Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
|
|
- Birgitta Eliasson
- för 6 år sedan
- Visningar:
Transkript
1 Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband mellan begrepp, - välja och använda lämpliga metoder för att göra beräkningar och lösa rutinuppgifter, - föra och följa resonemang, och - använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Centralt innehåll i undervisningen: - Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. - Avbildning och konstruktion av geometriska objekt. Skala vid förminskning och förstoring av två och tredimensionella objekt. - Likformighet och symmetri i planet. - Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband detta. - Geometriska satser och formler och behovet av argumentation för deras giltighet. - Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. I undervisningen ska vi: Ha genomgångar. Arbeta öppna uppgifter som löses individuellt och följs av gruppdiskussion. Arbeta uppgifter i boken. Göra laborationer och praktiska uppgifter. Göra läxor och inlämningsuppgifter. Använda oss av hjälpel såsom t ex formelblad och miniräknare. Källor Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP Hur visar du vad du lärt dig och hur bedöms detta: Genom diagnoser, tester och prov. (Muntligt/skriftligt) Deltar aktivt i undervisningen och genomför praktiska och teoretiska uppgifter. Deltar aktivt i diskussioner och tar del av hur andra tänker. Vi använder en matris vid bedömningen av dina kunskaper Utifrån resultaten av diagnosen blir det individuell fördjupning
2 PLANERING Geometri 7G,H och D Måndag Onsdag Torsdag Fredag 5.1 Algebraiska uttryck 3.1 Enheter och prefix v. 2 Repetition Mål, planering 3.1 Enheter och prefix v Geometriska begrepp 3.2 Geometriska begrepp 3.3 Vinklar 3.3 Vinklar v. 4 Samtalsdag 3.4 Månghörningar och vinkelsumma 3.4 Månghörningar och vinkelsumma 3.5 Omkrets v Omkrets Samtalsdag 3.6 Introduktion av area 3.7 Area av rektanglar och parallellogram v Area av rektanglar och parallellogram 3.8 Area av trianglar Repetition E-mål E-test v. 7 Basläger/hög höjd Basläger/hög höjd Problemlösning E-C-A prov v. 8 Problemlösning Problemlösning Utvärdering jullov LÄXA: HÄNG MED I PLANERINGEN Häng i planeringen och gå på studiestöd tisdagar klockan 14:40-15:30 (det finns en frukt och en dricka till dig som går dit och jobbar) om du behöver mer hjälp. Tycker du fortfarande att du kör fast hela tiden och känner att du vill ge upp så prata mig så skall vi ordna ett upplägg som passar dig. Om du vill så börjar du nivå 1 och jobbar sedan vidare nivå 2. Jobba på uppgifterna. Se till att du kan grunderna väl. Lägg mest tid på de svåraste uppgifterna. Jobba snabbare än planeringen om du vill. Säg till mig så får du mer utmaningar. Försök att lösa uppgifterna, fråga om du ser att de är svåra..
3 E-mål för åk7 Begrepp Geometri Använda och analysera begrepp och samband mellan begrepp. unskapskrav Betyget E åk7 Betyget C åk7 u har kunskaper Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos de m B1. Ange antalet ytor, kanter och hörn på B1. Ange antalet ytor, kanter och hörn på egrepp a: en kub b: ett rätblock a: en cylinder b: ett klot u använder atematiska egrepp i ammanhang på ett ungerande sätt. B2. Rita en a: rektangel sidorna 2 cm och 3 cm b: kvadrat sidan 5 cm c: triangel basen 6 cm och höjden 4 cm d: cirkel diametern 8 cm B3. Rita två olika stora trianglar som är likformiga. Avbildning och konstruktion av geometriska objekt. B2. Rita en triangel basen 6 cm och höjden 4 cm som är a: spetsvinklig b: rätvinklig c: trubbvinklig d: likbent e: oliksidig Likformighet och symmetri i planet. B3. Två trianglar är likformiga. Den ena triangelns längsta sida är 5 cm och den kortaste är 3 cm. Den andra triangelns längsta sida är 30 cm. Hur lång är den kortaste sidan? B1. Ange ant a: en tres b: en fyrs c: en kon B2. Rita a: en par och m b: ett rä c: en cyl B3. Rita två li symmetr en symm B4. I en triangel är två av vinklarna 50 och 70. Beräkna hur stor är den tredje vinkeln är. B4. Beräkna alla vinklar i en triangel a: som är rätvinklig, där en vinkel är 40 b: som är likbent, där basvinklarna är 40 c: som är likbent, där toppvinkeln är 40 B4. I en rätvi katetern Beräkna
4 E-mål för åk7 Metoder Geometri Använda och analysera begrepp och samband mellan begrepp. Kunskapskrav Betyget E åk7 Betyget C åk7 Du gör beräkningar och löser rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring. Skala vid förminskning och förstoring av två- och tredimens M1. En ritning av ett hus är i skala 1:50. a: Hur långt är ett rum om det är 6 cm långt på ritningen? b: Hur långt är rummet på ritningen om det är 6 m? M1. En fartygsmodell är byggd i skala 1:500. a: Hur lång är modellen om fartygets längd är 40 m? b: Hur brett är fartyget om modellen är 4 cm bred? Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt M2. Beräkna area och omkrets för en M2. Beräkna area och omkrets för a: rektangel sidorna 2 cm och 3 cm en parallellogram höjden 4 cm b: triangel basen 6 cm, och sidorna 5 cm och 8 cm. höjden 8 cm och tredje sidan 10 cm c: cirkel diametern 8 cm M3. Omvandla a: 25 dm till cm b: 2500 m till km liter c: 2,5 dl till ml d: 250 cl till e: 25 hg till kg f: 250 g till hg M3. Omvandla a: 2,5 dm 2 till cm 2 b: 25 dm 2 till mm 2 c: cm 2 till m 2
5 Kunskapskrav Matematik: Förmågor, kunskapskrav och betyg Förmågor Kunskapskrav Betyget E Betyget C Betyget A Problemlösning: Formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder. Eleven kan lösa olika problem i bekanta situationer på ett fungerande sätt genom att välja och använda strategier och metoder anpassning till problemets karaktär samt formulera enkla modeller som kan tillämpas i sammanhanget. Eleven för underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativt tillvägagångssätt. Du löser problem på ett i huvudsak Du väljer metoder viss anpassning till problemet. Du bidrar till att formulera modeller som kan tillämpas. Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du bidrar till att ge något förslag på alternativt tillvägagångssätt. Du löser problem på ett relativt väl Du väljer metoder förhållandevis god anpassning till problemet. Du formulerar modeller som efter någon bearbetning kan tillämpas. Du för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du ger något förslag på alternativt tillvägagångssätt. Du löser problem på ett väl Du väljer metoder god anpassning till problemet. Du formulerar modeller som Du för välutvecklade och vä tillvägagångssätt och svarets rim Du ger olika förslag på altern Begrepp: Använda och analysera begrepp och samband mellan begrepp. Eleven har kunskaper om begrepp och visar det genom att använda dem i sammanhang på ett Eleven kan även beskriva olika begrepp hjälp av uttrycksformer på ett I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra resonemang kring hur begreppen relaterar till varandra. Du har grundläggande kunskaper om begrepp. begreppen i välkända sammanhang på ett i huvudsak Du beskriver olika begrepp på ett i huvudsak fungerande sätt. Du växlar mellan olika uttrycksformer och för enkla resonemang kring hur begreppen relaterar till varandra. Du har goda kunskaper om begrepp. begreppen i bekanta sammanhang på ett relativt väl Du beskriver olika begrepp på ett relativt väl Du växlar mellan olika uttrycksformer och för utvecklade resonemang kring hur begreppen relaterar till varandra. Du har mycket goda kunskap begreppen i nya sammanhang på ett väl Du beskriver olika begrepp på Du växlar mellan olika uttryck kring hur begreppen relaterar Du bidrar till att formulera modeller som kan tillämpas. Du formulerar modeller som efter någon bearbetning kan tillämpas. Du formulerar modeller som
6 Förmågor Kunskapskrav Betyget E Betyget C Betyget A Metoder: Välja och använda lämpliga metoder för att göra beräkningar och lösa rutinuppgifter. i huvudsak fungerande metoder. ändamålsenliga metoder. Eleven kan välja och använda metoder anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring. Du väljer metoder viss anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter tillfredsställande resultat. Du väljer metoder relativt god anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter gott resultat. ändamålsenliga och effektiva mat Du väljer metoder Du gör beräkningar och löser rutinup mycket gott resultat. Resonemang: Föra och följa resonemang. I redovisningar och diskussioner för och följer eleven resonemang genom att framföra och bemöta argument på ett sätt som för resonemangen framåt. Du framför och bemöter argument på ett sätt som till viss del för resonemangen framåt. Du framför och bemöter argument på ett sätt som för resonemangen framåt. Du framför och bemöter matematisk resonemangen framåt och fördjupa Kommunikation: Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Eleven kan redogöra för och samtala om tillvägagångssätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra uttrycksformer anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett i huvudsak olika uttrycksformer viss anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett ändamålsenligt sätt. olika uttrycksformer förhållandevis god anpassning till syfte och sammanhang. Du redogör för och samtalar om tillv och effektivt sätt. olika uttry god anpassning till syfte och samman Förmågor: Problemlösning (P) Vad? Beskriva och lösa problem. Hitta och värdera olika lösningar. Välja lösning och motivera valet. Hur? Problemlösning hjälp av en mall. Begrepp (B) Vad? Känna till, beskriva och använda matteord. Använda olika sätt att förklara hur matteorden hänger ihop. Hur? Arbete mål och göra tester i egen takt. Återkoppling på efter varje test. Lära av varandra. Beskriva hur begreppen hänger ihop. Vad? Känna till, använda och välja olika sätt att göra beräkningar på. Hur? Arbete kunskapskrav och göra tester i egen takt. Återkoppling på lapp efter varje test. Lära av varandra.
7 Resonemang (R) Vad? Framföra och bemöta argument så att man kommer vidare i diskussioner. Hur? Del av problemlösning (mallen). När man förklarar begrepp och metoder för andra. Kommunikation (K) Vad? Berätta om och diskutera olika sätt att göra beräkningar på och lösa problem på. Använda och välja olika sätt att göra detta på. Hur? Del av problemlösning (mallen). Redovisning av problemlösning i tvärgrupper. Frågar om eller förklarar begrepp och metoder för andra.
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Syfte med undervisningen är att du ska få utveckla din förmåga att...
Planering, kapitel 1 Statistik samt sannolikhet. Syfte med undervisningen är att du ska få utveckla din förmåga att... formulera och lösa problem med hjälp av matematik samt värdera valda strategier och
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Ma Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
9A Ma: Statistik och Sannolikhetslära
9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Ma7-Åsa: Statistik och Sannolikhetslära
Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
8E Ma: Aritmetik och bråkbegreppet
8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och
8F Ma: Aritmetik och bråkbegreppet
8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
9F Ma: Aritmetik och bråkbegreppet
9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
8D Ma:bråk och procent VT 2018
8D Ma:bråk och procent VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp
8C Ma: Bråk och Procent
8C Ma: Bråk och Procent Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och
Extramaterial till Matematik Y
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TT Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Extramaterial till Matematik X
LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
_ kraven i matematik åk k 6
Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Planering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Extramaterial till Matematik Y
LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TVÅ Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.
Geometri år 7C och 7D vt-14
Gemetri år 7C ch 7D vt-14 Förankring i kursplanens syfte I matematik tränas elevernas förmåga att: frmulera ch lösa prblem med hjälp av matematik samt värdera valda strategier ch metder använda ch analysera
Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:
PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Såhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar
ALGEBRA & EKVATION PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 VT 2013 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
"Procent och sannolikhet 6D"
"Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att:
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Matematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Planering Matematik åk 8 Samband, vecka
Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant?
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant? P har större omkrets än Q. P har mindre omkrets än Q. P har mindre area än Q Q och P har
Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F
På jakt efter förmågor i undervisningen Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F Aktivitetens namn: Triangelmatte Syfte Undervisningen ska
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
MATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Matematik - Åk 8 Geometri
Matematik - Åk 8 Geometri Centralt innehåll Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. Geometriska satser och formler och behovet av
Planering Geometri år 7
Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Extramaterial till Matematik X
LIBER PROGRMMERING OCH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Programmering LÄRRE I den här uppgiften får du och dina elever en introduktion till programmering. Uppgiften vänder sig först
Algebra och Ekvationer År 7
Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder
Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.
1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd
A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.
Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på