jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen
|
|
- Ove Bergman
- för 8 år sedan
- Visningar:
Transkript
1 Utveckling A Taluppfattning Jag kan ramsräkna Jag kan jämföra/storleksordna talen Jag kan markera ut tal på en tallinje. Jag förstår tiotal och ental för talen B Taluppfattning Jag kan ramsräkna Jag kan jämföra/storleksordna talen Jag kan markera ut tal på en tallinje. Jag förstår hundratal, tiotal och ental för talen C Taluppfattning Jag kan ramsräkna Jag kan jämföra/storleksordna talen Jag kan markera ut tal på en tallinje. Jag förstår tusental, hundratal, tiotal,ental för talen Metod A 0-10 talområdet 0-10 med stöd av vuxen om jag tar hjälp av olika hjälpmedel/ talområdet 0-10 om jag tar hjälp av olika hjälpmedel/ Jag kan flera uppgifter i talområdet 0-10 utan att behöva räkna ut talområdet 0-10 utan att behöva räkna. Metod A 0-20 talområdet 0 20 med stöd av vuxen om jag tar hjälp av olika hjälpmedel/ talområdet 0-20 om jag tar hjälp av olika hjälpmedel/ Jag kan flera uppgifter i talområdet 0-20 utan att behöva räkna ut talområdet 0-20 utan att behöva räkna.
2 0-20 talområdet 0-20 om jag tar hjälp av olika hjälpmedel/ talområdet 0-10 utan att behöva räkna. Jag kan flera uppgifter i talområdet 0-20 utan att behöva räkna ut talområdet 0-20 utan att behöva räkna. Strategi Strategi addition & subtraktion talområdet med stöd av vuxen om jag tar hjälp av olika hjälpmedel/ talområdet med stöd av vuxen om jag tar hjälp av olika hjälpmedel/ talområdet om jag tar hjälp av olika hjälpmedel/ talområdet om jag tar hjälp av olika hjälpmedel/ Jag kan flera uppgifter i talområdet med en hållbar strategi. Jag kan flera uppgifter i talområdet med en hållbar strategi. talområdet med en hållbar strategi. talområdet med en hållbar strategi med algoritm enklare uppgifter med 23+54= 67-31= enklare uppgifter med hjälp av 23+54= 67-31= använder till viss del minnessiffra eller växling på rätt sätt. använder både minnessiffra eller växling med algoritm enklare uppgifter med = = enklare uppgifter med hjälp av = = använder till viss del minnessiffra eller växling på rätt sätt. använder både minnessiffra eller växling med algoritm enklare algoritmer i två steg = enklar algoritmer i två steg = algoritmer i två steg och använder till viss del minnessiffra eller växling på rätt sätt = algoritmer i två steg och använder minnessiffra eller växling på rätt sätt =
3 Multiplikation med algoritm A 0-20 Hälften och dubbelt. A 0-20 Hälften och dubbelt kopplat till B Hälften och dubbelt kopplat till C Hälften och dubbelt kopplat till enklare uppgifter med 3*21= 4*312= Jag kan med stöd och hjälp av konkret material använda hälften och dubbelt. Jag kan använda hälften och dubbelt om jag har ett tal och ska säga hälften av det, eller om jag har ett tal och ska säga dubbelt, men kan inte koppla det till Jag kan använda hälften och dubbelt om jag har ett tal och ska säga hälften av det, eller om jag har ett tal och ska säga dubbelt, men kan inte koppla det till enklare uppgifter med hjälp av 3*21= 4*312= Jag kan med hjälp av konkret material använda hälften och dubbelt. Jag är helt säker på hälften och dubbelt och det spelar ingen roll om jag istället har svaret. Jag är helt säker på hälften och dubbelt och det spelar ingen roll om jag istället har svaret. använder till viss del minnessiffra på rätt sätt. 3*26= 4*172= Jag kan använda hälften och dubbelt om jag har ett tal och ska säga hälften av det, eller om jag har ett tal och ska säga dubbelt. Jag kan koppla hälften och dubbelt till addition/subtraktion eller Jag kan koppla hälften och dubbelt till addition/subtraktion eller Jag kan koppla hälften och dubbelt till addition/subtraktion eller använder minnessiffra på rätt sätt. 3*26= 4*172= Jag är helt säker på hälften och dubbelt och det spelar ingen roll om jag i stället har svaret. Jag kan koppla hälften och dubbelt till addition/subtraktion och Förstår sambandet mellan räknesätten. Jag kan koppla hälften och dubbelt till addition/subtraktion och Förstår sambandet mellan räknesätten. Jag kan koppla hälften och dubbelt till addition/subtraktion och Förstår sambandet mellan räknesätten.
4 A Vet att multiplikation är upprepad addition Jag kan med stöd och hjälp av konkret material visa att jag kan detta. Jag kan med hjälp av konkret material visa att jag kan detta. Jag kan rita och skriva för att förklara vad det är. Jag kan förklara det för min lärare med ord. 2:ans multiplikationstabell. Jag kan använda 2:ans tabell om jag tar hjälp av upprepad addition och/eller konkret material. Jag kan använda 2:ans tabell om jag tar hjälp av upprepad addition. Jag kan några tal i 2:ans tabell utan att behöva räkna ut Jag kan hela 2:ans tabell utantill. 2:ans tabell vid division. divisionstalen genom att ta hjälp av upprepad addition och/eller konkret material. divisionstalen genom att ta hjälp av upprepad addition. Jag kan några uppgifter direkt utan att behöva räkna ut Jag kan svaret direkt utan att behöva räkna. 5:ans och 10:ans multiplikationstabell. Jag kan använda multiplikation om jag tar hjälp av upprepad addition och/eller konkret material. Jag kan använda multiplikation om jag tar hjälp av upprepad addition. Jag kan några uppgifter Jag kan tabellerna utantill. 5:ans och 10:ans multiplikationstabell vid division. divisionstalen genom att ta hjälp av upprepad addition och/eller konkret material. divisionstalen genom att ta hjälp av upprepad addition. Jag kan några uppgifter direkt utan att behöva räkna ut Jag kan svaret direkt utan att behöva räkna. Alla kombinationer i multiplikation och division upp till produkten 25. uppgifter genom att ta hjälp av upprepad addition. genom att ta hjälp av upprepad addition. Jag kan flera uppgifter Jag kan uppgifterna direkt
5 Alla kombinationer i multiplikation och division upp till produkten 100. uppgifter genom att ta hjälp av upprepad addition. genom att ta hjälp av upprepad addition. Jag kan flera uppgifter utan att behöva räkna ut Jag kan uppgifterna direkt multiplikationstabeller Jag kan använda tabeller om jag tar hjälp av upprepad addition och/eller konkret material. Jag kan några tal i tabellerna Jag kan nästan alla tal i tabellerna utan att behöva räkna ut Jag kan tabellerna utantill. multiplikation med 10 och 100 Jag kan använda multiplikation om jag tar hjälp av upprepad addition och/eller konkret material. Jag kan använda multiplikation om jag tar hjälp av upprepad addition. Jag kan några uppgifter Jag kan tabellerna utantill. Division med 10 Jag kan använda division om jag tar hjälp av upprepad addition och/eller konkret material. Jag kan använda division om jag tar hjälp av upprepad addition. Jag kan principen och räknar oftast rätt. Jag kan principen och kan förklara hur jag tänker.. C Kommutativalagen vid multiplikation Jag kan med stöd se att antalet föremål inte förändras med hjälp av bilder och/eller konkret material om föremålen grupperas om. 3*5 eller 5*3 Jag kan se att antalet föremål inte förändras med hjälp av bilder och/eller konkret material om föremålen grupperas om. 3*5 eller 5*3 Jag kan med hjälp av bilder eller föremål påvisa att antalet inte förändras om man grupperar om föremålen. Jag kan förklara och påvisa att antalet inte förändras om man grupperar om föremålen.
6 C Prioriteringsregeln vid flera räknesätt multiplikation och division uppgifter med flera räknesätt. med två räknesätt. med flera räknesätt. åk 2 bråk Jag kan med stöd visa stambråk (bråk där täljaren är 1), ½, ⅓, ¼ med hjälp av konkret material/bilder. Jag kan visa stambråk (bråk där täljaren är 1) ½, ⅓, ¼ med hjälp av konkret material/bilder. Visar på förståelse för hur följande bråk kan visas med bilder 1= 2/2 = 3/3 =4/4. Jag kan tolka och rita 1, ⅓, ⅔ av konkret material/bilder och antal. Jag kan tolka och rita bråk t ex Hur stor del är målad? Jag kan visa på bråk där nämnaren och täljaren förändras i proportion, tex 1/2 = 2/4= 3/6= 4/8 åk 3 bråk Jag kan tolka och rita 1, ⅓,, ⅔ av konkret material/bilder och antal. Jag kan påvisa enkla bråk som 2/3, 1/4 av helheter. Jag kan storleksordna enkla bråk. Jag kan sätta ut bråk på en tallinje. Jag kan addera och subtrahera bråk med samma nämnare med hjälp av konkret materiel, bildspråk, vardagsspråk och matematikspråk. Jag kan addera och subtrahera bråk med olika nämnare. Jag kan addera och subtrahera bråk med olika nämnare.
7 Metod & begrepp Addition, subtraktion Miniräknaren Jag kan med hjälp räkna enkla uppgifter på miniräknaren. Jag är ganska säker på att använda minräknaren när jag ska räkna enkla uppgifter-. Jag kan räkna enkla uppgifter på miniräknaren. Jag kan använda miniräknaren till alla uppgifter när jag ska räkna. Metod & begrepp Överslagsräkning Jag kan med hjälp se om talet räcker till. Jag kan se om talet räcker till. Jag kan avrunda tal till hela tiotal om jag använder pengar. Jag kan avrunda tal till hela tiotal, hundratal eller tusental. Kan lösa textuppgifter. (Eldorados fingerfemma) Matteorden Jag kan med stöd av vuxen lösa textuppgifter. Jag kan med stöd koppla ihop orden med rätt förklaring: Jag kan lösa textuppgifter om jag ritar. Jag kan koppla ihop orden med rätt förklaring: Jag kan lösa textuppgifter och koppla till Jag kan med stöd förklara orden: Jag kan lösa textuppgifter med lämplig strategi och koppla till matematikspråket samt avgöra om svaret är rimligt. Jag kan förklara orden:
8 & metod Algebra likhetstecknet algebra mönster Problemlösning Matematiska strategier Jag kan med hjälp lösa olika problem. Jag kan lösa olika problem när jag ritar. Jag kan lösa problem och jag kan förklara hur jag tänkt. Jag kan lösa problem, kan förklara hur jag tänkt och kopplar lösningen till Problemlösning Matematisk formulering Jag kan berätta och rita med stöd hur jag löste uppgiften så att andra förstår min lösning. Jag kan berätta och rita hur jag löste uppgiften så att andra förstår min lösning. Jag kan berätta och rita hur jag löste uppgiften så att andra förstår min lösning och berätta varför jag valde att göra på mitt sätt. Jag kan förklara och skriva om lösningarna så att andra förstår samt berättar också varför jag löst det så., Geometri Symmetri Du kan med stöd påvisa symmetrilinjen. Du kan visa var en symmetri linje går i en figur. Du kan berätta att en symmetrilinje delar figuren på hälften. Du kan själv konstruera figurer där man kan visa på symmetrilinjen.
9 Geometri Jag kan sortera några utvalda former. Jag kan förklara de enklare formerna med ord. Jag använder flera av de rätta begreppen när jag förklarar former. Jag använder de flesta begrepp och matematikspråket rätt när jag beskriver, sorterar och jämför olika former. Geometri ordsamling Jag kan förklara några av de begrepp som finns i vår ordsamling. Jag kan förklara flera av begreppen som finns i vår ordsamling. Jag kan förklara de flesta av begreppen i vår ordsamling och använder dem delvis rätt. Jag kan förklara begreppen i vår ordsamling och använder dem rätt. skala analoga klockan Jag kan när klockan är hel. Jag kan klockan är hel och halv. Jag kan när klockan är hel, halv, kvart i och kvart över. Jag kan hela klockan. digitala klockan Jag kan när klockan är hel. Jag kan klockan är hel och halv. Jag kan när klockan är hel, halv, kvart i och kvart över. Jag kan hela klockan. Metod Jämföra och beräkna tid Jag kan jämföra och räkna tid på hela timmar. Jag kan ordna hela timmar i tidsordning. Jag kan jämföra och räkna tid på hela och halva timmar. Jag kan ordna dessa i tidsordning. Jag kan jämföra och räkna tid på hela, halva och kvartar av timmar. Jag kan ordna dessa i tidsordning. Jag kan jämföra och räkna tid på klockan. Jag kan ordna klockslag i tidsordning.
10 massa volym längd area
11 tabeller och diagram Statistik
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Manual matematiska strategier. Freja. Ettan
Manual matematiska strategier Freja Ordningstalen t.ex första, andra, tredje Ramsräkna framlänges och baklänges till 20 Mattebegrepp addition: svaret i en addition heter summa, subtraktion: svaret i en
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri
Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom
PP i matematik år 2. Taluppfattning och tals användning.
PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,
Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.
MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Taluppfattning och problemlösning
Taluppfattning och problemlösning. Ett talsystem där siffrans värde beror på vilken position, plats, siffran har.. Olika sätt eller strategier att arbeta med problemlösning.. Problemlösningsmetod där man
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Lokal kursplan i matematik för Stehags rektorsområde
Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande
Matematik klass 4. Vårterminen FACIT. Namn:
Matematik klass 4 Vårterminen FACIT Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth
Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,
Om Favorit matematik för åk 4-6 och Lgr 11
Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning
Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson
Språkstart Matematik Facit Matematik för nyanlända Jöran Petersson Positionssystem hela tal s. 4-5 3. Skriv med siffror. 52 502 5002 65 665 6665 31 131 3131 4. Skriv hur mycket siffran är värd. 300 4 1000
Volym liter och deciliter
Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall
Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål
Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal
TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -
Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1
Matematik klass 4 Vårterminen Namn: Anneli Weiland Matematik åk 4 VT 1 Först 12 sidor repetition från höstterminen. Addition 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= Subtraktion 11-2=
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Innehållsförteckning kopieringsunderlag kapitel 1
Innehållsförteckning kopieringsunderlag kapitel 1 Samtalsbilden...1 Undersökning 1A Hur många?... 2- Mönster...4 Talmönster 1... Talmönster 2...6 Tiohopp...7 Mönsterunderlag...8 Aktivitet 1B Vilket trädgårdsland
Broskolans röda tråd i Matematik
Broskolans röda tråd i Matematik Regering och riksdag har faställt vilka mål som svenska skolor ska arbeta mot. Dessa mål uttrycks i Läroplanen Lpo 94 och i kursplaner och betygskriterier från Skolverket.
Storvretaskolans Kursplan för Matematik F-klass- år 5
2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Matematik klass 4. Höstterminen. Namn: Anneli Weiland Matematik åk 4 HT 1
Matematik klass 4 Höstterminen Namn: Anneli Weiland Matematik åk 4 HT 1 Minns du addition? 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= 9+2= 8+4= 7+4= 9+4= 6+7= 9+6= 9+7= 7+9= 8+7= 6+8=
Matematik klass 4. Höstterminen. Facit. Namn:
Matematik klass 4 Höstterminen Facit Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
48 p G: 29 p VG: 38 p
11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan
Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN
RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN
MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp
Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-13 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.
MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med
MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder
Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Innehåll och förslag till användning
Övningar för de första skolåren med interaktiv skrivtavla och programmet RM Easiteach Next generation. Materialet är anpassat till och har referenser till. Innehåll och förslag till användning De interaktiva
FACIT. Kapitel 1. Version
FACIT Kapitel Vi repeterar talen 0 till 0 000. Titta på bilden. Skriv de tal som fattas. Räkna. är ett fyrsiffrigt tal a. 000 + 00 + 0 + T H T E 0 0 000 Tal skrivs med siffror. Siffrorna är 0,,,,,,,,,
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
FACIT. Kapitel 1. Version
FACIT Kapitel Version -0- Version -0- Vi repeterar talen 0 till 0 000 Öva begreppen.. Titta på bilden. Skriv de tal som fattas. Räkn är ett fyrsiffrigt tal 000 + 00 + 0 + 0 0 000 Tal skrivs med siffror.
a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?
1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA
Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
Matematik. Namn: Datum:
Matematik Namn: Datum: Talraden Skriv färdigt talraden. 195 196 197 393 394 395 397 597 598 600 996 997 999 Addition 199 + 1 = 299 + 1 = 999 + 1 = 199 + 3 = 298 + 3 = 998 + 2 = 599 + 3 = 598 + 4 = 999
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Att förstå bråk och decimaltal
Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2A matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 1Volym Vad rymmer mest? Ringa in. Vad rymmer minst? Ringa in. Ta fram tre olika föremål som rymmer olika mycket. Rita
Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven
Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära
Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1
Matematik klass 3 Höstterminen Anneli Weiland Matematik åk 3 HT 1 Minns du från klass 2? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.
Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I (11F322) 15 högskolepoäng TentamensKod: Tentamensdatum: 15-04-29 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
mattetankar Reflektion kring de olika svaren
Reflektion kring de olika svaren Taluppfattning och tals användning 15 Skriv trehundrasju Reflektion: 31007 tyder på att eleven tolkar talet som 3, 100, 7 3007 tyder på att eleven tolkar talet som 300,
Kommunövergripande Mål i matematik, åk 1-9
Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Matematik klass 2. Vårterminen. Anneli Weiland Matematik åk 2 VT 1
Matematik klass 2 Vårterminen Anneli Weiland Matematik åk 2 VT 1 Minns du från höstens bok? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+
TAL OCH RÄKNING HELTAL
1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot
Vad jag ska kunna! Åk 2
Matematik Taluppfattning HT Taluppfattning Jag kan skriva talens grannar upp till 50. Jag kan läsa av tal som visas på olika sätt upp till 50, t.ex. pengar. Jag kan markera ut rätt tal på tallinjen upp
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling
Inledning Polydronmaterialet De färgglada bitarna i Polydronmaterialet har länge lockat till byggen av alla möjliga slag. Den geometriska funktionen är tydlig och möjligheterna till många matematiska upptäckter
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar. Årskurs
Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Årskurs 3 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004
5.6 MATEMATIK Hänvisning till punkt 7.6 i Lpgr 16.1.2004 Undervisningen i matematik skall hos eleverna utveckla det matematiska tänkandet, ge matematiska begrepp samt de mest använda lösningsmetoderna.
Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik
. Diagnoserna i området avser att kartlägga elevernas förståelse och färdighet avseende tal i bråkform, tal i decimalform, proportionalitet och procent. Området består av följande tre delområden: B Bråk
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet