vad är literpriset för Mer? 3 a) Vad är literpriset för halvlitersläsken? b) Vad är literpriset för den stora läskflaskan? kr / kg Skriv om vikten till kilo och dela priset med vikten så får du kilopriset. Vad blir kilopriset för a) 300 grampåsen b) 250 grampåsen Exempel 450 g ostbågar kostar 32 kr. 450 g 0,45 kg ,45 ilopriset är 7 kr. c) 30 grampåsen Vad blir kilopriset för a) popcornpåsen b) spispopcorn c) micropopen Mer om tal 2

12 Arbetsblad :7 Vilken skillnad! Temperaturskillnad Vilken temperaturskillnad är det mellan 2 C och ( 3) C? 2 ( 3) C Vilken temperaturskillnad är det mellan ( 4) C och ( 0) C? ( 4) ( 0) C 2 ( 3)5 ( 4) ( 0)6 Vilken är temperaturskillnaden mellan a) 2 C och 4 C b) 4 C och ( 5) C c) ( 3) C och ( 0) C Räkna ut 2 a) 4 ( 3) b) 5 ( 3) c) 4 ( 6) 3 a) 0 ( 7) b) ( 0) ( 7) c) ( 3) ( 5) 4 a) ( 2) ( 25) b) ( 9) ( 3) c) ( 4 ) ( 23) 5 a) ( 8) ( 5) b) 45 ( 3) c) ( 2) ( 50) 6 a) 89 ( 5) b) ( 92) ( 2) c) ( 43) ( 22) 7 a) 2 ( 8) b) ( 65) ( 50) c) ( 08 ) ( 220) 22 Mer om tal

13 Arbetsblad :8 Räkna med tal i potensform Skriv som en potens. a) b) c) a) 0,4 3 0,4 7 b) 0,7 5 0,7 3 c) 0,9 6 0,9 3 3 a) y 6 y 5 b) z 3 z 2 c) p 2 p 7 Räkna ut och skriv på vanligt sätt. 4 a) b) a) 23 4 b) Skriv som en potens a) b) c) 0,4 7 a) 8 0 b) 8 c) 3 0, a 4 a 2 8 a) b) c) x 8 x y 6 y 6 Skriv först som en potens och räkna sedan ut. 9 a) b) a) b) Räkna ut. Tänk dig för! a) b) a) b) 0, , 2 3 a) b) a) b) a) b) Mer om tal 23

14 Arbetsblad :9 Räkna med negativa tal a) 4 + ( 8) b) 32 + ( 5) 3 a) ( 52) + ( 24) b) ( 45) + ( 23) 2 a) 25 ( 4) b) 89 ( 6) 4 a) ( 24) ( 32) b) ( 65) ( 32) 5 a) 7 ( 2) b) ( 8) ( 8) 6 a) 5 ( 3) b) ( 5) ( 3) c) 8 ( 5) 7 a) ( 8) ( 4) b) 6 ( 7) c) ( 6) ( 5) 8 a) ( 2) 2 b) ( 2) 3 c) ( 2) 4 9 ( 2) ( 49) 36 a) b) c) 4 ( 7) ( 4) 0 a) ( 8) 56 ( 60) b) c) ( 2) ( 8) 2 ( 80) 6 a) 8 ( 8) + ( 80) b) 2 ( 3) +2 0 ( 2) 50 ( 8) 2 a) + ( 6 ) ( 4) 2 b) 6 + ( 0 ) + 2,5 ( 3) ( 3) 4 ( 36) 65 3 a) + + ( 5) 2 7 b) + 0, ( 82) ( 200) ( 2) ( 3) ( 0,) 24 Mer om tal

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22 Arbetsblad 1:1 sid 8, 22 Decimaltal på tallinjen 1 1 Skriv rätt tal på linjen. 0,8 0 1 2 0 1 3 1,1 1 2 4 0,05 0 0,1 5 0,2 0,3 6 0,5 0,6 7 0,9 1 8 1,9 2 Arbetsblad 1:2 sid 8, 22 Decimaltal på tallinjen

Läs mer

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.

Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är. Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller = n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > < Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska

Läs mer

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4 Kapitel 1 6A-boken inleds med ett kapitel om decimaltal. Kapitlet börjar med en repetition av tiondelar och hundradelar. Sedan följer en introduktion av tusendelar med utgångspunkt i hur vikt anges på

Läs mer

TAL OCH RÄKNING HELTAL

TAL OCH RÄKNING HELTAL 1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot

Läs mer

1Mer om tal. Mål. Grundkursen K 1

1Mer om tal. Mål. Grundkursen K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: förstå vad som menas med kvadratrot och kunna räkna ut kvadratro ten av ett tal kunna skriva, använda och räkna med tal i tiopotensform

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Mål Blå kursen Röd kurs

Mål Blå kursen Röd kurs Tal Mål När eleverna har arbetat med det här kapitlet ska de förstå varför vi använder decimaler kunna storleksordna decimaltal förstå betydelsen av orden deci, centi och milli kunna räkna med decimaltal

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik Extrauppgifter för skolår 7-9 Pärm med kopieringsunderlag. Fri kopieringsrätt inom utbildningsenheten! Författare: Mikael Sandell Copyright 00 Sandell

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal

Läs mer

Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen?

Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen? Arbetsblad 5:1 sid 143 Tal och tallinjer 1 Skriv rätt tal på tallinjen. a) 0 0,5 1 b) 0 0,5 1 c) 0 1 2 2 Ordna talen i storleksordning med det minsta först. 0,4 0,404 0,44 0,04 0,45 3 Vilka tal kommer

Läs mer

Mål Aritmetik. Provet omfattar sidorna 6 41 och (kap 1 och 7) i Matte Direkt år 8.

Mål Aritmetik. Provet omfattar sidorna 6 41 och (kap 1 och 7) i Matte Direkt år 8. Mål Aritmetik Provet omfattar sidorna 6 41 och 206-223 (kap 1 och 7) i Matte Direkt år 8. Repetition: Repetitionsuppgifter 1 och 7, läxa 1-6 och 27-28 (s. 226 233 och s. 262-264) samt andra övningsuppgifter

Läs mer

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d)

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d) Arbetsblad 1:1 Egyptiska och romerska talsystemet Skriv med vanliga siffror 1 a) b) c) d) 2 a) b) c) d) Skriv med egyptiska talsymboler 3 a) 8 b) 42 c) 189 d) 2 431 4 a) 111 111 b) 43 245 c) 402 000 d)

Läs mer

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. 7, Bonnier Utbildning och författarna

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. 7, Bonnier Utbildning och författarna Arbetsblad 1:1 Hela tal på tallinjen 1 Skriv rätt tal på linjen. 55 0 50 100 2 0 10 20 3 0 100 200 300 100 200 5 1 000 2 000 6 50 000 60 000 7 100 000 200 000 Arbetsblad 1:2 Positionssystemet 1 Skriv talen

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

DOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera

DOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera Potenser Uppgift nr Skriv 7 7 7 i potensform Uppgift nr 2 Vilket tal är exponent och vilket är bas i potensen 9 6? Uppgift nr 3 Beräkna värdet av potensen (-3) 2 Uppgift nr 4 Skriv talet 4 i potensform

Läs mer

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem? 2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik . Diagnoserna i området avser att kartlägga elevernas förståelse och färdighet avseende tal i bråkform, tal i decimalform, proportionalitet och procent. Området består av följande tre delområden: B Bråk

Läs mer

KW ht-17. Övningsuppgifter

KW ht-17. Övningsuppgifter Övningsuppgifter Ht-2017 1 Innehållsförteckning: Taluppfattning, positionssystem s. 3 4 Räkning, prioriteringsregler s. 4 6 Tvåbassystemet s. 6-7 Avrundning och noggrannhet s. 8-11 Bråk s. 12-17 Decimaltal

Läs mer

TALSYSTEMET. Syfte Lgr 11

TALSYSTEMET. Syfte Lgr 11 TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

1Tal. Mål K 1. Tal 11

1Tal. Mål K 1. Tal 11 Tal Mål När eleverna studerat det här kapitlet ska de kunna: förstå hur vårt talsystem är uppbyggt använda de matematiska orden som hör ihop med de fyra räknesätten storleksordna hela tal och tal i decimalform

Läs mer

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk) UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används

Läs mer

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket.

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket. Test 9, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7

DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7 Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

2-1: Taltyper och tallinjen Namn:.

2-1: Taltyper och tallinjen Namn:. 2-1: Taltyper och tallinjen Namn:. Inledning I det här kapitlet skall du studera vad tal är för någonting och hur tal kan organiseras och sorteras efter storleksordning. Vad skall detta vara nödvändigt

Läs mer

8E Ma: Aritmetik och bråkbegreppet

8E Ma: Aritmetik och bråkbegreppet 8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.

Läs mer

Talsystem Teori. Vad är talsystem? Av Johan Johansson

Talsystem Teori. Vad är talsystem? Av Johan Johansson Talsystem Teori Av Johan Johansson Vad är talsystem? Talsystem är det sätt som vi använder oss av när vi läser, räknar och skriver ner tal. Exempelvis hade romarna ett talsystem som var baserat på de romerska

Läs mer

DOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7

DOP-matematik Copyright Tord Persson. Potensform. Uppgift nr 10. Uppgift nr 11 Visa varför kan skrivas = 4 7 Potensform Uppgift nr Vad menas i matematiken med skrivsättet 3 6? (Skall inte räknas ut.) Uppgift nr 2 värdet av potensen 3 2 Uppgift nr 3 Skriv 8 8 8 i potensform Uppgift nr 4 Skriv 4 3 som upprepad

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs A som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

antal miljoner 3,0 2,5 2,0 1,5 1,0 0,5

antal miljoner 3,0 2,5 2,0 1,5 1,0 0,5 Tabeller och diagram Mål När eleverna studerat det här kapitlet ska de kunna: hämta fakta ur tabeller läsa av och tolka olika typer av diagram beräkna medelvärde bestämma median göra en enkel undersökning

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Vikt och volym. Kapitel 4 Vikt och volym

Vikt och volym. Kapitel 4 Vikt och volym Vikt och volym Kapitel 4 Vikt och volym I kapitlet får eleverna arbeta med vikt och volym. Avsnittet om volym tar upp enheterna liter, deciliter och centiliter. Avsnittet om vikt tar upp enheterna kilogram,

Läs mer

Lathund, bråk och procent åk 7

Lathund, bråk och procent åk 7 Lathund, bråk och procent åk 7 Är samma som / som är samma som en tredjedel och samma som en av tre. är täljaren (den säger hur många delar vi har), tänk täljare = taket = uppåt är nämnaren (den säger

Läs mer

3Procent. Mål. Grunddel K 3

3Procent. Mål. Grunddel K 3 Procent Mål När eleverna har studerat det här kapitlet ska de kunna: förstå och utföra de tre olika typerna av procentberäkningar räkna ut delen räkna ut hur många procent något är räkna ut det hela använda

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Lokala betygskriterier Matematik åk 8

Lokala betygskriterier Matematik åk 8 Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Jaana Karppinen Päivi Kiviluoma Timo Urpiola. Illustrationer: Maisa Rajamäki. Namn:

Jaana Karppinen Päivi Kiviluoma Timo Urpiola. Illustrationer: Maisa Rajamäki. Namn: 6B Bas Favorit matematik Jaana Karppinen Päivi Kiviluoma Timo Urpiola Illustrationer: Maisa Rajamäki Namn: Studentlitteratur AB Box 141 221 00 Lund Besöksadress Åkergränden 1 Tfn 046-31 20 00 studentlitteratur.se

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

Decimaltal. Matteord hela tal decimaltal tiondel hundradel. tusendel decimal decimaltecken

Decimaltal. Matteord hela tal decimaltal tiondel hundradel. tusendel decimal decimaltecken Decimaltal Mål När du har arbetat med det här kapitlet ska du kunna > förstå vad som menas med ett decimaltal > storleksordna decimaltal > multiplicera och dividera med 10, 100 och 1 000 > räkna med överslagsräkning

Läs mer

5Genrepet. Mål. Arbetssätt K 5

5Genrepet. Mål. Arbetssätt K 5 Genrepet Mål I det här kapitlet får eleverna möjlighet att repetera och reparera grunderna i grundskolans matematik. apitlet är indelat i se avsnitt: Tal Bråk och procent Geometri Algebra Statistik och

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Katariina Asikainen Kimmo Nyrhinen Pekka Rokka Päivi Vehmas. Illustrationer: Maisa Rajamäki. Namn:

Katariina Asikainen Kimmo Nyrhinen Pekka Rokka Päivi Vehmas. Illustrationer: Maisa Rajamäki. Namn: 6B Mera Favorit matematik Katariina Asikainen Kimmo Nyrhinen Pekka Rokka Päivi Vehmas Illustrationer: Maisa Rajamäki Namn: Studentlitteratur AB Box 141 221 00 Lund Besöksadress Åkergränden 1 Tel 046-31

Läs mer

Grunder i Matematik 1

Grunder i Matematik 1 Grunder i Matematik 1 version 017-07-31 Simon Fall 1 Tal 1.1 De fyra räknesätten När vi använder räknesätten har delarna och svaren speciella namn som är mycket viktiga att kunna: addition: subtraktion:

Läs mer

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -

Läs mer

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22 Arbetsblad 1:1 sid 8, 22 Decimaltal på tallinjen 1 1 Skriv rätt tal på linjen. 0,8 0 1 2 0 1 3 1,1 1 2 4 0,05 0 0,1 5 0,2 0,3 6 0,5 0,6 7 0,9 1 8 1,9 2 Arbetsblad 1:2 sid 8, 22 Decimaltal på tallinjen

Läs mer

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för

Läs mer

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt. Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex

Läs mer

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder

Läs mer

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013

DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013 DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område

Läs mer

3-3 Skriftliga räknemetoder

3-3 Skriftliga räknemetoder Namn: 3-3 Skriftliga räknemetoder Inledning Skriftliga räknemetoder vad är det? undrar du kanske. Och varför behöver jag kunna det? Att det står i läroplanen är ju ett klent svar. Det finns miniräknare,

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod Taluppfattning Kapitlets innehåll I kapitel möter eleverna decimaltal för första gången. Det första avsnittet handlar om vårt talsystem och att de hela tal eleverna tidigare jobbat med går att dela in

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1 Matematik klass 3 Vårterminen Anneli Weiland Matematik åk 3 VT 1 Minns du från höstens bok? Räkna. Se upp med likhetstecknet, var finns det? 17-5= 16+ =19 18-2= 15-4= 19=12+ 19-3= 15+4= 20-9= 18=20- +16=20

Läs mer

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret.

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret. Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9

Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9 Tal Läxa 1 1 a) 307 b) 55 c) 00 003 a) 131 > 113 b) 1 > 1 c) 99 < 9 99 3 a) 1 170 b) 5 75 c) 91 a) 3 hundra b) 3 ental c) 3 tusen 5 a) 370 b) 0 a) 31 b) 1 3 c) 1 3 7 a) 99 b) 13 a) 37 b) 19 00 9 5 15 50

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

Uttryck med alla räknesätt

Uttryck med alla räknesätt Här får du lära dig att beräkna uttryck med flera räknesätt och parenteser om negativa tal multiplikation och division av decimaltal att göra beräkningar med vikt och volym 'MEM "MU Kulramen, eller abakusen

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, Bråkform i vardagssituationer Stambråk, bråkuttryck med 1

Läs mer

Facit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm.

Facit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm. Läa a) b) c) a) 6,8 b) 8, c) 66 a),99,09,,8,8 b) 0,0 Hon får 9 kr tillbaka. a) 00 b) 00 c) 00 6 a) 0 längder b) 7 m c) kr 7 Decimaltecknet skiljer heltalen från decimaltalen. Placeringen avgör om siffran

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

Uppfriskande Sommarmatematik

Uppfriskande Sommarmatematik Uppfriskande Sommarmatematik Matematiklärarna på Bäckängsgymnasiet genom Johan Espenberg juni 206 Välkommen till Naturvetenskapsprogrammet GRATTIS till din plats på Naturvetenskapsprogrammet på Bäckängsgymnasiet!

Läs mer

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm

Ma C - Tek Exponentialekvationer, potensekvationer, logaritmlagar. Uppgift nr 10 Skriv lg4 + lg8 som en logaritm Exponentialekvationer, potensekvationer, logaritmlagar Uppgift nr 1 10 z Uppgift nr 2 10 z = 0,0001 Uppgift nr 3 10 5y 000 Uppgift nr 4 10-4z Uppgift nr 5 Skriv talet 6,29 i potensform med 10 som bas.

Läs mer

Positionssystemet och enheter

Positionssystemet och enheter strävorna 5A 5C Positionssystemet och enheter uttrycksformer tal geometri Avsikt och matematikinnehåll Aktiviteten utgår från en gammal och väl beprövad mall för att skapa struktur och ge förståelse för

Läs mer

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna Arbetsblad : Hela tal på tallinjen Skriv rätt tal på linjen. 55 0 50 00 0 0 0 0 00 00 00 00 00 5 000 000 50 000 0 000 7 00 000 00 000 Arbetsblad : Positionssystemet Skriv talen med siffror. Placera in

Läs mer

Tal Räknelagar Prioriteringsregler

Tal Räknelagar Prioriteringsregler Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

Matematik repetition

Matematik repetition Matematik repetition Matematik repetition Fastighetsakademin, 03 Fjärde upplagen, rev. a Tryckt på Fastighetsakademin Fastighetsakademin J A Wettergrens gata 4, 4 30 Västra Frölunda www.fastighetsakademin.se

Läs mer

Lathund, samband & stora tal, åk 8

Lathund, samband & stora tal, åk 8 Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i

Läs mer

Matematik klass 1. Vår-terminen

Matematik klass 1. Vår-terminen Matematik klass 1 Vår-terminen Rita din matematik-bild Skriv ditt namn i rutan Måla alla rutor där svaret blir 10 3+2 1+9 5+4 6+4 3+7 5+5 4-4 8+4 3+7 9+0 2+8 2+4 7+3 7-6 5+2 5+5 4+4 3+7 6-2 6+4 8+3 6+1

Läs mer

Facit följer uppgifternas placering i häftet.

Facit följer uppgifternas placering i häftet. Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar

Läs mer

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd Wiggo Kilborn Om tal i bråkoch decimalform en röd tråd Tal i bråkoch decimalform en röd tråd Wiggo Kilborn Nationellt centrum för matematikutbildning Göteborgs universitet 20 Detta verk är licensierad

Läs mer

Bråk. Introduktion. Omvandlingar

Bråk. Introduktion. Omvandlingar Bråk Introduktion Figuren till höger föreställer en tårta som är delad i sex lika stora bitar Varje tårtbit utgör därmed en sjättedel av hela tårtan I nästa figur är två av sjättedelarna markerade Det

Läs mer

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Matematik Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Tal Vad kan subtraktionen 4 7 innebära? Kan något vara mindre än noll? De här frågorna sysselsatte matematiker i många århundranden. Så länge

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000 Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande

Läs mer