BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3
|
|
- Lina Larsson
- för 9 år sedan
- Visningar:
Transkript
1 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan enbart tagit reda på VAD eleven kan. När man tar reda på HUR eleven kan öppnas nya möjligheter. Nya kunskapsmönster framträder och därmed elevens olika förmågor. Genom att använda bedömningsstödet får du svar på följande frågor: HUR elevens begreppsförståelse är HUR elevens förmåga att lösa problem ser ut HUR eleven utför sina beräkningar och väljer strategier HUR eleven resonerar i matematik HUR elevens förmåga att bedöma rimlighet är, samt HUR eleven kommunicerar i matematik. När du känner till elevens förmågor, eller kunskapskvaliteter, blir det tydligt vilka delar eleven behöver öva på och vilka typer av uppgifter du ska rikta in undervisningen på. I BEDÖMNINGSSTÖDET ges exempel på hur uppgiftslösningar kan se ut på två nivåer; godkänd nivå och högre nivå. Lycka till önskar matteredaktionen på Liber!
2 Begrepp Tal i bråkform av 20 elever har inga syskon. Hur många elever har syskon? Eleven förstår att är en del av helheten 20. Även om eleven kommit fram till ett felaktigt svar, så visar eleven förståelse för begreppet bråk genom att dela upp 20 i delar och benämna en del som. är 5 elever. Eleven visar förståelse för bråkbegreppet genom sina beräkningar och behöver inte rita för att lösa uppgiften. 20 = 5 av 20 är 5 barn = 5 är 5 barn. 5 elever har syskon. Eleven visar grundläggande kunskaper om tal i bråkform genom att dela upp helheter i olika antal delar och namnger dem som enkla bråk. 2
3 Metoder för beräkningar Taluppfattning och tals användning 7 a f, s. 5 Eleven visar att kunskaperna är automatiserade genom att ange svaret på en uppgift inom 3 sekunder. Eleven svarar rätt på 5 av 6 uppgifter. Eleven kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaret ligger inom heltalsområdet
4 Metoder för beräkningar Taluppfattning och tals användning 9 20, s. 6 7 Eleven använder skriftliga räknemetoder. Att räkna på fingrarna eller att rita upp streck och sedan kryssa över det antal som ska adderas eller subtraheras är inte skriftliga räknemetoder. Eleven använder strategier som fungerar även i högre talområden. Eleven visar sin uträkning/tillvägagångssätt, enbart ett svar är inte godtagbart. I en uppställning visar eleven sin uträkning och då krävs ingen ytterligare redovisning av tankegångarna. Eleven behärskar någon metod som fungerar för att lösa uppgifterna och kan beskriva tillvägagångssätt. Eleven varierar sitt val av metoder beroende på uppgiftens utseende. Exempel på det kan vara att eleven använder uppställning i uppgift 9 d) p.g.a. tiotalsövergången och inte ställer upp 20 a) eftersom talen ligger nära. Eleven beskriver tillvägagångssätt = Vid addition och subtraktion kan eleven välja och använda skriftliga räknemetoder med tillfredsställande resultat när talen och svaret ligger inom heltalsområet
5 Problemlösning Tals användning Elsa har 50 kapsyler och Amir har 00 kapsyler. a) Hur många fler kapsyler har Amir än Elsa? b) Hur många ska Amir ge Elsa för att de ska ha lika många? Visa hur du tänker. Eleven använder en strategi som fungerar tillfredställande för att lösa problemet. En strategi som bygger på att eleven räknar ritade alternativt konkreta föremål ett och ett för att komma fram till svaret är inte godtagbart. Eleven kan beskriva tillvägagångssätt genom att förklara sin tankegång muntligt eller skriftligt så att den blir tydlig för mottagaren. Eleven ritar en bild och prövar sig fram till svaret. a) Amir har 50 fler. b) 25 Amir: Elsa: Eleven använder sig av skillnaden mellan barnens kapsyler (50) för att ta reda på hur många Amir ska ge bort. a) Amir har 50 fler. b) Amir ska ge 25 kapsyler för hälften av 50 är 25 och det skiljer 50 kapsyler. Först ger Amir 20, sen 5 till. Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med viss anpassning till problemets karaktär. Eleven beskriver tillvägagångssätt. 5
6 Metoder för beräkningar Taluppfattning och tals användning Edwin har 99 kr. Han ska köpa ett spel som kostar 250 kr. Hur mycket pengar saknas? Eleven kan lösa uppgiften med addition eller subtraktion. Eleven redovisar en godtagbar tankegång = = 250 Svar: 5 kr. Eleven redovisar samma tankegång som i det godtagbara exemplet, men kan dessutom teckna uppgiften som en subtraktion = + 50 = 5 Svar: 5 kr saknas. Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar med naturliga tal och lösa rutinuppgifter med tillfredsställande resultat. 6
7 Begrepp Geometri En kvadrat är en slags rektangel. Vad finns det för skillnader och likheter mellan kvadrater och andra slags rektanglar? Elevens förklaring visar att eleven förstår hur en kvadrat respektive en rektangel kan se ut. Eleven kan ge exempel på minst en likhet och en skillnad. Eleven använder i stort sett korrekta begrepp i sin beskrivning. Lösningen visar på att eleven har grundläggande förståelse för begreppen kvadrat och rektangel. Likheterna är att båda har sidor. Skillnaderna är att dom inte har lika långa sidor. Eleven använder fler korrekta begrepp och visar förståelse för att rektanglar också kan vara kvadrater. Det som är lika är att båda har hörn och sidor. Det som är olika är att kvadraten alltid har fyra lika långa sidor. Det har inte alltid rektangeln. Eleven kan använda grundläggande geometriska begrepp och vanliga lägesord för att beskriva geometriska objekts egenskaper, läge och inbördes relationer. 7
8 Resonera Geometri Från Wilmas hus tar det 5 min att gå till affären och en halvtimme att gå till simhallen. Hur långt kan det vara till simhallen från Wilmas hus? Visa hur du tänker. Eleven kan jämföra situationen med en situation i sin egen vardag för att lösa uppgiften. Eleven kan ta hjälp av egna referensmått för att resonera sig fram till svaret. Eleven utgår ifrån antagandet att det tar 5 minuter att gå km och beräknar sedan hur lång tid det tar att gå 2 km. Det tar nog 5 min att gå km. Då tar det 30 min att gå 2 km för = 30. Det är 2 km till affären. Eleven använder ett eget referensmått och beräknar med hjälp av det hur långt det kan vara. Eleven visar även att hen kan göra enhetsväxlingar. Eleven bedömer lösningens rimlighet. Jag har ungefär 500 m till skolan och det tar 5 minuter om jag går snabbt = 500 m, det är,5 km. Wilma kanske inte går lika snabbt som jag om hon ska gå så långt, så därför tror jag att det är ca 2 km till simhallen. Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt. 8
9 Kommunicera Statistik Eleverna i klass 3A fick säga vilken sport de tycker bäst om. Så här ser tabellen och diagrammet ut. antal sport röster fotboll 6 innebandy 2 tennis basket 3 ishockey 2 ridning 3 simning friidrott antal röster fotboll innebandy tennis basket ishockey ridning simning friidrott sport g) Skriv en egen fråga till diagrammet. Eleven kan formulera en fråga som kan besvaras med hjälp av tabellen och diagrammet. Eleven ställer en fråga som är direkt avläsbar i tabellen eller diagrammet. Vilka sporter fick 2 röster? Eleven ställer en fråga som kräver en beräkning samt förståelse för begreppet skillnad. Mellan vilka sporter skiljer det 5 röster? Eleven kan vid olika slag av undersökningar i välkända situationer avläsa enkla tabeller och diagram för att sortera och redovisa resultat. 9
10 Metoder för beräkningar Samband och förändring a) Melvin får 50 kr i veckopeng. Efter hur många har han 350 kr om han sparar hela veckopengen varje vecka. Efter en vecka Efter två Efter tre Efter fyra Efter fem Efter sex Efter sju Efter åtta 50 kr 00 kr 50 kr 200 kr 250 kr 300 kr 350 kr 00 kr b) Melvins lillebror sparar hälften så mycket som Melvin. Hur många tar det för honom att spara ihop 350 kr? Visa hur du tänker. Eleven förstår begreppet hälften och använder det för att lösa uppgiften. Eleven vet att 25 är hälften av 50 och använder det i en upprepad addition för att komma fram till svaret = 350 Det tar. Eleven förstår sambandet mellan dubbelt och hälften och använder detta för att resonera sig fram till svaret. Det tar 7 för Melvin. Det tar dubbelt så lång tid för hans lillebror eftersom han sparar hälften så mycket =. Svar: Eleven kan använda och ge exempel på proportionella samband i elevnära situationer. 0
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Kunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Kursplanen i ämnet matematik
DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kursplanen i ämnet matematik Läsåret 2011/12 införs en samlad läroplan för var och en av de obligatoriska skolformerna grundskolan, grundsärskolan, sameskolan
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Facit och kommentarer till Tummen upp! Mål i matte 1-3 Pärm
acit och kommentarer till Tummen upp! Mål i matte - Pärm acit och kommentarer till Tummen upp! Mål i matte - Pärm best.nr 7-00- Pia riksson och Liber år kopieras acit och kommentarer till Tummen upp! Mål
Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar. Årskurs
Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Årskurs 3 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Om Favorit matematik för åk 4-6 och Lgr 11
Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Madeleine Zerne, rektor på Hagbyskolan
Madeleine Zerne, rektor på Hagbyskolan F-6 skola med 340 elever Rektorer på matematikkonferens Tre rektorer från Linköpings kommun, Gunilla Norden, Anna Samuelsson och Madeleine Zerne Rektorskonferens
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Observationsschema Problemlösningsförmåga
Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Bedömningsexempel Matematik årskurs 3
Bedömningsexempel Matematik årskurs 3 Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter i årskurs 3, 2010... 5 Skriftliga räknemetoder... 5 Huvudräkning, multiplikation och division... 7 Likheter,
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
Innehållsförteckning kopieringsunderlag kapitel 1
Innehållsförteckning kopieringsunderlag kapitel 1 Samtalsbilden...1 Undersökning 1A Hur många?... 2- Mönster...4 Talmönster 1... Talmönster 2...6 Tiohopp...7 Mönsterunderlag...8 Aktivitet 1B Vilket trädgårdsland
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar. Årskurs
Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Årskurs 3 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
identifiera geometriska figurerna cirkel och triangel
MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Delprov G: Skriftliga räknemetoder
Delprov G: Skriftliga räknemetoder Nedan finns instruktioner för genomförandet av Delprov G, som handlar om skriftliga räknemetoder. Eleverna ska arbeta individuellt med uppgifterna, och de ska inte ha
Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling
Inledning Polydronmaterialet De färgglada bitarna i Polydronmaterialet har länge lockat till byggen av alla möjliga slag. Den geometriska funktionen är tydlig och möjligheterna till många matematiska upptäckter
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Årskurs 3 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Kunskapskrav och nationella prov i matematik
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
PP i matematik år 2. Taluppfattning och tals användning.
PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Tummen upp! Matte Kartläggning åk 5
Tryck.nr 47-11064-3 4711064_t_upp_ma_5_omsl.indd Alla sidor 2014-01-27 12.29 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 5 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
8D Ma:bråk och procent VT 2018
8D Ma:bråk och procent VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp
8C Ma: Bråk och Procent
8C Ma: Bråk och Procent Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
Läroplanens mål. Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå.
Läroplanens mål Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå. Mål att sträva mot är det som styr planeringen av undervisningen och gäller för alla årskurser.
Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth
Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Välkommen till. matematikens fem förmågor: Problemlösning Begreppsförståelse Beräkningsstrategier Resonemang Kommunikation LIBER
Libers Mattekväll Välkommen till matematikens fem förmågor: Problemlösning Begreppsförståelse Beräkningsstrategier Resonemang Kommunikation LIBER Program 17.30 Incheckning, smörgås o dryck 17.45 Låt eleverna
"Procent och sannolikhet 6D"
"Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,
a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?
1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA
Gilla Matematik. Bedömningsstöd för uppföljning av elevens kunskaper i matematik grundsärskolan årskurs augusti 2017
Gilla Matematik Bedömningsstöd för uppföljning av elevens kunskaper i matematik grundsärskolan årskurs 1-6 10 augusti 2017 Erica Aldenius och Yvonne Franzon PRIM-gruppen Uppdragets syfte Främja en kontinuerlig