Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
|
|
- Per-Erik Persson
- för 9 år sedan
- Visningar:
Transkript
1 Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder I Favorit matematik får eleven möta problemlösningens många delar. Eleven får arbeta med matematiska begrepp, metoder och uttrycksformer. Likaså ges många tillfällen att resonera matematiskt. uppgifter där eleven övar problem lösning för att bli förtrogen med problemlösningens alla delar till exempel finns uppgifter där eleven utvecklar sin förmåga att kunna beskriva och formulera vardagliga situationer med hjälp av matematikens uttrycksformer. välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, I Favorit matematik övar sig eleven att behärska matematiska metoder. Det gäller såväl huvudräkning och skriftliga beräkningar som beräkningar med miniräknare. Det finns inga genvägar; vill du behärska en metod väl måste du öva. föra och följa matematiska resonemang och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. (Lgr 11) På det här sättet utvecklar Favorit matematik elevens matematiska förmågor. använda och analysera matematiska begrepp och samband mellan begrepp Favorit matematik ger eleven rika erfarenheter av begrepp utifrån olika situationer och sammanhang. Eleven får använda olika uttrycksformer, konkret material, bilder och symboler. Den viktiga förståelsen om relationer och samband mellan olika begrepp exempelvis addition/subtraktion och addition/multiplikation övas systematiskt från årskurs 1. I Favorit matematik finns många uppgifter där eleven får kommunicera matematik. En återkommande övning är huvudräkningsuppgifter i samband med varje lektions introduktionsbild och ramberättelse. Dessa uppgifter ger eleven möjlighet att kommunicera, lyssna till och ta del av andras beskrivningar, förklaringar och argument. aktivitetssidor som vi kallar favoritsidor. Eleven får möjlighet att föra matematiska resonemang och resonera sig fram till olika lösningar, såväl muntliga som skriftliga och med hjälp av olika uttrycksformer. I lärarhandledningen finns en stor mängd olika aktiviteter där eleven får lösa problem, argumentera för sin egen lösning, följa kamraternas resonemang och pröva andras lösningar på problemet. 2 Matris FÖRMÅGOR CENTRALT INNEHÅLL centralt innehåll Det centrala innehåll från Lgr 11 som alla elever ska ha arbetat med under åk 1 3 är indelat i fem områden, taluppfattning och tals användning, algebra, geometri, sannolikhet och statistik, samband och förändring samt problemlösning. Varje område har en egen rubrik. (Lgr 11) På det här sättet möter eleverna det centrala innehållet i Favorit matematik 2A. TaLuppFaTTninG Och TaLs användning Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange tal och ordning. Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien. Del av helhet och del av antal. Hur delarna kan benämnas och uttryckas som enkla bråk samt hur enkla bråk förhåller sig till naturliga tal. Naturliga tal Markera tal på tallinjen < och > talområde Räkneramsan framåt och bakåt hopp; 10, 20, , 90, 80 75, 65, 55 Positionssystemet, tvåsiffriga tal Romerska talsystemet Hälften av helhet 1/3, 1/4, 1/5, 1/6, 1/8 av helhet kunskaper om matematiska begrepp och visar det genom att använda dem i vanligt förekommande sammanhang på ett i huvudsak fungerande sätt. Eleven kan beskriva begreppens egenskaper med hjälp av symboler och konkret material eller bilder. Eleven kan även ge exempel på hur några begrepp relaterar till varandra. kunskaper om naturliga tal och kan visa det genom att beskriva tals inbördes relation samt genom att dela upp tal. Eleven visar grundläggande kunskaper om tal i bråkform genom att dela upp helheter i olika antal delar samt jämföra och namnge delarna som enkla bråk. Kunskapskraven visar den lägsta nivån som eleven ska klara för att vara godkänd i matematik i åk 3. (Lgr 11) Naturliga tal och enkla tal i bråkform och deras användning i vardagliga situationer. Textuppgifter Pengar Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med viss anpassning till problemets karaktär. Matris CENTRALT INNEHÅLL (s. 1 av 5) 3 1
2 FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, I Favorit matematik får eleven möta problemlösningens många delar. Eleven får arbeta med matematiska begrepp, metoder och uttrycksformer. Likaså ges många tillfällen att resonera matematiskt. uppgifter där eleven övar problem lösning för att bli förtrogen med problemlösningens alla delar till exempel finns uppgifter där eleven utvecklar sin förmåga att kunna beskriva och formulera vardagliga situationer med hjälp av matematikens uttrycksformer. I Favorit matematik övar sig eleven att behärska matematiska metoder. Det gäller såväl huvudräkning och skriftliga beräkningar som beräkningar med miniräknare. Det finns inga genvägar; vill du behärska en metod väl måste du öva. föra och följa matematiska resonemang och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser använda och analysera matematiska begrepp och samband mellan begrepp Favorit matematik ger eleven rika erfarenheter av begrepp utifrån olika situationer och sammanhang. Eleven får använda olika uttrycksformer, konkret material, bilder och symboler. Den viktiga förståelsen om relationer och samband mellan olika begrepp exempelvis addition/subtraktion och addition/multiplikation övas systematiskt från årskurs 1. I Favorit matematik finns många uppgifter där eleven får kommunicera matematik. En återkommande övning är huvudräkningsuppgifter i samband med varje lektions introduktionsbild och ramberättelse. Dessa uppgifter ger eleven möjlighet att kommunicera, lyssna till och ta del av andras beskrivningar, förklaringar och argument. aktivitetssidor som vi kallar favoritsidor. Eleven får möjlighet att föra matematiska resonemang och resonera sig fram till olika lösningar, såväl muntliga som skriftliga och med hjälp av olika uttrycksformer. I lärarhandledningen finns en stor mängd olika aktiviteter där eleven får lösa problem, argumentera för sin egen lösning, följa kamraternas resonemang och pröva andras lösningar på problemet. 2 Matris FÖRMÅGOR
3 Taluppfattning och tals användning Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange tal och ordning. Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien. Naturliga tal Markera tal på tallinjen < och > talområde Räkneramsan framåt och bakåt hopp; 10, 20, , 90, 80 75, 65, 55 Positionssystemet, tvåsiffriga tal Romerska talsystemet kunskaper om matematiska begrepp och visar det genom att använda dem i vanligt förekommande sammanhang på ett i huvudsak fungerande sätt. Eleven kan beskriva begreppens egenskaper med hjälp av symboler och konkret material eller bilder. Eleven kan även ge exempel på hur några begrepp relaterar till varandra. kunskaper om naturliga tal och kan visa det genom att beskriva tals inbördes relation samt genom att dela upp tal. Del av helhet och del av antal. Hur delarna kan benämnas och uttryckas som enkla bråk samt hur enkla bråk förhåller sig till naturliga tal. Hälften av helhet 1/3, 1/4, 1/5, 1/6, 1/8 av helhet Eleven visar grundläggande kunskaper om tal i bråkform genom att dela upp helheter i olika antal delar samt jämföra och namnge delarna som enkla bråk. Naturliga tal och enkla tal i bråkform och deras användning i vardagliga situationer. Textuppgifter Pengar Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med viss anpassning till problemets karaktär. Matris CENTRALT INNEHÅLL (s. 1 av 5) 3
4 Taluppfattning och tals användning fortsättning De fyra räknesättens egenskaper och samband samt användning i olika situationer. Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning och vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika situationer. Samband addition och multiplikation Multiplikation Kommutativa lagen multiplikation 5 2 = 2 5 Division, delning och innehåll Talsortsräkning addition Talsortsräkning subtraktion Räkna till helt tiotal, addition och subtraktion Additionsuppställning med och utan växling Subtraktionsuppställning med och utan växling Tolka textuppgifter, välja räknesätt Miniräknare, uppgifter och funktion Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar med naturliga tal och lösa enkla rutinuppgifter med tillfredsställande resultat. Rimlighetsbedömning vid enkla beräkningar och uppskattningar. Har lärts in i Favorit 1B och återkommer senare. Eleven beskriver tillvägagångssätt och ger enkla omdömen om resultats rimlighet. Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet, slumpmässiga händelser, geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet. 4 Matris CENTRALT INNEHÅLL (s. 2 av 5)
5 ALGEBRA Matematiska likheter och likhetstecknets betydelse. Mirakelmaskin, hitta regel Prealgebra med bilder Eleven kan hantera enkla matematiska likheter och använder då likhetstecknet på ett fungerande sätt. Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas. Fortsätta ett geometriskt mönster Fortsätta talmönster Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet, slumpmässiga händelser, geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet. Grundläggande geometriska objekt, däribland punkter, linjer, sträckor fyrhörningar, trianglar, cirklar, klot, koner, cylindrar och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. Har lärts in i Favorit F-klass och Favorit matematik 1B. Återkommer senare. kunskaper om matematiska begrepp och visar det genom att använda dem i vanligt förekommande sammanhang på ett i huvudsak fungerande sätt. Eleven kan beskriva begreppens egenskaper med hjälp av symboler och konkret material eller bilder. Eleven kan även ge exempel på hur några begrepp relaterar till varandra. Matris CENTRALT INNEHÅLL (s. 3 av 5) 5
6 ALGEBRA fortsättning Konstruktion av geometriska objekt. Skala vid enkel förstoring och förminskning. Rita av bild från rutsystem och förstora Eleven kan även avbilda och utifrån instruktioner, konstruera enkla geometriska objekt. Vanliga lägesord för att beskriva föremåls och objekts läge i rummet. Lägesangivelse Rita av enkla figurer i rutsystem Rita spegelvända figurer i rutsystem Symmetri, till exempel i bilder och i naturen, och hur symmetri kan konstrueras. Rita och måla symmetri, en symmetrilinje Jämförelser och uppskattningar av matematiska storheter. Mätning av längd, massa, volym och tid med vanliga nutida och äldre måttenheter. Längd; har lärts in i Favorit matematik 1B. Lärs in senare. Eleven kan göra enkla mätningar, jämförelser och uppskattningar av längder, massor, volymer och tider och använder vanliga måtttenheter för att uttrycka resultat. Sannolikhet och statistik Slumpmässiga händelser i experiment och spel. Lärs in senare. Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet, slumpmässiga händelser, geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet. Enkla tabeller och diagram och hur de kan användas för att sortera data och beskriva resultat från enkla undersökningar. Stapeldiagram; fylla i, jämföra, samtala om resultat och slutsatser Eleven kan dessutom vid olika slag av undersökningar i välkända situationer avläsa och skapa enkla tabeller och diagram för att sortera och redovisa resultat. 6 Matris CENTRALT INNEHÅLL (s. 4 av 5)
7 Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften. Favorit matematik 1B Eleven kan även använda och ge exempel på enkla proportionella samband i elevnära situationer. Problemlösning Strategier för matematisk problemlösning i enkla situationer. Problemlösning i vardagssituationer Arbeta enligt struktur; uppgift, uträkning, svarrita, uppgift, svar Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med viss anpassning till problemets karaktär. Matematisk formulering av frågeställningar utifrån enkla vardagliga situationer. Räkneberättelser Formulera matematiska uttryck till räkneberättelser Eleven kan beskriva och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då konkret material, bilder, symboler och andra matematiska uttrycksformer med viss anpassning till sammanhanget. Syftet med matriserna i Favorit matematik är dels att du ska kunna bedöma innehållet i serien och dels att du ska kunna använda matriserna som hjälpmedel när du bedömer dina elevers kunskaps - utveckling. Matriserna är kopieringsunderlag. Det finns två matriser: FÖRMÅGOR (en sida) och CENTRALT INNEHÅLL (fem sidor). Matrisen som handlar om förmågor är övergripande och handlar om hela matematikundervisningen. Matrisen som handlar om det centrala innehållet relaterar endast till Favorit matematik 2A. Matris CENTRALT INNEHÅLL (s. 5 av 5) 7
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Om Favorit matematik för åk 4-6 och Lgr 11
Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Vilken kursplanskompetens behöver rektor?
Vilken kursplanskompetens behöver rektor? Vad ville ni rektorer att vi skulle ta upp? Ur utvärderingen Fördjupning av kursplanerna i matematik - bra om vi ligger steget före Kursplanens olika delar - förståelse
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Matematik i informellt lärande på fritidshem. Många möten med ord och begrepp i den dagliga verksamheten
Matematik i informellt lärande på fritidshem Många möten med ord och begrepp i den dagliga verksamheten Maria Jansson maria@mimer.org Grundskollärare åk.1-7 Ma/No Ingår i ett arbetslag: fritids, skola
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Kunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
Innehållsförteckning kopieringsunderlag kapitel 1
Innehållsförteckning kopieringsunderlag kapitel 1 Samtalsbilden...1 Undersökning 1A Hur många?... 2- Mönster...4 Talmönster 1... Talmönster 2...6 Tiohopp...7 Mönsterunderlag...8 Aktivitet 1B Vilket trädgårdsland
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
Kursplanen i ämnet matematik
DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kursplanen i ämnet matematik Läsåret 2011/12 införs en samlad läroplan för var och en av de obligatoriska skolformerna grundskolan, grundsärskolan, sameskolan
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3
BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups.
3 Lärarhandledning I din hand håller du ett läromedel från Gleerups. Gleerups författare är lärare med erfarenhet från klassrummet. Lärare och elever hjälper till att utveckla våra läromedel genom värdefulla
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling
Inledning Polydronmaterialet De färgglada bitarna i Polydronmaterialet har länge lockat till byggen av alla möjliga slag. Den geometriska funktionen är tydlig och möjligheterna till många matematiska upptäckter
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
PP i matematik år 2. Taluppfattning och tals användning.
PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen
Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Kunskapskrav och nationella prov i matematik
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN
RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
"Procent och sannolikhet 6D"
"Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Ma Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
TALSYSTEMET. Syfte Lgr 11
TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,