8E Ma: Aritmetik och bråkbegreppet
|
|
- Marie Johansson
- för 8 år sedan
- Visningar:
Transkript
1 8E Ma: Aritmetik och bråkbegreppet Under veckorna arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera matematiska begrepp och samband mellan begrepp, - välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, - föra och följa matematiska resonemang, och - använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Centralt innehåll i undervisningen: - Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. - Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang. - Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. - Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. - Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. - Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
2 Arbetsform under en vecka Tisdagar (60 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar från dagens arbete till torsdagens test. (Uppgifter i boken.) Torsdagar (45 min): Test på begrepp och metoder. Enskilt arbete med veckans problemlösningsuppgift. Läxa: Jobba vidare hemma med problemlösningsuppgiften (med mallen) Fredagar (70 min): Grupparbete med problemlösningsuppgiften. Redovisning i tvärgrupper av problemlösningsuppgiften. Sammanfattning i helklass. Arbete i boken med problemlösningsuppgifter. Läxa: Gå igenom din ifyllda problemlösningsmall hemma tills du känner att du förstår de olika delarna. Spara mallen att läsa på inför provet
3 Källor Matematikbokens kapitel 1 och 7. Se även kapitlet Verktygslådan. Digilär. Utvärderingsform Tester på förmågorna metoder och begrepp varje vecka. Övning på förmågorna resonemang och kommunikation varje vecka. Ett E-prov för bedömning av grundläggande kunskaper i förmågorna begrepp och metoder i slutet av arbetsområdet. Ett prov för bedömning av problemlösningsförmågan i slutet av arbetsområdet. Kunskapskrav (se följande sidor) Först kommer en matris som visar betygskriterierna för de fem förmågorna i läroplanen. Därefter kommer en matris som konkretiserar betygskraven för betygen E, C och A i förmågorna Begrepp och Metoder.
4 Matematik: Förmågor, kunskapskrav och betyg Förmågor Kunskapskrav Betyget E Betyget C Betyget A Problemlösning: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. Du löser problem på ett i huvudsak fungerande sätt. Du väljer metoder med viss anpassning till problemet. Du löser problem på ett relativt väl fungerande sätt. Du väljer metoder med förhållandevis god anpassning Eleven kan lösa olika problem i bekanta situationer på ett fungerande sätt genom att välja och använda strategier och metoder med anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Eleven för underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativt tillvägagångssätt. Du bidrar till att formulera modeller som kan tillämpas. Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du bidrar till att ge något förslag på alternativt tillvägagångssätt. till problemet. Du formulerar modeller som efter någon bearbetning kan tillämpas. Du för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du ger något förslag på alternativt tillvägagångssätt. Du löser problem på ett väl fungerande sätt. Du väljer metoder med god anpassning till problemet. Du formulerar modeller som kan tillämpas. Du för välutvecklade och väl underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du ger olika förslag på alternativa tillvägagångssätt. Begrepp: Använda och analysera matematiska begrepp och samband mellan begrepp. Eleven har kunskaper om matematiska begrepp och visar det genom att använda dem i sammanhang på ett fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra resonemang kring hur begreppen relaterar till varandra. Du har grundläggande kunskaper om matematiska begrepp. Du använder begreppen i välkända sammanhang på ett i huvudsak fungerande sätt. Du beskriver olika begrepp på ett i huvudsak fungerande sätt. Du växlar mellan olika uttrycksformer och för enkla resonemang kring hur begreppen relaterar till varandra. Du har goda kunskaper om matematiska begrepp. Du använder begreppen i bekanta sammanhang på ett relativt väl fungerande sätt. Du beskriver olika begrepp på ett relativt väl fungerande sätt. Du växlar mellan olika uttrycksformer och för utvecklade resonemang kring hur begreppen relaterar till varandra. Du har mycket goda kunskaper om matematiska begrepp. Du använder begreppen i nya sammanhang på ett väl fungerande sätt. Du beskriver olika begrepp på ett väl fungerande sätt. Du växlar mellan olika uttrycksformer och för välutvecklade resonemang kring hur begreppen relaterar till varandra.
5 Förmågor Kunskapskrav Betyget E Betyget C Betyget A Metoder: Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter. Du använder i huvudsak fungerande matematiska metoder. Du använder ändamålsenliga matematiska metoder. Eleven kan välja och använda matematiska metoder med anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring. Du väljer matematiska metoder med viss anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter med tillfredsställande resultat. Du väljer matematiska metoder med relativt god anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter med gott resultat. Du använder ändamålsenliga och effektiva matematiska metoder. Du väljer matematiska metoder med god anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter med mycket gott resultat. Resonemang: Föra och följa matematiska resonemang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. Du framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt. Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt. Du framför och bemöter matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. Kommunikation: Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Eleven kan redogöra för och samtala om tillvägagångssätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett i huvudsak fungerande sätt. Du använder olika matematiska uttrycksformer med viss anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett ändamålsenligt sätt. Du använder olika matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett ändamålsenligt och effektivt sätt. Du använder olika matematiska uttrycksformer med god anpassning till syfte och sammanhang.
6 Förmåga: Begrepp (åk8) - Aritmetik Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Betyget E Betyget C Betyget A Du har kunskaper om matematiska begrepp Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. 1. a: Skriv med bokstäver vilka värden siffrorna har i talet ,901 b: Vilket av tecknen < eller > ska vara mellan talen och c: Skriv talen i storleksordning med det minsta först. 2,4 2,23 2,324 2,36 2,3 2. Rita en tallinje och markera talen 0,2 och 0, Rita en tallinje och markera talen -2, 2, -8 och Vilka är orden? a: ord? + ord? = ord? b: ord? - ord? = ord? c: ord? ord? = ord? d: ord? / ord? = ord? Potensform för att uttrycka små och stora tal samt användning av prefix. 5. Skriv prefixets namn och talet det mot- 8. Skriv prefixen som tiopotenser. svarar med bokstäver och med siffror a: T b: G c: M d: k e: h a: T b: G c: M d: k e: h f: d g: c h: m i: µ f: d g: c h: m i: µ 9. a: Hur uttalar man 2? 8 b: Vad betyder 2? c: Vad är bas och vad är exponent? 8
7 Du använder matematiska begrepp i sammanhang på ett fungerande sätt. Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. 10. Vilka av talen är delbara med sex? 6. Vilka av talen är delbara med a: två? b: fem? c: tio? d: tre? a: Vilka primtal finns mellan 20 och 30? b: Dela upp talet 54 i primfaktorer. 7. Skriv utan prefix (i meter, liter eller gram). a: 23 km b: 230 kg c: 23 hl d: 230 hg e: 23 dm f: 230 dl g: 23 cm h: 230 cl i: 23 mm j: 2,3 ml k: 230 mg Potensform för att uttrycka små och stora tal samt användning av prefix. 11. Skriv i tiopotensform. 14. a: Skriv i grundpotensform. a: 2000 b: c: 0, Skriv talen i decimalform. a: 10 2 b: 10 8 c: d: e: b: Skriv 3,4 10 decimalform.
8 Förmåga: Metoder (åk8) - Aritmetik Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Betyget E Betyget C Betyget A Du gör beräkningar och löser rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt Centrala metoder för beräkningar med tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. 1. Multiplikationstabellen. samband och förändring. 2. Beräkna med skriftlig huvudräkning. Skriv hur du tänker. a: b: c: d: Ställ upp och räkna ut exakt. a: 23,4 + 5,67 b: 5,6-2,34 c: 2,34 5,6 d: e: 234 / 5 4. Avrunda 2345,678 till a: hundratal b: tiotal c: ental d: tiondel e: hundradel 5. Gör en överslagsräkning. Skriv avrundningarna. a: 23,4 + 56,7 b: 23,4-6,5 c: 2,3 45,6 d: 234,5 / 6,7 10. Ställ upp 23,46 / 0,6 och räkna ut exakt. 6. Skriv endast svar. a: 100 2,3 b: 2,3 / 100 c: 0,1 23 d: 0,01 0,23 7. Skriv endast svar. a: 2-8 b: c: -8-2 d: e: 8 + (-2) f: 2 + (-8) g: -8 + (-2) 8. Skriv endast svar. a: 8 (-2) b: (-8) 2 c: (-24) / Skriv endast svar. a: 23 / 0,1 b: 2,34 / 0, Skriv endast svar. a: 0,2 0,08 b: 20 0,02 c: 2 / 0,5 d: 80 / 0,2 13. Skriv endast svar. a: 8 - (-2) b: -8 - (-2) c: -2 - (-8) 14. Skriv endast svar. a: (-8) (-2) b: -2 (-8) c: 24 / (-8) d: (-24) / (-8) e: -24 / (-8)
9 9. Beräkna a: b: (2 + 3) Beräkna 8 - (5-1)/ Beräkna a: 2 b: Bestäm följande kvadrater a: 23 b: 2,3 c: 0,2 d: 0,02 e: Beräkna kvadraten på 3 f: Beräkna 4 2 g: Lös ekvationen x = Skriv som en tiopotens. a: b: 10 8 / Räkna ut och svara i tiopotensform. 20. Skriv som en tiopotens. a: b: c: Räkna ut ( ) / ( ) och svara i tiopotensform. 22. Räkna ut och svara i grundpotensform.
10 Förmåga: Problemlösning (åk8) - Aritmetik Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Betyget E Betyget C Betyget A Du för underbyggda Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. resonemang om val av 6. Välj rätt volymenhet tillvägagångssätt och - a: Lastbilen körde 12? grus om resultatens rimlighet i förhållande till b: Tändsticksasken rymmer 30? problemsituationen. 1. Välj rätt enhet a: En säng är 2? lång b: En glasruta är 3? tjock c: En bok är 4? tjock d: En träningsrunda är 5? 2. Välj rätt volymenhet a: En matsked rymmer 15? b: Ett badkar rymmer 350? c: Ett dricksglas rymmer 2? d: En läskburk innehåller 33? 3. Välj rätt massenhet a: Ett nyfött barn: 3500? b: En lastbil 2500? c: En tablett: 750? d: Ett äpple: 1,5? 4. Vilket av gradtalen -10, 0, 4, 12, 23, 70 och 150 C passar för a: en simbassäng b: en skidtävling c: en varm dryck d: ett kylskåp 5. Välj rätt mått a: Dataskärm: 0,2; 2 eller 20 kvadratmeter b: Dörrmatta: 0,3; 3 ellerm30 kvadratmeter c: Spelkort: 0,5; 5 eller 50 kvadratcentimeter 7. Talen som man utgår ifrån vid beräkningarna är avrundade. Gör beräkningarna och avrunda resultaten till ett lämpligt antal siffror eller decimaler. a: 2,3 4,5 b: 2,30 4,50 c: 2,3 4,500 d: 23,4 + 5,67 e: 5,6-2,34
8F Ma: Aritmetik och bråkbegreppet
8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Läs mer9F Ma: Aritmetik och bråkbegreppet
9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Läs merMa Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
Läs mer8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Läs merMa7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Läs mer7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Läs mer8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Läs merMa7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Läs mer8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Läs mer7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Läs mer9A Ma: Statistik och Sannolikhetslära
9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Läs merMa7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Läs mer9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Läs mer8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Läs mer9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Läs mer8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
Läs mer8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Läs merUr kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:
PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt
Läs merMa7-Åsa: Statistik och Sannolikhetslära
Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Läs merämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs mer8C Ma: Bråk och Procent
8C Ma: Bråk och Procent Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och
Läs merLokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Läs mer8D Ma:bråk och procent VT 2018
8D Ma:bråk och procent VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp
Läs merformulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Läs merArbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Läs merKursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Läs merCentralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Läs mer9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Läs mer2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Läs merLokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Läs merFöra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
Läs merKurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Läs merLokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
Läs merSyfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Läs merESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Läs merGeometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Läs mer7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
Läs merMatematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
Läs merSyfte med undervisningen är att du ska få utveckla din förmåga att...
Planering, kapitel 1 Statistik samt sannolikhet. Syfte med undervisningen är att du ska få utveckla din förmåga att... formulera och lösa problem med hjälp av matematik samt värdera valda strategier och
Läs merMatematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Läs merPedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Läs mer7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att:
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Läs merTALSYSTEMET. Syfte Lgr 11
TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,
Läs merCentralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Läs merBetyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Läs merKursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Läs mer"Procent och sannolikhet 6D"
"Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,
Läs merLokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Läs merMATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs mer_ kraven i matematik åk k 6
Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.
Läs mer9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
Läs mermatematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
Läs merformulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Läs merLokal pedagogisk planering för årskurs 7 i ämnet Matematik
Annerstaskolan Lokal pedagogisk planering för årskurs 7 i ämnet Matematik Centralt innehåll Lärområde Tid Delområde Undervisning/ arbetssätt Taluppfattning och tals Tal Vecka Förstå hur vårt Genomgång
Läs merMATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant
Matematik - Måldokument MATEMATIK ÅK 9 TAL Talet nio anses i många kulturer vara ett mystiskt och ibland också ett heligt tal. Innan kristendomen infördes i Norden ansågs talet 9 vara det mest heliga talet.
Läs merPlanering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Läs merFörslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs mer"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Läs merMatematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Läs merJörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
Läs merPlanering Matematik åk 8 Samband, vecka
Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med
Läs merPlanering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
Läs merMATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Läs merAddition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Läs merSåhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar
ALGEBRA & EKVATION PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 VT 2013 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja
Läs merPedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Läs merAlgebra och Ekvationer År 7
Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom
Läs merPedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
Läs merMATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merExtramaterial till Matematik Y
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TT Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra
Läs merKURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE: TAL 9A, 9C LÄRARE: Jeff Linder Att använda och räkna med olika typer av tal har du användning av i matematikens alla områden och även i vardagen. Därför är detta
Läs merExtramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TT Sannolikhet LÄRAR Nu ska du och dina elever få bekanta er med Google Kalkylark. I den här uppgiften får eleverna öva sig i att
Läs merArbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Läs merJörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Läs merExtramaterial till Matematik X
LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna
Läs merMatematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merExtramaterial till Matematik X
LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TR Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna
Läs merLgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Läs merStatens skolverks författningssamling
Statens skolverks författningssamling ISSN 1102-1950 Föreskrifter om ändring i Skolverkets föreskrifter (SKOLFS 2012:18) om kursplaner för kommunal vuxenutbildning på grundläggande nivå; Utkom från trycket
Läs merMatematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015
Matematik Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Tal Vad kan subtraktionen 4 7 innebära? Kan något vara mindre än noll? De här frågorna sysselsatte matematiker i många århundranden. Så länge
Läs merStudieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Läs merLokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Läs merExtramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TVÅ Sannolikhet LÄRAR Nu ska du och dina elever få bekanta er med Google Kalkylark. I den här uppgiften får eleverna öva sig i att
Läs merDel ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merOm LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Läs merExtramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TT Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna
Läs merExtramaterial till Matematik X
LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TVÅ Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna
Läs merKURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var
Läs merExtramaterial till Matematik X
LIBER PROGRMMERING OH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Sannolikhet LÄRRE Nu ska du och dina elever få bekanta er med Google Kalkylark. I den här uppgiften får eleverna öva sig i
Läs merKURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal
Läs merPedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola
Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Gäller för första delen av VT15 Syfte Du ska genom undervisningen ges förutsättningar att utveckla din förmåga att:
Läs merExtramaterial till Matematik X
LIBER PROGRAMMERING OH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ TVÅ Statistik LÄRARE I den här uppgiften kommer dina elever att använda sig av kalkylprogrammet Google Kalkylark. Deras uppgift
Läs merExtramaterial till Matematik X
LIBER PROGRMMERING OCH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Programmering LÄRRE I den här uppgiften får du och dina elever en introduktion till programmering. Uppgiften vänder sig först
Läs merMATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Läs merARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Läs merOm Favorit matematik för åk 4-6 och Lgr 11
Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning
Läs merMATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta
Läs mer