Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
|
|
- Åke Viktor Falk
- för 9 år sedan
- Visningar:
Transkript
1 Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att en lärare ska kunna bedöma en enskild elevs kunskaper måste det ges möjlighet att iaktta och pröva eleven i förhållande till de olika kunskapsformerna. För att en elev skall bli godkänd i matematik måste läraren få möjlighet att observera eleven i undervisningssituationen. Läraren ska också studera och värdera skriftligt inlämnade uppgifter och läxor samt gjorda prov. Detta innebär att eleven skall: = = = vara närvarande och aktiv på lektionerna lämna in arbetsuppgifter och läxor deltaga i gemensamma prov
2 Matematik Betygskriterier för år 9 Målbeskrivning Moment Godkänd Väl Godkänd Mycket Väl Godkänd Taluppfattning 1. Ha fördjupat och vidgat sin taluppfattning till att omfatta hela tal och rationella tal. 1. Ha fördjupat och vidgat sin taluppfattning till att omfatta hela tal och rationella tal. 1. Ha fördjupat och vidgat sin taluppfattning till att omfatta hela tal och rationella tal. "Ha en uppfattning om heltal från 100 upp till "Kunna uttrycka tal i potensform. "Kunna förstå andra positionssystem än vårt. "Förstå negativa tal termometern, skulder. 2. Ha fördjupat och vidgat sin taluppfattning till att omfatta tal i decimalform "Ha en uppfattning om decimaltal ner till två decimaler. 3. Ha fördjupat och vidgat sin taluppfattning till att omfatta tal i bråkform. "Kunna läsa ut och beskriva bråktalen med nämnaren Ha fördjupat och vidgat sin taluppfattning till att omfatta bråk och decimalform. "Kunna omvandla bråk med nämnarna 2, 4, 5, 10 till procent. "Kunna se sambandet bråktal decimaltal procent. 3. Ha fördjupat och vidgat sin taluppfattning till att omfatta tal i bråkform. "Kunna räkna med bråk utan omvandling till decimaltal. 4. Kunna omvandla bråk med hjälp av förlängning och förkortning. "Kunna arbeta med begreppen promille, ppm och förstå dess innebörd. "
3 5. "Addera, subtrahera bråk med samma nämnare. 5. "Kunna addera, subtrahera och multiplicera med bråk. 5. "Kunna behärska de fyra räknesätten med reella tal. "Multiplicera bråk med heltal. "Kunna dividera bråk med heltal "Kunna utföra räkneoperationer med negativa tal "Kunna utföra räkneoperationer med kvadratrötter Moment Godkänd Väl Godkänd Mycket Väl Godkänd Problemlösning 1. Ha goda färdigheter i överslagsräkning "Kunna med hjälp av överslagsräkning avgöra om ett svar är rimligt Ha goda färdigheter i räkning med naturliga tal och tal i decimalform "Kunna räkna addition och subtraktion "Kunna multiplikation med ena faktorn ensiffrig "Kunna division med ensiffrig nämnare "Kunna prioriteringsordningen för de fyra räknesätten och parenteser 2. Ha goda färdigheter i räkning med naturliga tal och tal i decimalform "Kunna räkna med tal i tiopotensform "Kunna svara i grundpotensform "Kunna multiplikation med flersiffriga faktorer 2.
4 3. Ha goda färdigheter i räkning med procent i huvudet, med hjälp av skriftliga räknemetoder och med miniräknare "Kunna räkna ut delen när man känner till procenttalet och det hela, i samband med tex minskning, ökning, rabatt och ränta 4. Ha goda färdigheter i räkning med proportionalitet i huvudet, med hjälp av skriftliga räknemetoder och med miniräknare "Kunna använda enkel vardagsmatematik i samband med tex jämförelsepris, bensinförbrukning, medelfart 3. Ha goda färdigheter i räkning med procent i huvudet, med hjälp av skriftliga räknemetoder och med miniräknare "Kunna räkna ut procenttalet "Kunna räkna ut det hela om man känner procentsatsen och delen "Kunna använda förändringsfaktorn "Kunna räkna med upprepade procentuella förändringar 5. "Kunna formulera och lösa problem utifrån givna matematiska begrepp och metoder, så att man kan följa tankegången i uppgiften 3. Ha goda färdigheter i räkning med procent i huvudet, med hjälp av skriftliga räknemetoder och med miniräknare "Kunna förstå begreppet procentenhet 5. "Kunna använda formler och själv ställa upp formler för ett givet problem "Kunna överföra ett vardagsproblem till en abstrakt nivå "Kunna föra matematiska resonemang
5 Moment Godkänd Väl Godkänd Mycket väl godkänd Tabeller, diagram och grafer. 1. Kunna tolka tabeller och diagram. "ukunna avläsa och tolka tabeller. "ukunna avläsa och tolka stolp-, linje- och cirkeldiagram. 2 Kunna tolka, sammanställa, analysera och värdera data i tabeller och diagram. "ukunna göra ett enkelt stolp- och linjediagram. " kunna räkna ut medelvärde och median. 3. Kunna tolka och använda grafer till funktioner som beskriver verkliga förhållanden och händelser. 2. Kunna göra ett eget cirkeldiagram. " Kunna använda begreppen frekvens och relativ frekvens. 3. Kunna rita en graf till en förstagradsekvation. 2. Kunna kritiskt granska och värdera resultat samt pröva dess giltighet. 3. Kunna rita en graf till en andragradsfunktion.
6 Moment Godkänd Väl Godkänd Mycket väl godkänd Tid, massa Sannolikhet Ekvationslösningar 1. kunna använda metoder, måttsystem och mätinstrument för att jämföra, uppskatta och bestämma massor, tidpunkter och tidsskillnader. " ton, kg, hg, g, mg; år, kvartal, månad, vecka, dygn, h, min, s. " beräkna hur lång tid som gått mellan två klockslag inom en tolv timmars period. 1. kunna använda begreppet sannolikhet i enkla slumpsituationer Exempel: tärningar, olikfärgade kulor, spelkort. 1. kunna ställa upp och använda enkla formler och ekvationer vid problemlösning. " geometriska problem, hastighet och andra enkla textuppgifter. Exempel: A = b h och s = v t 1. Beräkna tidsskillnader. 2. Från decimaltal till timmar, minuter och sekunder och vice versa. 3. Att kunna/veta innebörden av decennium, sekel, millennium. 1. Kunna beräkna sammansatta händelser. 1. Kunna ställa upp och använda formler och ekvationer vid problemlösning. 2. Behärska den algebra som krävs för lösning av förstagradsekvationer (kvadrering, konjugat). 3. Kunna lösa enkla ekvationer. 1. Kunna beräkna sannolikheter ur vardagliga spelhändelser. Exempel: lotto, tips, bingolotto. 1. Kunna lösa ekvationssystem. 2. Kunna dela upp uttryck i faktorer.
7 Moment Godkänd Väl Godkänd Mycket väl godkänd Geometri 1. kunna känna igen, avbilda och beskriva viktiga egenskaper hos 2. kunna beräkna avstånd från kartan till verkligheten och vice versa. 1. cirkelsektor, cirkelsegment, bisektris, median och klot "triangel, kvadrat,rektangel och cirkel "kub, rätblock och cylinder 2. kunna känna igen "pyramid, kon och prisma 3. kunna tolka och använda ritningar och kartor 3. Kunna beräkna månghörningars vinkelsummor, Pytagoras sats och likformiga trianglar. 4. Kunna avbilda, beskriva samt beräkna volymen av pyramider, koner och prismor. kunna beräkna arean och omkretsen av sammansatta figurer. 2. kunna tolka och använda ritningar och kartor oavsett skala 3. kunna formulera en generell formel för vinkelsumman av en månghörning. Kunna använda likformighetsbegreppet på ett analyserande sätt. förstoringar, förminskningar, enkla skalor (1:10, 1:100, 1:1000 etc) 4. Kunna omvandla mellan km 2, ha, a 4. kunna använda metoder, måttsystem och mätinstrument för att jämföra, uppskatta och bestämma längder och vinklar: känna till mil, km, m, dm, cm, mm uppskatta vinklar (större eller mindre än 90 grader) 5. kunna använda metoder, måttsystem och mätinstrument för att jämföra, uppskatta och bestämma areor och volymer: beräkna omkrets och area av kvadrat, rektangel, spets- och rätvinklig triangel,
8 cirkel (π=3) i enheterna m 2, dm 2, cm 2, mm 2 uppskatta och beräkna volymen av en kub, rätblock, cylinder i enheterna liter, dl, cl, ml samt m 3, dm 3, cm 3 och mm 3 kunna omvandla inom enhetsgruppen och dessutom mellan dm 3 och liter
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Matematik Uppnående mål för år 6
Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.
Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Kunskapsmål och betygskriterier för matematik
1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod
Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.
ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.
1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Kommunövergripande Mål i matematik, åk 1-9
Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
Delkursplanering MA Matematik A - 100p
Delkursplanering MA1201 - Matematik A - 100p som du skall ha uppnått efter avslutad kurs Du skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen
MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
Betygskriterier i matematik på Parkskolan Namn: Klass:
Betygskriterier i matematik på Parkskolan Namn: Klass: Taluppfattning Utvecklar sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. Ha goda färdigheter i och kunna
kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri
Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Broskolans röda tråd i Matematik
Broskolans röda tråd i Matematik Regering och riksdag har faställt vilka mål som svenska skolor ska arbeta mot. Dessa mål uttrycks i Läroplanen Lpo 94 och i kursplaner och betygskriterier från Skolverket.
Mattestegens matematik
höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite
Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder
Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Tränar sig att se, upptäcka, lägga och kategorisera mönster med hjälp av ex. lego, pärlor, pussel och klossar.
Algebra utvecklar sin tal- och rumsuppfattning samt sin förmåga att förstå och använda grundläggande algebraiska begrepp, uttryck, formler, ekvationer och olikheter. Förskoleklass År 2 År 3 År 4 Tränar
Sammanställning av de 114 diagnosernas indelning i områden och delområden
Sammanställning av de 114 diagnosernas indelning i områden och delområden Områden Delområden Diagnoser Markering Nya diagnoser Diagnoser där någon uppgift är ändrad Nya diagnoser upp till årskurs 6 Nya
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004
5.6 MATEMATIK Hänvisning till punkt 7.6 i Lpgr 16.1.2004 Undervisningen i matematik skall hos eleverna utveckla det matematiska tänkandet, ge matematiska begrepp samt de mest använda lösningsmetoderna.
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
Skriv med siffror 0 0 0 0 0 0 0 0 0 00 0 00 0 00 0 000 00 000 0 000 00 00 0 000 0 000 000 0 00 000 00 Addition med uppställning 0 0 0 0 0 0 0 0 Subtraktion med uppställning 0 0 0 0 0 Multiplikation med
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Lokala betygskriterier Matematik åk 8
Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Storvretaskolans Kursplan för Matematik F-klass- år 5
2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -
År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Centralt innehåll i matematik Namn:
Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.
Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal
TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer
Lokal kursplan i matematik för Stehags rektorsområde
Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande
Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.
TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
identifiera geometriska figurerna cirkel och triangel
MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med
MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall
Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,
Formula 9 facit. 1 Beräkningar med positiva tal 1
Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Kursplan i Matematik för Alsalamskolan
Kursplan i Matematik för Alsalamskolan Vi kommer att använda oss av följande nyanserade ord, Känna till, Kunna och Förstå. Att känna till är att ha hört talas om, att kunna är att kunna använda och förstå
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Matematik 1A 4 Potenser
Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Sammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven
Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära
I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Ålder. KUB A x h=64 cm 3 2 2 +2. 3 x 2. cm 2. Kunskap 12 3,50 Y=8+X. ((9x4)-22-(7-8)) 0,25 1 4 25% 40 mm Kvadrat 4 cm 5+5 6+4 3+7 10 2+8 9+1 (3,11)
Ålder ((9x4)-22-(7-8)) KUB A x h=64 cm 3 2 2 +2 3 x 2 0,25 1 4 25% Y=8+X (1,9) (3,11) Ml-cl-dl Rät vinkel cm 2 5+5 6+4 3+7 10 2+8 9+1 40 mm Kvadrat 4 cm + 12 3,50 Kunskap 2 Innehållsförteckning Inledning
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Extramaterial till Start Matematik
EXTRAMATERIAL Extramaterial till Start Matematik Detta material innehåller diagnoser och facit till alla kapitel. Extramaterial till Start matematik 47-11601-0 Liber AB Får kopieras 1 70 Innehållsförteckning
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
Planering för kurs A i Matematik
Planering för kurs A i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs A Antal timmar: 90 (80 + 10) I nedanstående planeringsförslag tänker vi oss att A-kursen studeras på 90 klocktimmar.
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent. Elevens namn: Datum för prov HÄLLEBERGSSKOLAN
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Lärandemål E-nivå årskurs 9
Lärandemål E-nivå årskurs 9 Detta är vad ni behöver kunna för att nå E för kunskapskraven om begrepp och rutinuppgifter i matematik när ni slutar nian. Ni behöver klara av alla dessa moment. För att nå
Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Matematik 3000 kurs A
Studieanvisning till läroboken Matematik 3000 kurs A Innehåll Kursöversikt...4 Vad skall du kunna efter Matematik kurs A?...5 Så här jobbar du med boken...6 Studieenhet Arbeta med tal...7 Studieenhet Procent...12