Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP

Save this PDF as:

Storlek: px
Starta visningen från sidan:

Download "Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP"

Transkript

1 Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband mellan begrepp, - välja och använda lämpliga metoder för att göra beräkningar och lösa rutinuppgifter, - föra och följa resonemang, och - använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Centralt innehåll i undervisningen: - Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. - Avbildning och konstruktion av geometriska objekt. Skala vid förminskning och förstoring av två och tredimensionella objekt. - Likformighet och symmetri i planet. - Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband detta. - Geometriska satser och formler och behovet av argumentation för deras giltighet. - Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. I undervisningen ska vi: Ha genomgångar. Arbeta öppna uppgifter som löses individuellt och följs av gruppdiskussion. Arbeta uppgifter i boken. Göra laborationer och praktiska uppgifter. Göra läxor och inlämningsuppgifter. Använda oss av hjälpel såsom t ex formelblad och miniräknare. Källor Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP Hur visar du vad du lärt dig och hur bedöms detta: Genom diagnoser, tester och prov. (Muntligt/skriftligt) Deltar aktivt i undervisningen och genomför praktiska och teoretiska uppgifter. Deltar aktivt i diskussioner och tar del av hur andra tänker. Vi använder en matris vid bedömningen av dina kunskaper Utifrån resultaten av diagnosen blir det individuell fördjupning

2 PLANERING Geometri 7G,H och D Måndag Onsdag Torsdag Fredag 5.1 Algebraiska uttryck 3.1 Enheter och prefix v. 2 Repetition Mål, planering 3.1 Enheter och prefix v Geometriska begrepp 3.2 Geometriska begrepp 3.3 Vinklar 3.3 Vinklar v. 4 Samtalsdag 3.4 Månghörningar och vinkelsumma 3.4 Månghörningar och vinkelsumma 3.5 Omkrets v Omkrets Samtalsdag 3.6 Introduktion av area 3.7 Area av rektanglar och parallellogram v Area av rektanglar och parallellogram 3.8 Area av trianglar Repetition E-mål E-test v. 7 Basläger/hög höjd Basläger/hög höjd Problemlösning E-C-A prov v. 8 Problemlösning Problemlösning Utvärdering jullov LÄXA: HÄNG MED I PLANERINGEN Häng i planeringen och gå på studiestöd tisdagar klockan 14:40-15:30 (det finns en frukt och en dricka till dig som går dit och jobbar) om du behöver mer hjälp. Tycker du fortfarande att du kör fast hela tiden och känner att du vill ge upp så prata mig så skall vi ordna ett upplägg som passar dig. Om du vill så börjar du nivå 1 och jobbar sedan vidare nivå 2. Jobba på uppgifterna. Se till att du kan grunderna väl. Lägg mest tid på de svåraste uppgifterna. Jobba snabbare än planeringen om du vill. Säg till mig så får du mer utmaningar. Försök att lösa uppgifterna, fråga om du ser att de är svåra..

3 E-mål för åk7 Begrepp Geometri Använda och analysera begrepp och samband mellan begrepp. unskapskrav Betyget E åk7 Betyget C åk7 u har kunskaper Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos de m B1. Ange antalet ytor, kanter och hörn på B1. Ange antalet ytor, kanter och hörn på egrepp a: en kub b: ett rätblock a: en cylinder b: ett klot u använder atematiska egrepp i ammanhang på ett ungerande sätt. B2. Rita en a: rektangel sidorna 2 cm och 3 cm b: kvadrat sidan 5 cm c: triangel basen 6 cm och höjden 4 cm d: cirkel diametern 8 cm B3. Rita två olika stora trianglar som är likformiga. Avbildning och konstruktion av geometriska objekt. B2. Rita en triangel basen 6 cm och höjden 4 cm som är a: spetsvinklig b: rätvinklig c: trubbvinklig d: likbent e: oliksidig Likformighet och symmetri i planet. B3. Två trianglar är likformiga. Den ena triangelns längsta sida är 5 cm och den kortaste är 3 cm. Den andra triangelns längsta sida är 30 cm. Hur lång är den kortaste sidan? B1. Ange ant a: en tres b: en fyrs c: en kon B2. Rita a: en par och m b: ett rä c: en cyl B3. Rita två li symmetr en symm B4. I en triangel är två av vinklarna 50 och 70. Beräkna hur stor är den tredje vinkeln är. B4. Beräkna alla vinklar i en triangel a: som är rätvinklig, där en vinkel är 40 b: som är likbent, där basvinklarna är 40 c: som är likbent, där toppvinkeln är 40 B4. I en rätvi katetern Beräkna

4 E-mål för åk7 Metoder Geometri Använda och analysera begrepp och samband mellan begrepp. Kunskapskrav Betyget E åk7 Betyget C åk7 Du gör beräkningar och löser rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring. Skala vid förminskning och förstoring av två- och tredimens M1. En ritning av ett hus är i skala 1:50. a: Hur långt är ett rum om det är 6 cm långt på ritningen? b: Hur långt är rummet på ritningen om det är 6 m? M1. En fartygsmodell är byggd i skala 1:500. a: Hur lång är modellen om fartygets längd är 40 m? b: Hur brett är fartyget om modellen är 4 cm bred? Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt M2. Beräkna area och omkrets för en M2. Beräkna area och omkrets för a: rektangel sidorna 2 cm och 3 cm en parallellogram höjden 4 cm b: triangel basen 6 cm, och sidorna 5 cm och 8 cm. höjden 8 cm och tredje sidan 10 cm c: cirkel diametern 8 cm M3. Omvandla a: 25 dm till cm b: 2500 m till km liter c: 2,5 dl till ml d: 250 cl till e: 25 hg till kg f: 250 g till hg M3. Omvandla a: 2,5 dm 2 till cm 2 b: 25 dm 2 till mm 2 c: cm 2 till m 2

5 Kunskapskrav Matematik: Förmågor, kunskapskrav och betyg Förmågor Kunskapskrav Betyget E Betyget C Betyget A Problemlösning: Formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder. Eleven kan lösa olika problem i bekanta situationer på ett fungerande sätt genom att välja och använda strategier och metoder anpassning till problemets karaktär samt formulera enkla modeller som kan tillämpas i sammanhanget. Eleven för underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativt tillvägagångssätt. Du löser problem på ett i huvudsak Du väljer metoder viss anpassning till problemet. Du bidrar till att formulera modeller som kan tillämpas. Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du bidrar till att ge något förslag på alternativt tillvägagångssätt. Du löser problem på ett relativt väl Du väljer metoder förhållandevis god anpassning till problemet. Du formulerar modeller som efter någon bearbetning kan tillämpas. Du för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och svarets rimlighet. Du ger något förslag på alternativt tillvägagångssätt. Du löser problem på ett väl Du väljer metoder god anpassning till problemet. Du formulerar modeller som Du för välutvecklade och vä tillvägagångssätt och svarets rim Du ger olika förslag på altern Begrepp: Använda och analysera begrepp och samband mellan begrepp. Eleven har kunskaper om begrepp och visar det genom att använda dem i sammanhang på ett Eleven kan även beskriva olika begrepp hjälp av uttrycksformer på ett I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra resonemang kring hur begreppen relaterar till varandra. Du har grundläggande kunskaper om begrepp. begreppen i välkända sammanhang på ett i huvudsak Du beskriver olika begrepp på ett i huvudsak fungerande sätt. Du växlar mellan olika uttrycksformer och för enkla resonemang kring hur begreppen relaterar till varandra. Du har goda kunskaper om begrepp. begreppen i bekanta sammanhang på ett relativt väl Du beskriver olika begrepp på ett relativt väl Du växlar mellan olika uttrycksformer och för utvecklade resonemang kring hur begreppen relaterar till varandra. Du har mycket goda kunskap begreppen i nya sammanhang på ett väl Du beskriver olika begrepp på Du växlar mellan olika uttryck kring hur begreppen relaterar Du bidrar till att formulera modeller som kan tillämpas. Du formulerar modeller som efter någon bearbetning kan tillämpas. Du formulerar modeller som

6 Förmågor Kunskapskrav Betyget E Betyget C Betyget A Metoder: Välja och använda lämpliga metoder för att göra beräkningar och lösa rutinuppgifter. i huvudsak fungerande metoder. ändamålsenliga metoder. Eleven kan välja och använda metoder anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring. Du väljer metoder viss anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter tillfredsställande resultat. Du väljer metoder relativt god anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter gott resultat. ändamålsenliga och effektiva mat Du väljer metoder Du gör beräkningar och löser rutinup mycket gott resultat. Resonemang: Föra och följa resonemang. I redovisningar och diskussioner för och följer eleven resonemang genom att framföra och bemöta argument på ett sätt som för resonemangen framåt. Du framför och bemöter argument på ett sätt som till viss del för resonemangen framåt. Du framför och bemöter argument på ett sätt som för resonemangen framåt. Du framför och bemöter matematisk resonemangen framåt och fördjupa Kommunikation: Använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Eleven kan redogöra för och samtala om tillvägagångssätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra uttrycksformer anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett i huvudsak olika uttrycksformer viss anpassning till syfte och sammanhang. Du redogör för och samtalar om tillvägagångssätt på ett ändamålsenligt sätt. olika uttrycksformer förhållandevis god anpassning till syfte och sammanhang. Du redogör för och samtalar om tillv och effektivt sätt. olika uttry god anpassning till syfte och samman Förmågor: Problemlösning (P) Vad? Beskriva och lösa problem. Hitta och värdera olika lösningar. Välja lösning och motivera valet. Hur? Problemlösning hjälp av en mall. Begrepp (B) Vad? Känna till, beskriva och använda matteord. Använda olika sätt att förklara hur matteorden hänger ihop. Hur? Arbete mål och göra tester i egen takt. Återkoppling på efter varje test. Lära av varandra. Beskriva hur begreppen hänger ihop. Vad? Känna till, använda och välja olika sätt att göra beräkningar på. Hur? Arbete kunskapskrav och göra tester i egen takt. Återkoppling på lapp efter varje test. Lära av varandra.

7 Resonemang (R) Vad? Framföra och bemöta argument så att man kommer vidare i diskussioner. Hur? Del av problemlösning (mallen). När man förklarar begrepp och metoder för andra. Kommunikation (K) Vad? Berätta om och diskutera olika sätt att göra beräkningar på och lösa problem på. Använda och välja olika sätt att göra detta på. Hur? Del av problemlösning (mallen). Redovisning av problemlösning i tvärgrupper. Frågar om eller förklarar begrepp och metoder för andra.

Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP

Matematikbokens Prio kapitel Kap 3,.,Digilär,     NOMP Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp

Läs mer

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri. Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda

Läs mer

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri. 8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri. 9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier

Läs mer

9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:

9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: 9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera

Läs mer

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband. Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Ma7-Åsa: Procent och bråk

Ma7-Åsa: Procent och bråk Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

8B Ma: Procent och bråk

8B Ma: Procent och bråk 8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt

Läs mer

Syfte med undervisningen är att du ska få utveckla din förmåga att...

Syfte med undervisningen är att du ska få utveckla din förmåga att... Planering, kapitel 1 Statistik samt sannolikhet. Syfte med undervisningen är att du ska få utveckla din förmåga att... formulera och lösa problem med hjälp av matematik samt värdera valda strategier och

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Ma Åk7-Conor: Aritmetik och bråkbegreppet

Ma Åk7-Conor: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera

Läs mer

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

9A Ma: Statistik och Sannolikhetslära

9A Ma: Statistik och Sannolikhetslära 9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

8F Ma Planering v45-51: Algebra

8F Ma Planering v45-51: Algebra 8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

Ma7-Åsa: Statistik och Sannolikhetslära

Ma7-Åsa: Statistik och Sannolikhetslära Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

Arbetsområde: Jag får spel

Arbetsområde: Jag får spel Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för

Läs mer

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri

Läs mer

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

8G Ma: Bråk och Procent/Samband

8G Ma: Bråk och Procent/Samband 8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera

Läs mer

8E Ma: Aritmetik och bråkbegreppet

8E Ma: Aritmetik och bråkbegreppet 8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och

Läs mer

8F Ma: Aritmetik och bråkbegreppet

8F Ma: Aritmetik och bråkbegreppet 8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri

Läs mer

Matematikplanering 3 geometri HT-12 VT-13 7 a KON

Matematikplanering 3 geometri HT-12 VT-13 7 a KON Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några

Läs mer

9F Ma: Aritmetik och bråkbegreppet

9F Ma: Aritmetik och bråkbegreppet 9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri

Läs mer

8G Ma: Bråk och Procent/Samband

8G Ma: Bråk och Procent/Samband 8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

8D Ma:bråk och procent VT 2018

8D Ma:bråk och procent VT 2018 8D Ma:bråk och procent VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp

Läs mer

8C Ma: Bråk och Procent

8C Ma: Bråk och Procent 8C Ma: Bråk och Procent Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och

Läs mer

Extramaterial till Matematik Y

Extramaterial till Matematik Y LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TT Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:

9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att: 9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

Extramaterial till Matematik X

Extramaterial till Matematik X LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Förslag den 25 september Matematik

Förslag den 25 september Matematik Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

"Läsårs-LPP med kunskapskraven för matematik"

Läsårs-LPP med kunskapskraven för matematik "Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor

Läs mer

Planering - Geometri i vardagen v.3-7

Planering - Geometri i vardagen v.3-7 Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.

Läs mer

7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:

7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att: Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,

Läs mer

_ kraven i matematik åk k 6

_ kraven i matematik åk k 6 Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7

Läs mer

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar. Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Planering Matematik åk 8 Algebra, vecka Centralt innehåll

Planering Matematik åk 8 Algebra, vecka Centralt innehåll Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

Extramaterial till Matematik Y

Extramaterial till Matematik Y LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TVÅ Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.

Läs mer

Geometri år 7C och 7D vt-14

Geometri år 7C och 7D vt-14 Gemetri år 7C ch 7D vt-14 Förankring i kursplanens syfte I matematik tränas elevernas förmåga att: frmulera ch lösa prblem med hjälp av matematik samt värdera valda strategier ch metder använda ch analysera

Läs mer

Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:

Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Såhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar

Såhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar ALGEBRA & EKVATION PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 VT 2013 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

"Procent och sannolikhet 6D"

Procent och sannolikhet 6D "Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,

Läs mer

7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att:

7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att: 7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier

Läs mer

Matematik - Åk 9 Funktioner och algebra Centralt innehåll

Matematik - Åk 9 Funktioner och algebra Centralt innehåll Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Planering Matematik åk 8 Samband, vecka

Planering Matematik åk 8 Samband, vecka Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med

Läs mer

En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant?

En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant? En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant? P har större omkrets än Q. P har mindre omkrets än Q. P har mindre area än Q Q och P har

Läs mer

Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F

Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F På jakt efter förmågor i undervisningen Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F Aktivitetens namn: Triangelmatte Syfte Undervisningen ska

Läs mer

Pedagogiskt café. Problemlösning

Pedagogiskt café. Problemlösning Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta

Läs mer

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. 1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Matematik - Åk 8 Geometri

Matematik - Åk 8 Geometri Matematik - Åk 8 Geometri Centralt innehåll Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. Geometriska satser och formler och behovet av

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer

Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:

Läs mer

Studenter i lärarprogrammet Ma 4-6 I

Studenter i lärarprogrammet Ma 4-6 I Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Extramaterial till Matematik X

Extramaterial till Matematik X LIBER PROGRMMERING OCH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Programmering LÄRRE I den här uppgiften får du och dina elever en introduktion till programmering. Uppgiften vänder sig först

Läs mer

Algebra och Ekvationer År 7

Algebra och Ekvationer År 7 Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.

A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren. Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer