Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
|
|
- Andreas Forsberg
- för 9 år sedan
- Visningar:
Transkript
1 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
2 TERMINSPLAN HÖSTTERMINEN ÅK 9: TALMÄNGDER NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL POTENSER RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA SMÅ TAL OCH TIOPOTENSER RÄKNA MED TIOPOTENSER 9 FORTS. 1.6 RÄKNA MED TIOPOTENSER 10 BLANDADE UPPGIFTER 11 BLANDADE UPPGIFTER 12 DIAGNOS 1 13 TRÄNA MERA/TEMA 14 PROBLEMLÖSNING 15 BLANDADE UPPGIFTER 16 TRÄNA MERA/TEMA 17 AKTIVITET UTTRYCK OCH MÖNSTER 18 FORTS. 2.1 UTTRYCK OCH MÖNSTER FÖRENKLING AV UTTRYCK 20 FORTS. 2.2 FÖRENKLING AV UTTRYCK EKVATIONER 22 TALUPPFATTNING + RESONERA PROCENT OCH EKVATIONER PROPORTION 25 BLANDADE UPPGIFTER 26 BLANDADE UPPGIFTER 27 DIAGNOS 2 28 TRÄNA MERA/TEMA 29 REPETERA 30 REPETERA 31 REPETERA 32 REPETERA 33 PROV KAP 1-2 DEL 1 34 PROV KAP 1-2 DEL 2 35 BINGO SPEGLING OCH SYMMETRI LIKFORMIGHET 38 FORTS. 3.2 LIKFORMIGHET SKALA KVADRATER OCH KVADRATRÖTTER 41 ANDRAGRADSEKVATIONER PYTHAGORAS SATS 43 FORTS. 3.5 PYTHAGORAS SATS 44 TALUPPFATTNING + RESONERA 45 BLANDADE UPPGIFTER 46 BLANDADE UPPGIFTER 47 DIAGNSOS 3 48 TRÄNA MERA/TEMA TERMINSPLAN VÅRTERMINEN ÅK 9: PROCENT FÖRÄNDRINGSFAKTOR 51 FORTS. 4.2 FÖRÄNDRINGSFAKTOR 52 KOORDINATSYSTEMET FUNKTIONER LINJÄRA FUNKTIONER 55 FORTS. 4.4 LINJÄRA FUNKTIONER TILLÄMPNING AV LINJÄRA PROPORTIONALITET 58 FORTS. 4.6 PROPORTIONALITET 59 BLANDADE UPPGIFTER 60 BLANDADE UPPGIFTER 61 DIAGNOS 4 62 TRÄNA MERA/TEMA 63 REPETERA 64 REPETERA 65 PROV KAP 3-4 DEL 1 66 PROV KAP 3-4 DEL HUR STOR ÄR SANNOLIKHETEN TRÄDDIAGRAM 69 FORTS. 5.2 TRÄDDIAGRAM KOMPLEMENTHÄNDELSE KOMBINATORIK 72 TALUPPFATTNING + RESONERA 73 AKTIVITET TABELLER OCH DIAGRAM 74 FORTS. 5.5 TABELLER OCH DIAGRAM 75 BLANDADE UPPGIFTER 76 BLANDADE UPPGIFTER 77 DIAGNOS 5 78 TRÄNA MERA/TEMA TALUPPFATTNING OCH TALS ALGEBRA 81 FORTS. 6.2 ALGEBRA GEOMETRI 83 FORTS. 6.3 GEOMETRI SAMBAND OCH FÖRÄNDRING 85 FORTS. 6.4 SAMBAND OCH FÖRÄNDRING SANNOLIKHET OCH STATISTIK 87 FORTS. 6.5 SANNOLIHET OCH STATISTIK PROBLEMLÖSNING 89 TEMA 90 REPETERA 91 REPETERA 92 REPETERA 93 REPETERA 94 REPETERA 95 NATIONELLT PROV 96 NATIONELLT PROV
3 Pedagogisk planering Kap 1 Taluppfattning Syfte: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder Använda och analysera matematiska begrepp och samband mellan begrepp Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter Föra och följa resonemang Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Centralt innehåll: Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang Potensform för att uttrycka små och stora tal samt användning av prefix Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden Enkla matematiska modeller och hur de kan användas i olika situationer Konkreta mål Efter detta arbetsområde ska vi: ha förståelse för vårt talsystem och kunna räkna med negativa tal kunna räkna med små och stora tal i potensform och grundpotensform känna till och kunna räkna med prefix kunna använda olika metoder vid problemlösning Arbetsmetoder: Genomgångar/Diskussioner Aktiviteter Individuellt arbete Diagnos Bedömning: Problemlösning Att formulera och lösa problem samt värdera valda metoder Begrepp Att använda och analysera matematiska begrepp Metod Att välja och använda lämpliga metoder för att göra beräkningar Resonemang Att föra och följa matematiska resonemang Kommunikation Att redogöra för beräkningar och slutsatser med ett matematiskt språk
4 Pedagogisk planering Kap 2 Algebra Syfte: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder Använda och analysera matematiska begrepp och samband mellan begrepp Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter Föra och följa resonemang Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Centralt innehåll: Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven Metoder för ekvationslösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden Enkla matematiska modeller och hur de kan användas i olika situationer Konkreta mål Efter detta arbetsområde ska vi: ha förståelse för och kunna använda oss av variabler kunna teckna och tolka uttryck kunna uttrycka olika mönster algebraiskt kunna lösa ekvationer kunna använda olika metoder vid problemlösning Arbetsmetoder: Genomgångar/Diskussioner Aktiviteter Individuellt arbete Diagnos Bedömning: Problemlösning Att formulera och lösa problem samt värdera valda metoder Begrepp Att använda och analysera matematiska begrepp Metod Att välja och använda lämpliga metoder för att göra beräkningar Resonemang Att föra och följa matematiska resonemang Kommunikation Att redogöra för beräkningar och slutsatser med ett matematiskt språk
5 Pedagogisk planering Kap 3 Geometri Syfte: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder Använda och analysera matematiska begrepp och samband mellan begrepp Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter Föra och följa resonemang Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Centralt innehåll: Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. Avbildning och konstruktion av geometriska objekt. Skala vid förminskning och förstoring av två- och tredimensionella objekt Likformighet och symmetri i planet Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta Geometriska satser och formler och behovet av argumentation för deras giltighet Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden Enkla matematiska modeller och hur de kan användas i olika situationer Konkreta mål Efter detta arbetsområde ska vi: känna till symmetriska egenskaper hos objekt kunna använda oss av likformighet kunna omvandla längd-, area- och volymskala kunna räkna med kvadratrötter samt använda sig av Pythagoras sats kunna använda olika metoder vid problemlösning Arbetsmetoder: Genomgångar/Diskussioner Aktiviteter Individuellt arbete Diagnos Bedömning: Problemlösning Att formulera och lösa problem samt värdera valda metoder Begrepp Att använda och analysera matematiska begrepp Metod Att välja och använda lämpliga metoder för att göra beräkningar Resonemang Att föra och följa matematiska resonemang Kommunikation Att redogöra för beräkningar och slutsatser med ett matematiskt språk
6 Pedagogisk planering Kap 4 Samband och förändring Syfte: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder Använda och analysera matematiska begrepp och samband mellan begrepp Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter Föra och följa resonemang Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Centralt innehåll: Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden Enkla matematiska modeller och hur de kan användas i olika situationer Konkreta mål Efter detta arbetsområde ska vi: kunna använda sambandet mellan andelen, delen och det hela kunna använda oss av förändringsfaktor känna till olika slags funktioner kunna tolka och rita grafer kunna använda olika metoder vid problemlösning Arbetsmetoder: Genomgångar/Diskussioner Aktiviteter Individuellt arbete Diagnos Bedömning: Problemlösning Att formulera och lösa problem samt värdera valda metoder Begrepp Att använda och analysera matematiska begrepp Metod Att välja och använda lämpliga metoder för att göra beräkningar Resonemang Att föra och följa matematiska resonemang Kommunikation Att redogöra för beräkningar och slutsatser med ett matematiskt språk
7 Pedagogisk planering Kap 5 Sannolikhet och statistik Syfte: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder Använda och analysera matematiska begrepp och samband mellan begrepp Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter Föra och följa resonemang Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Centralt innehåll: Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem Tabeller, diagram och grafer samt hur de kan tolkas och användas för att beskriva resultat av egna och andras undersökningar, till exempel med hjälp av digitala verktyg. Hur lägesmått och spridningsmått kan användas för bedömning av resultat vid statistiska undersökningar Bedömningar av risker och chanser utifrån statistiskt material. Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden Enkla matematiska modeller och hur de kan användas i olika situationer Konkreta mål Efter detta arbetsområde ska vi: kunna beräkna sannolikheten för en eller flera händelser kunna använda oss av träddiagram för att visa händelser i flera steg känna till hur man använder komplementhändelser kunna beräkna antalet möjliga kombinationer tolka och använda olika lägesmått som medelvärde, median och typvärde kunna använda olika metoder vid problemlösning Arbetsmetoder: Genomgångar/Diskussioner Aktiviteter Individuellt arbete Diagnos Bedömning: Problemlösning Att formulera och lösa problem samt värdera valda metoder Begrepp Att använda och analysera matematiska begrepp Metod Att välja och använda lämpliga metoder för att göra beräkningar Resonemang Att föra och följa matematiska resonemang Kommunikation Att redogöra för beräkningar och slutsatser med ett matematiskt språk
8 Pedagogisk planering Kap 6 Repetition Syfte: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder Använda och analysera matematiska begrepp och samband mellan begrepp Välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter Föra och följa resonemang Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Centralt innehåll: - Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer. - Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang. - Potensform för att uttrycka små och stora tal samt användning av prefix. - Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. - Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. - Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. - Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven. - Metoder för ekvationslösning. - Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. - Avbildning och konstruktion av geometriska objekt. Skala vid förminskning och förstoring av två- och tredimensionella objekt. - Likformighet och symmetri i planet. - Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. - Geometriska satser och formler och behovet av argumentation för deras giltighet. - Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer. - Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem. - Tabeller, diagram och grafer samt hur de kan tolkas och användas för att beskriva resultat av egna och andras undersökningar, till exempel med hjälp av digitala verktyg. Hur lägesmått och spridningsmått kan användas för bedömning av resultat vid statistiska undersökningar. - Bedömningar av risker och chanser utifrån statistiskt material. - Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. - Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. - Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder - Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden. - Enkla matematiska modeller och hur de kan användas i olika situationer Konkreta mål Efter detta arbetsområde ska vi: vara förberedda för det Nationella Provet Arbetsmetoder: Genomgångar/Diskussioner Individuellt arbete Bedömning: Problemlösning Att formulera och lösa problem samt värdera valda metoder Begrepp Att använda och analysera matematiska begrepp Metod Att välja och använda lämpliga metoder för att göra beräkningar Resonemang Att föra och följa matematiska resonemang Kommunikation Att redogöra för beräkningar och slutsatser med ett matematiskt språk
9 Förmågorna som bedöms i Matematik E C A PROBLEMLÖSNING ATT FORMULERA OCH LÖSA PROBLEM SAMT VÄRDERA VALDA METODER BEGREPP ATT ANVÄNDA OCH ANALYSERA MATEMATISKA BEGREPP METOD ATT VÄLJA OCH ANVÄNDA LÄMPLIGA METODER FÖR ATT GÖRA BERÄKNINGAR RESONEMANG ATT FÖRA OCH FÖLJA MATEMATISKA RESONEMNAG KOMMUNIKATION ATT REDOGÖRA FÖR BERÄKNINGAR OCH SLUTSATSER MED ETT MATEMATISKT SPRÅK Allmänna råd: Var aktiv under lektionerna och använda tiden väl Ligg i fas med planeringen Förbered dig inför diagnoser och prov Hjälp till grunden kan du få genom att använda pedagogiska planeringar Ha alltid rätt materiel med dig. Penna, anteckningsbok och lärobok är viktiga redskap varje lektion.
10 Konkreta exempel E C A PROBLEMLÖSNING
11 Konkreta exempel E C A BEGREPP
12 Konkreta exempel E C A METOD
13 Konkreta exempel E C A RESONEMANG
14 Konkreta exempel E C A KOMMUNIKATION
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -
År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE: TAL 9A, 9C LÄRARE: Jeff Linder Att använda och räkna med olika typer av tal har du användning av i matematikens alla områden och även i vardagen. Därför är detta
Matematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 7
PLANERING OCH BEDÖMNING MATEMATIK ÅK 7 TERMINSPLAN HÖSTTERMINEN ÅK 7: 1 FÖRDIAGNOS 2 FYRA RÄKNESÄTT 3 FYRA RÄKNESÄTT 4 1.1 NATURLIGA TAL 5 1.2 NEGATIVA HELA TAL 6 1.3 TAL I BRÅKFORM 7 FORTS. 1.3 TAL I
EV3 Design Engineering Projects Koppling till Lgr11
EV3 Design Engineering Projects Koppling till Lgr11 När man arbetar med LEGO i undervisningen så är det bara lärarens och elevernas fantasi som sätter gränserna för vilka delar av kursplanerna man arbetar
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant
Matematik - Måldokument MATEMATIK ÅK 9 TAL Talet nio anses i många kulturer vara ett mystiskt och ibland också ett heligt tal. Innan kristendomen infördes i Norden ansågs talet 9 vara det mest heliga talet.
8F Ma: Aritmetik och bråkbegreppet
8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
9F Ma: Aritmetik och bråkbegreppet
9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Ma Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
Matematik 1A 4 Potenser
Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
Centralt innehåll i matematik Namn:
Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.
MATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
Lokal pedagogisk planering för årskurs 7 i ämnet Matematik
Annerstaskolan Lokal pedagogisk planering för årskurs 7 i ämnet Matematik Centralt innehåll Lärområde Tid Delområde Undervisning/ arbetssätt Taluppfattning och tals Tal Vecka Förstå hur vårt Genomgång
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
8E Ma: Aritmetik och bråkbegreppet
8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Syfte med undervisningen är att du ska få utveckla din förmåga att...
Planering, kapitel 1 Statistik samt sannolikhet. Syfte med undervisningen är att du ska få utveckla din förmåga att... formulera och lösa problem med hjälp av matematik samt värdera valda strategier och
Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:
PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder innehåller alla
Matematikplanering åk 7 Läsår 16/17 Hösttermin Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad,
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Planering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Sammanställning av de 114 diagnosernas indelning i områden och delområden
Sammanställning av de 114 diagnosernas indelning i områden och delområden Områden Delområden Diagnoser Markering Nya diagnoser Diagnoser där någon uppgift är ändrad Nya diagnoser upp till årskurs 6 Nya
Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F
På jakt efter förmågor i undervisningen Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F Aktivitetens namn: Triangelmatte Syfte Undervisningen ska
Delkursplanering MA Matematik A - 100p
Delkursplanering MA1201 - Matematik A - 100p som du skall ha uppnått efter avslutad kurs Du skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att:
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Studiehandledning. kurs Matematik 1b
Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Studiehandledning för Matematik 1a
Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...
8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
9A Ma: Statistik och Sannolikhetslära
9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Extramaterial till Start Matematik
EXTRAMATERIAL Extramaterial till Start Matematik Detta material innehåller diagnoser och facit till alla kapitel. Extramaterial till Start matematik 47-11601-0 Liber AB Får kopieras 1 70 Innehållsförteckning
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Planering i matematik v. 39. Z /röd
Planering i matematik v. 39 Att räkna med negativa tal Negativa tal AB: 2001-2020 AB+: 2001-2024 BC: 2008-2027 Diagnos 1 tisdag Läxa 5 till fredag Planering i matematik v. 40 Att kunna räkna med potenser
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel