9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:
|
|
- Rasmus Forsberg
- för 6 år sedan
- Visningar:
Transkript
1 9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband mellan begrepp, välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, föra och följa matematiska resonemang, och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Centralt innehåll i undervisningen:
2 o o o Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. Källor: Matte Direkt 9, kapitel, Procent samt Genrepet, Styva linan Skolverket.se gamla NP Digitala hjälpmedel: Digilär, Nomp, webbmatte.se mm PLAN FÖR FRAMGÅNG I MATTEN: Följ din planering, räkna hemma minst 10 minuter/dag eller på studiestödet. Kontrollera vad du ska kunna efter varje kapitel Om du är osäker på något, fråga! Förståelse är viktigt och att räkna mycket ger säkerhet! Det jag hör, glömmer jag. Det jag ser, kommer jag ihåg. Det jag gör, förstår jag.
3 9D Måndag 70 Tisdag 50 Onsdag 50 Torsdag Fredag LÄXA 10 Repetition Procent GENOMGÅNG S Repetition Procent GENOMGÅNG S Läxförhör: se läxa Redovisning: Förpackning Till onsdag: E: sid , 116, (sid ) Arbete med ECA målen samt boken Arbete med ECA målen/boken 11 Repetition Bråk GENOMGÅNG S Repetition Bråk GENOMGÅNG S Läxförhör: se Läxa Redovisning: Förpackning Till onsdag: , ECA målen: B1, B2, M1 Arbete med ECA målen samt boken Arbete med ECA målen/boken 12 Bråk och Procent från NP Bråk och Procent från NP Bråk och Procent från NP Problemuppgift procent, följa mallen 1 Ränta Ränta PROV PROCENT Hemarbete: Genrepet sid Påsklov Påsklov Påsklov Påsklov Påsklov Påsklov 15 Repetition inför NP matte Repetition inför NP matte NP NO Hemarbete: Genrepet sid (Styva linan sid ) 16 Repetition inför NP matte Repetition inför NP matte NP SO Hemarbete: Genrepet sid (Styva linan sid ) 17 Repetition inför NP matte Repetition inför NP matte Repetition inför NP matte Hemarbete: Genrepet sid (Styva linan sid ) 18 Repetition inför NP matte LOV Repetition inför NP matte Hemarbete: Genrepet sid (Styva linan sid ) 19 NP MA BC NP MA D LOV LOV 20 STUDIEDAG IDROTTSDAG Sista chansen komplettering 21 Sista chansen komplettering Sista chansen komplettering Sista chansen komplettering 22 Sista veckan att sätta betyg 2 SLUT
4 Matematik: Förmågor, kunskapskrav och betyg i slutet av årskurs 9:
5 Förmågor Betyget E Betyget C Betyget A Problemlösning: Formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. Du löser problem på ett i huvudsak fungerande sätt. Du väljer metoder med viss anpassning till problemet. Du löser problem på ett relativt väl fungerande sätt. Du väljer metoder med förhållandevis god anpassning till problemet. Du löser problem på ett väl fungerande sätt. Du väljer metoder med god anpassning till problemet. Du bidrar till att formulera modeller som kan Du formulerar modeller som efter någon Du formulerar modeller som kan tillämpas. tillämpas. bearbetning kan tillämpas. Du för enkla och till viss del underbyggda Du för utvecklade och relativt väl Du för välutvecklade och väl underbyggda resonemang resonemang om val av tillvägagångssätt och svarets underbyggda resonemang om val av om val av tillvägagångssätt och svarets rimlighet. rimlighet. tillvägagångssätt och svarets rimlighet. Du bidrar till att ge något förslag på alternativt Du ger något förslag på alternativt Du ger olika förslag på alternativa tillvägagångssätt. tillvägagångssätt. tillvägagångssätt. Begrepp: Använda och analysera matematiska begrepp och samband mellan begrepp. Du har grundläggande kunskaper om matematiska begrepp. Du använder begreppen i välkända sammanhang Du har goda kunskaper om matematiska begrepp. Du använder begreppen i bekanta Du har mycket goda kunskaper om matematiska begrepp. Du använder begreppen i nya sammanhang på på ett i huvudsak fungerande sätt. sammanhang på ett relativt väl fungerande ett väl fungerande sätt. sätt. Du beskriver olika begrepp på ett i huvudsak Du beskriver olika begrepp på ett relativt Du beskriver olika begrepp på ett väl fungerande sätt. fungerande sätt. väl fungerande sätt. Du växlar mellan olika uttrycksformer och för Du växlar mellan olika uttrycksformer och Du växlar mellan olika uttrycksformer och för enkla resonemang kring hur begreppen relaterar till för utvecklade resonemang kring hur välutvecklade resonemang kring hur begreppen relaterar varandra. begreppen relaterar till varandra. till varandra. Metoder: Välja och använda lämpliga matematiska metoder för att Du använder i huvudsak fungerande matematiska metoder. Du använder ändamålsenliga matematiska metoder. Du använder ändamålsenliga och effektiva matematiska metoder.
6 göra beräkningar och lösa rutinuppgifter. Du väljer matematiska metoder med viss anpassning till sammanhanget. Du väljer matematiska metoder med relativt god anpassning till sammanhanget. Du väljer matematiska metoder med god anpassning till sammanhanget. Du gör beräkningar och löser rutinuppgifter med Du gör beräkningar och löser rutinuppgifter Du gör beräkningar och löser rutinuppgifter med mycket tillfredsställande resultat. med gott resultat. gott resultat. Arbetssätt: Lärargenomgångar, Praktisk matematik diskussioner, arbete med uppgifter i boken/på lösblad samt med läxor Bedömning: Bedömning: All bedömning sker med utgångspunkt från kursplanen i matematik i Lgr 11. Skolan kommer att titta och lyssna på dina förmågor att: förstå och hitta lösningar på matematiska problem din förmåga att välja lämplig lösningsmetod din förmåga att både muntligt och skriftligt redovisa dina tankar och slutsatser din förmåga att bedöma dina lösningars rimlighet
7 Utvärdering: Utvärdering: Skolan utvärderar dina kunskaper kontinuerligt till exempel genom: Läxförhör Test på E-C-A Deltagande i matematiska diskussioner och samtal Skriftliga beräkningar i matteboken och på arbetsblad Inlämningsuppgift Problemlösning Prov Hur du praktiskt beräknar uppgifter samt löser problem inom området geometri Matrisen nedan visar vad man minst behöver kunna för betyget E, C och A i förmågorna Begrepp och Metoder:
8 Mål för åk9 Metoder Bråk och procent Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Betyget E åk9 Betyget C åk9 Betyget A åk9 Du gör beräkningar och löser rutinuppgifter inom Centrala metoder för beräkningar med tal i bråkform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring. M1. Svara i enklaste bråkform och sedan, om det går, i blandad form. M1. Svara i enklaste bråkform och sedan, om det går, i blandad form. M1. Svara i enklaste bråkform och sedan, om det går, i blandad form a: b: / 5 a: b: 7-2 Mål för åk9 Begrepp Bråk och procent Använda och analysera matematiska begrepp och samband mellan begrepp a: 5 b: 7 / Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. M2. 15 % av ett pris är 00 kr. Vad är hela priset? M. Hur stor är en höjning från 15 % till 18 % a: i procentenheter? b: i procent? 6 2 M2. En vara kostar 00 kr. Bestäm det nya priset med hjälp av förändringsfaktorn om priset a: höjs med 20 % b: sänks med 0 % M. a: Hur mycket är av kr? b: Hur mycket är 20 ppm av,5 kg? M2. En vara kostar 690 kr efter en prishöjning med 15 %. Hur mycket kostade varan från början? M. a: Hur många promille är 0, av 20? b: Hur många ppm är mm av 2000 m? Kunskapskrav Betyget E åk9 Betyget C åk9 Betyget A åk9 Du har kunskaper om matematiska begrepp Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. B1. Vilka bråk motsvarar B1. Vilket bråk i enklaste form B1. Vilket bråk i enklaste form
9 a: c:a % b: c:a 67 % motsvarar 7,5 % motsvarar 62,5 Du använder matematiska begrepp i sammanhang på ett fungerande sätt. B2. a: Skriv 12 i decimalform. b: Skriv 0,02 i promilleform. B2. a: Skriv 50 ppm i decimalform. b:skriv 0,00002 i ppm-form. B2. Skriv 625 ppm i promilleform. E-mål för Begrepp Bråk och procent Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Åk7 Åk8 Åk9 Du har kunskaper om matematiska begrepp Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. B1. Rita en figur som visar B1. Vilka bråk i enklaste form motsvarar B1. Vilka bråk motsvarar a: 50 % b: 25 % c: 20 % d: a: 0 % b: 60 % a: c:a % b: c:a 67 % 5% Du använder matematiska begrepp i sammanhang på ett fungerande sätt. B2. a: Skriv % i decimalform. b: Skriv 0,76 i procentform. c: Skriv 2 % i decimalform. d: Skriv 0, i procentform. B2. a: Skriv 67,8 % i decimalform. b: Skriv 0,009 i procentform. c: Skriv 125 % i decimalform. d: Skriv 1, i procentform. B2. a: Skriv 12 i decimalform. b: Skriv 0,02 i promilleform. E-mål för Metoder Bråk och procent Använda och analysera matematiska begrepp och samband mellan begrepp. Kunskapskrav Åk7 Åk8 Åk9 Du gör beräkningar och löser rutinuppgifter inom Centrala metoder för beräkningar med tal i bråkform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer. aritmetik, algebra, geometri, M1. Svara i blandad form om det går. M1. Svara i enklaste bråkform och M1. Svara i enklaste bråkform och sannolikhet, statistik samt 2 2 a: + b: - sedan sedan samband och förändring. om det går i blandad form. om det går i blandad form.
10 2 2 5 c: Vad är av 6? a: + b: - 2 c: d: / a: b: / Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. M2. Hur mycket är 15 % av 00 kr? M2. En vara kostar 00 kr. Priset höjs med 15 %? Vad blir det nya priset? M2. 15 % av ett pris är 00 kr. Vad är hela priset? M. Hur många procent är 15 kr av 00 kr? 5 M. En vara kostar 00 kr. Priset sänks till 285 kr? Vad blir förändringen i procent? 6 M. Hur stor är en höjning från 15 % till 18 % a: i procentenheter? b: i procent? 6 2
11
12
13
8C Ma: Bråk och Procent
8C Ma: Bråk och Procent Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och
8D Ma:bråk och procent VT 2018
8D Ma:bråk och procent VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att:
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier
8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
9F Ma: Aritmetik och bråkbegreppet
9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
8F Ma: Aritmetik och bråkbegreppet
8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Ma Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
8E Ma: Aritmetik och bråkbegreppet
8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Ma7-Åsa: Statistik och Sannolikhetslära
Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Syfte med undervisningen är att du ska få utveckla din förmåga att...
Planering, kapitel 1 Statistik samt sannolikhet. Syfte med undervisningen är att du ska få utveckla din förmåga att... formulera och lösa problem med hjälp av matematik samt värdera valda strategier och
Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
9A Ma: Statistik och Sannolikhetslära
9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
"Procent och sannolikhet 6D"
"Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
TALSYSTEMET. Syfte Lgr 11
TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Såhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar
ALGEBRA & EKVATION PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 VT 2013 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
Planering Matematik åk 8 Samband, vecka
Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med
Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:
PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt
_ kraven i matematik åk k 6
Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Planering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Algebra och Ekvationer År 7
Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom
Lokal pedagogisk planering för årskurs 7 i ämnet Matematik
Annerstaskolan Lokal pedagogisk planering för årskurs 7 i ämnet Matematik Centralt innehåll Lärområde Tid Delområde Undervisning/ arbetssätt Taluppfattning och tals Tal Vecka Förstå hur vårt Genomgång
Lgr 11 Nya kursplaner Nytt betygssystem
Lgr 11 Nya kursplaner Nytt betygssystem Nya betygsskalan A-F samt - F= ej klarat kunskapskraven för lägsta nivå E - = det finns ej underlag för en bedömning. Det livslånga lärandet. Samma förmågor hela
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Matematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Extramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TT Sannolikhet LÄRAR Nu ska du och dina elever få bekanta er med Google Kalkylark. I den här uppgiften får eleverna öva sig i att
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant
Matematik - Måldokument MATEMATIK ÅK 9 TAL Talet nio anses i många kulturer vara ett mystiskt och ibland också ett heligt tal. Innan kristendomen infördes i Norden ansågs talet 9 vara det mest heliga talet.
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola
Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Gäller för första delen av VT15 Syfte Du ska genom undervisningen ges förutsättningar att utveckla din förmåga att:
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson
Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Extramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TT Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna
Observationsschema Problemlösningsförmåga
Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE: TAL 9A, 9C LÄRARE: Jeff Linder Att använda och räkna med olika typer av tal har du användning av i matematikens alla områden och även i vardagen. Därför är detta
Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del
prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 46-51 HT 2015
Matematik Arbetslag: Gamma Klass: 8 S Veckor: 46-51 HT 2015 Samband och förändring Att kunna förstå och använda modeller för samband och förändring är viktigt för att ta del av och förstå tillexempel ekonomi
där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder innehåller alla
Matematikplanering åk 7 Läsår 16/17 Hösttermin Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad,
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Extramaterial till Matematik X
LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna
Extramaterial till Matematik X
LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TVÅ Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna
Extramaterial till Matematik X
LIBER PROGRAMMERING OH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ TVÅ Statistik LÄRARE I den här uppgiften kommer dina elever att använda sig av kalkylprogrammet Google Kalkylark. Deras uppgift