Om Favorit matematik för åk 4-6 och Lgr 11
|
|
- Jakob Gustafsson
- för 9 år sedan
- Visningar:
Transkript
1 Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen och därmed också öka lärandet i matematik. Lektionerna är alltid kopplade till både kunskapskrav och centralt innehåll. 4A Favorit matemat ik ett basläromedel i matematik med gedigen, välfunge en rande och tydlig struktur. Material kommer från Finland et där det är uppskatt at för strukturen och de goda resultate n hos eleverna. Materialet är helt anpassat efter Lgr 11. Mera Favmoatremiattik I Favorit matemat ik för åk 4 skriver eleverna i böckerna När eleverna skriver. direkt i boken får de fokusera på matematik istället för att lägga tid och energi på att och rita allt i ett skriva räknehäfte. Genom en kod i boken får eleverna tillgång till en digital där instruktioner bok och ramberättelsen finns inläst. Berättels hjälper eleverna en att fundera kring matematik. Koden i 1 år från det att är giltig du aktiverar den. I Favorit matematik 4A bedömning för lärande finns prov med prov uppgifter kopplade till kunskaps kraven, bedömnings underlag och utvärdering. teratur. A rt.nr se _cover.ind d 1 4A Favmoatremiattik Bedömning för lärande Namn: Lektioner i Favorit matematik 4A Lektioner i Favorit matematik 4A är alltid kopplade till både kunskapskrav och centralt innehåll. Produkt och kvot Lyssna på berättelsen. Division täljare 20 = 4 kvot 5 Multiplikation produkt produkt _bedomning.indd 1 = 20 kvot nämnare faktor faktor kvot 2. Multiplicera. a. 2 6 = b. 3 5 = c. 4 7 = 2 60 = 3 50 = 4 70 = 6 20 = 5 30 = 7 40 = = = = 3. Skriv faktorn som fattas. a. 8 = 32 b. 3 20/5 = 4 täljare nämnare kvot 8 1. Dra streck mellan uttryck och svar. Måla produkterna gula och kvoterna röda. c. b d. 8 = = 27 3 = = 270 = b. 40 = = 4 = c. 72 = 9 72 = 8 c. 56 = = 5 7 d. 200 = = 2 d. 56 = = Skriv uttrycket och räkna. a. Vad är produkten av talen 6 och 8? b. Vad är kvoten av täljaren 48 och c. Faktorerna är 3 och 10. d. Täljaren är 36 och nämnaren 6. Vad är produkten? nämnaren 6? Vad är kvoten? KUNSKAPSKRAV Begrepp kunna använda och beskriva begreppen faktor, produkt, täljare, nämnare, kvot och uttryck, växla mellan olika uttrycksformer Metod kunna göra enkla beräkningar och lösa rutinuppgifter med multiplikation och division 26 Taluppfattning och tals användning repetition av godtagbara kunskaper för åk 3; multiplikation och division _p _book.indd Skriv talen som fattas. a. 56 = 8 b. 24 = 6 56 = 7 24 = 4 Miniräknaren har symbolen = Dividera. a. 24 = 3 24 = 8 Multiplikationens uttryck och svar kallas för produkt. Divisionens uttryck och svar kallas för kvot. Du kan skriva med symbolen 20 eller / 20/5. 5 Förr användes kolon, 20:5. a : : _p _book.indd 27 Centralt innehåll :45 Kunskapskrav
2 Favorit matematik 4A bedömning för lärande I Favorit matematik 4A Bedömning för lärande finns Favorit matematiks prov. Eleverna får bedöma sina kunskaper i utvärderingen Mitt lärande i matematik. Favorit Matematik 4a prov i matematik sidorna 6-53 prov 1 poäng: /31 MiTT LäranDe i MaTeMaTik Namn: 1. Skriv svar på huvudräkningarna. a. b. c. Underskrift: /3 Namn: DU har ARBEtAt MED följande områden: De fyra räknesätten och prioriteringsregeln Multiplikation Sätt KRySS i DEN RUtA på varje RAD SoM passar BäSt Datum: Division Taluppfattning, statistik och algebra För det Nästan mesta Ibland aldrig /4 2. Skriv talet före och talet efter. a b c d /3 3. Skriv talen från det minsta till det största Jag förstår de uppgifter i matematik som vi arbetat med. Jag kan förklara hur jag löst en uppgift i matematik. Jag ser när en lösning i matematik är bättre än en annan lösning Jag ser när ett svar är rimligt. Jag använder matematiska ord när jag svarar på frågor på matematiklektionerna. Jag förstår när läraren förklarar hur jag ska lösa en uppgift i matematik. Jag förstår de matematiska ord vi använder på matematiklektionerna. Jag kan redovisa skriftligt hur jag löst en uppgift så att andra förstår hur jag menar. Jag kan motivera min lösning med matematiska resonemang och matematiskt språk. Jag kan välja en skriftlig räknemetod som passar till uppgiften. Jag vet i vilka situationer det är lämpligt att använda miniräknare. < < < < < framåtsyftande planering vad ska jag tänka på inför nästa termins arbete? Uppgift 1 BEgREpp: Kan använda begreppen kvot, subtrahera, summa, multiplicera och differens. Uppgift 2 och 3 BEgREpp: Kan jämföra och storleksordna tal. Underskrift: _bedomning.indd : _bedomning.indd :28 I bedömningsstödet Lärardokumentation över elevens kunskaper efter 4A kan läraren dokumentera hur eleven lyckas i förhållande till kunskapskraven. Bedömningen och utvärderingen kan användas formativt inför arbetet i nästa matematiska område _bedomning.indd :28 20 LärarDokuMenTaTion 4a BEDöMNiNgEN AvSER problemlösning I vilken grad eleven kan tolka muntlig och skriftlig information med matematiskt innehåll I vilken grad kan eleven beskriva sitt tillvägagångssätt vid problemlösning med hjälp av matematikens uttrycksformer Kvaliteten på de strategier och metoder som eleven väljer Hur väl eleven tolkar resultat och drar slutsatser I vilken grad eleven bedömer rimligheten i ett resultat BEgREpp Hur väl eleven använder olika begrepp Kvaliteten på elevens beskrivningar av olika matematiska begrepp och hur eleven använder olika uttrycksformer I vilken grad eleven visar kunskaper om relationer och samband mellan olika matematiska begrepp på väg Mot god tag- BARA KUNSKApER NAMN: godtagbar/ E-Nivå innehåll favorit MAtEMAtiK 4A Tolkar och löser problem med stora tal på ett godtagbart sätt i addition subtraktion multiplikation division blandade räknesätt Tolkar och löser problem med statistik på ett godtagbart sätt Tolkar och löser problem med obekanta tal (ekvationer) på ett godtagbart sätt Beskriver tillvägagångssätt på ett godtagbart sätt Bedömer rimligheten i ett resultat Använder matematiska begrepp i välkända sammanhang t ex: term, term, summa term, term, differens, faktor, faktor, produkt täljare, nämnare, kvot, negativa tal, stapeldiagram linjediagram, uttryck, och ekvationer Beskriver matematiska begrepp med ord, bild och symbol Visar på samband mellan olika begrepp, som sambandet mellan addition/subtraktion och multiplikation/division högre Nivå
3 Favorit matematiks matriser FÖRMÅGOR FörmÅgOr Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor som undervisningen i åk 1 9 syftar till att eleverna ska utveckla. (Lgr 11) formulera och lösa problem med hjälp av matematik samt värdera valda strategier använda och analysera matematiska begrepp och samband mellan begrepp innehåll i Favorit matematik I Favorit matematik får eleverna möta problemlösningens många delar: tolka muntlig och skriftlig information, använda olika problemlösningsstrategier, utföra beräkningar, tolka resultatet, föra resonemang om rimligheten och redovisa lösningen. Vid varje lektionstillfälle finns det utöver uppgifterna i elevboken alltid uppgifter för gemensam problemlösning. Läraren presenterar problemet, eleverna får individuellt lösa problemet och sedan muntligt och skriftligt redovisa för varandra. Eftersom hela gruppen arbetar med ett problem samtidigt finns rika möjligheter för eleverna att värdera olika strategier och utveckla problemlösningsförmågan. innehåll i Favorit matematik I Favorit matematik används genomgående ett korrekt, faktagranskat, matematiska språk. För att förtydliga begreppen och stödja inlärningen används många olika uttrycksformer: konkret material, bilder, skriftliga förklaringar och symboler. Om någon stöter på ett begrepp som hon eller han inte förstår är det möjligt att söka ordet i Favorit matematiks digitala matteordlista som innehåller ca 200 ord. Ordlistan ingår i bokens digitala del. Här finns bild, inläst förklaring och även digitala övningar för inlärning och träning. Den viktiga förståelsen om relationer och samband mellan begrepp betonas starkt i Favorit matematik. I Favorit matematik ger eleverna exempel på likheter och skillnader mellan begrepp samt hur de relaterar till varandra, till exempel sambandet mellan multiplikation/ division och tal i bråkform/decimalform/procent. På det här sättet utvecklar Favorit matematik elevens matematiska förmågor. Matris FÖRMÅGOR (s. 1 av 2) CENTRALT INNEHÅLL Favorit_matris_4A.indd :35 centralt innehåll Det centrala innehåll från Lgr 11 som alla elever ska ha arbetat med under åk 4 6 är indelat i fem områden, taluppfattning och tals användning, algebra, geometri, sannolikhet och statistik, samband och förändringar samt problemlösning. Varje område har en egen rubrik. (Lgr 11) taluppfattning Och tals användning Lgr 11: centralt innehåll i åk 4 6 Rationella tal och deras egenskaper. Positionssystemet för tal i decimalform. Det binära talsystemet och talsystem som använts i några kulturer genom historien, till exempel den babyloniska. innehåll Favorit matematik 4a Naturliga tal Jämföra tal Tallinjer Negativa tal, tallinje, termometer, storleksjämförelse Räkna med negativa tal Positionssystemet, begreppen ental, tiotal, hundratal och tusental Exempel på talsystem baserat på 20, Mayakulturen På det här sättet möter eleverna det centrala innehållet i Favorit matematik 4A. Tal i bråk och decimalform och deras användning i vardagliga situationer. Tal i procentform och deras samband med tal i bråk och decimalform. Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika situationer. Repetition och samband, de fyra räknesätten Prioriteringsregeln Parenteser Skriftliga räknemetoder, de fyra räknesätten Division med rest Kort division Kort division med minnessiffra Division med 1, 10, 100 och 1000 Använda miniräknare Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer. Uppskattning och rimlighetsbedömning vid beräkningar Matris CENTRALT INNEHÅLL (s. 1 av 4) Favorit_matris_4A.indd :35
4 FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att formulera och lösa problem med hjälp av matematik samt värdera valda strategier använda och analysera matematiska begrepp och samband mellan begrepp Innehåll i Favorit Matematik I Favorit matematik får eleverna möta problemlösningens många delar: tolka muntlig och skriftlig information, använda olika problemlösningsstrategier, utföra beräkningar, tolka resultatet, föra resonemang om rimligheten och redovisa lösningen. Vid varje lektionstillfälle finns det utöver uppgifterna i elevboken alltid uppgifter för gemensam problemlösning. Läraren presenterar problemet, eleverna får individuellt lösa problemet och sedan muntligt och skriftligt redovisa för varandra. Eftersom hela gruppen arbetar med ett problem samtidigt finns rika möjligheter för eleverna att värdera olika strategier och utveckla problemlösningsförmågan. Innehåll i Favorit Matematik I Favorit matematik används genomgående ett korrekt, faktagranskat, matematiska språk. För att förtydliga begreppen och stödja inlärningen används många olika uttrycksformer: konkret material, bilder, skriftliga förklaringar och symboler. Om någon stöter på ett begrepp som hon eller han inte förstår är det möjligt att söka ordet i Favorit matematiks digitala matteordlista som innehåller ca 200 ord. Ordlistan ingår i bokens digitala del. Här finns bild, inläst förklaring och även digitala övningar för inlärning och träning. Den viktiga förståelsen om relationer och samband mellan begrepp betonas starkt i Favorit matematik. Favorit matematik ger eleverna exempel på likheter och skillnader mellan begrepp samt hur de relaterar till varandra, till exempel sambandet mellan multiplikation/ division och tal i bråkform/decimalform/procent. Matris FÖRMÅGOR (s. 1 av 2)
5 välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter Innehåll i Favorit Matematik Favorit matematik fokuserar framför allt på att ge eleven gedigna kunskaper. Metoderna som presenteras är utvecklingsbara och generella. För att eleven ska få mycket goda kunskaper presenteras ett moment ofta i flera årskurser med en inledande repetition och sedan fördjupande arbete. Förklaringsmodellerna som används återkommer i flera räknesätt. När eleverna möter ett nytt moment har de nytta av och kan bygga vidare på tidigare kunskaper. Det finns gott om övningar för att befästa. Det finns inga genvägar; om du vill behärska en metod väl, måste du både förstå och öva. I Favorit matematik får eleven hantera skriftliga, muntliga och digitala metoder, som exempelvis miniräknaren. Till varje lektion finns muntliga huvudräkningsuppgifter som tränar eleven på att koncentrera sig, minnas, hitta lösningsstrategier och räkna i huvudet. De återkommande huvudräkningsuppgifterna hjälper eleverna att behålla kunskapen om metoder och moment som de arbetat med tidigare levande. föra och följa matematiska resonemang och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser Innehåll i Favorit Matematik I Favorit matematik finns många uppgifter där eleven får kommunicera matematik. En återkommande uppgift är problemlösnings- och huvudräkningsuppgifterna i samband med varje lektion. Här får eleverna möjlighet att kommunicera, lyssna till och ta del av andras förklaringar och argument. De får argumentera för sin egen lösning, följa kamraternas resonemang och pröva andra lösningar på problemet. Till varje kapitel finns också återkommande aktivitetssidor som kallas Favoritsidor. Favoritsidorna innehåller praktiska övningar som eleven gör i par eller grupp. Här ges eleverna tillfälle att ställa, besvara och motivera frågor både muntligt och skriftligt. I lärarhandledningen finns en stor mängd olika aktiviteter där eleven får möjlighet att följa och förstå andra elevers förklaringar och resonemang och även bidra med egna idéer om hur en uppgift kan lösas. Matris FÖRMÅGOR (s. 2 av 2)
6 KUNSKAPSKRAV för betygen E, C och A, Lgr 11 PROBLEMLÖSNINGSFÖRMÅGA Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak/relativt väl/väl fungerande sätt genom att välja och använda strategier och metoder med viss/förhållandevis god/god anpassning till problemets karaktär. Eleven beskriver tillvägagångssätt på ett i huvudsak/relativt väl/väl fungerande sätt och för enkla och till viss del/ utvecklade och relativt väl/välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag/ge något förslag/ge förslag på alternativt tillvägagångssätt. BEGREPPSFÖRMÅGA Eleven har grundläggande/goda/mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i välkända/bekanta/nya sammanhang på ett i huvudsak/relativt väl/väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak/relativt väl/väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla/utvecklade/väl utvecklade resonemang kring hur begreppen relaterar till varandra. METODFÖRMÅGA Eleven kan välja och använda i huvudsak/ändamålsenliga/ändamålsenliga och effektiva matematiska metoder med viss/relativt god/god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande/gott/mycket gott resultat. KOMMUNIKATIONSFÖRMÅGA Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande/ändamålsenligt/ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget. I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt/för resonemangen framåt/för resonemangen framåt och fördjupar eller breddar dem. Här hittar du kunskapskrav som utvecklar förmågan att kommunicera med och om matematik såväl muntligt som skriftligt
7 Centralt innehåll Taluppfattning och tals användning Rationella tal och deras egenskaper. Naturliga tal Jämföra tal Tallinjer Negativa tal, tallinje, termometer, storleksjämförelse Räkna med negativa tal Positionssystemet för tal i decimalform. Positionssystemet, begreppen ental, tiotal, hundratal och tusental Det binära talsystemet och talsystem som använts i några kulturer genom historien, till exempel den babyloniska. Exempel på talsystem baserat på 20, Mayakulturen Tal- i bråk och decimalform och deras användning i vardagliga situationer. Tal i procentform och deras samband med tal i bråk- och decimalform. Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika situationer. Repetition och samband, de fyra räknesätten Prioriteringsregeln Parenteser Skriftliga räknemetoder, de fyra räknesätten Division med rest Kort division Kort division med minnessiffra Division med 1, 10, 100 och 1000 Använda miniräknare Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer. Uppskattning och rimlighetsbedömning vid beräkningar Matris CENTRALT INNEHÅLL (s. 1 av 4)
8 Centralt innehåll ALGEBRA Obekanta tal och deras egenskaper samt situationer där det finns behov av att beteckna ett obekant tal med en symbol. Bokstäver i uttryck Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven. Likheter, problemlösning Skriva uttryck utifrån bild Tolka uttryck Metoder för enkel ekvationslösning. Lösa ekvationer Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas. Talmönster och talföljder, beskriva GEOMETRI Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. Konstruktion av geometriska objekt. Skala och dess användning i vardagliga situationer. Symmetri i vardagen, i konsten och i naturen samt hur symmetri kan konstrueras. Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas. Jämförelse, uppskattning och mätning av längd, area, volym, massa, tid och vinkel med vanliga måttenheter. Mätningar med användning av nutida och äldre metoder. Matris CENTRALT INNEHÅLL (s. 2 av 4)
9 Centralt innehåll SANNOLIKHET OCH STATISTIK Sannolikhet, chans och risk grundat på observationer, experiment eller statistiskt material från vardagliga situationer. Jämförelser av sannolikheten vid olika slumpmässiga försök. Resultat i spel Dra slutsatser Enkel kombinatorik i konkreta situationer. Tabeller och diagram för att beskriva resultat från undersökningar. Tolkning av data i tabeller och diagram. Läsa av och tolka undersökningar i tabeller och diagram Stapel- och linjediagram Lägesmåtten medelvärde, typvärde och median samt hur de kan användas i statistiska undersökningar. SAMBAND OCH FÖRÄNDRINGAR Proportionalitet och procent samt deras samband. Grafer för att uttrycka olika typer av proportionella samband vid enkla undersökningar. Koordinatsystem och strategier för gradering av koordinataxlar. Matris CENTRALT INNEHÅLL (s. 3 av 4)
10 Centralt innehåll PROBLEMLÖSNING Strategier för matematisk problemlösning i vardagliga situationer. Problemlösning i vardagssituationer Förstå vad som efterfrågas Logik och dra slutsatser Rita som problemlösningsmetod Matematisk formulering av frågeställningar utifrån vardagliga situationer. Välja räknesätt och skriva matematiska uttryck utifrån text och/eller bild Syftet med matriserna i Favorit matematik är dels att du ska kunna bedöma innehållet i serien och dels att du ska kunna använda matriserna som hjälpmedel när du bedömer dina elevers kunskaps - utveckling. Matriserna är kopieringsunderlag. Det finns två matriser: FÖRMÅGOR (en sida) och CENTRALT INNEHÅLL (fyra sidor). Matrisen som handlar om förmågor är övergripande och handlar om hela matematikundervisningen. Matrisen som handlar om det centrala innehållet relaterar endast till Favorit matematik 4A. Matris CENTRALT INNEHÅLL (s. 4 av 4)
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Ma Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
TALSYSTEMET. Syfte Lgr 11
TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
Extramaterial till Start Matematik
EXTRAMATERIAL Extramaterial till Start Matematik Detta material innehåller diagnoser och facit till alla kapitel. Extramaterial till Start matematik 47-11601-0 Liber AB Får kopieras 1 70 Innehållsförteckning
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Kunskapskrav och nationella prov i matematik
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
"Procent och sannolikhet 6D"
"Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,
9F Ma: Aritmetik och bråkbegreppet
9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
Matematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
9A Ma: Statistik och Sannolikhetslära
9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
8F Ma: Aritmetik och bråkbegreppet
8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
FACIT. Kapitel 1. Version
FACIT Kapitel Vi repeterar talen 0 till 0 000. Titta på bilden. Skriv de tal som fattas. Räkna. är ett fyrsiffrigt tal a. 000 + 00 + 0 + T H T E 0 0 000 Tal skrivs med siffror. Siffrorna är 0,,,,,,,,,
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Syfte med undervisningen är att du ska få utveckla din förmåga att...
Planering, kapitel 1 Statistik samt sannolikhet. Syfte med undervisningen är att du ska få utveckla din förmåga att... formulera och lösa problem med hjälp av matematik samt värdera valda strategier och
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik