Extramaterial till Matematik X
|
|
- Maja Ivarsson
- för 6 år sedan
- Visningar:
Transkript
1 LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TR Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna får träna sig på att pricka in koordinater i ett koordinatsystem och att läsa ut koordinaterna för olika punkter. De får även träna på begreppet proportionalitet och vad det innebär att en linje visar en proportionalitet. Slutligen får eleverna träna på att hitta information i ett koordinatsystem samt att tolka olika linjers lutning och skärningspunkter. SYFT Syftet med övningen är att eleven ska bekanta sig med ett digitalt hjälpmedel kunna ange koordinaterna för punkter i ett koordinatsystem träna på att pricka in punkter i ett koordinatsystem utifrån värden i en värdetabell förstå och kunna redogöra för begreppen proportionalitet. kunna avgöra om en linje är en proportionalitet. kunna hitta information i ett koordinatsystem. kunna jämföra olika betalningsalternativ. träna sig i att föra resonemang och argumentera. TIDSÅTGÅNG n lektion à 60 min. KOSTNAD Gratis UTRUSTNING Datorer eller lärplattor och webbsidan Desmos. XTRAMATRIAL TILL MATMATIK X LIBR AB FÅR KOPIRAS 1
2 RDOVISNING leven diskuterar med en klasskompis samt visar sina resultat för läraren under lektionen alternativt lämnar in in dem efteråt. Om det finns tid, kan gärna några elever visa sitt resultat i helklass. Del 3, uppgift c kan med fördel genomföras som en gruppdiskussion för att efterlikna den muntliga delen på nationella provet i matematik samt för att träna på att föra och följa matematiska resonemang. FALLGROPAR Om rutnätet försvinner eller om graderingen ändras i koordinatsystemet ska du kontrollera inställningarna. Det gör du genom att klicka på skiftnyckeln. Om en elev råkar radera något kan hen stega bakåt och framåt med pilarna ovanför. XTRAMATRIAL TILL MATMATIK X LIBR AB FÅR KOPIRAS 2
3 Klicka på en punkt i koordinatsystemet när du vill se punktens koordinater. För att gömma koordinaterna klickar du en gång till. Om punkterna inte syns i värdetabellen trots att eleven har skrivit in dem kan hen behöva zooma ut ( ). Om punkterna är väldigt små kan hen i stället zooma in (+). Klicka på dubbelpilarna om listan till vänster inte visas. Om tangentbordet inte visas klickar du på symbolen för tangentbordet. För att dela ett arbete väljer du Dela graf. Om du vill spara ditt arbete måste du först skapa ett konto. XTRAMATRIAL TILL MATMATIK X LIBR AB FÅR KOPIRAS 3
4 PDAGOGISKA TIPS Testa gärna verktyget själv först. Då får du en föraning om vilka eventuella problem eleverna kommer att stöta på. Släpp eleverna fria att testa olika funktioner. Genom att testa många olika funktioner, kan de börja se ett mönster mellan funktionen och linjens utseende. Visa till exempel y = sin x respektive y = cos x och kanske y = x 3. x 3 skrivs genom att skriva ett x och sedan klicka på den här symbolen på Desmos tangentbord: och därefter siffran 3. Som en sista roliga grej kan eleverna skriva in den här funktionen: Då visas följande bild i koordinatsystemet: XTRAMATRIAL TILL MATMATIK X LIBR AB FÅR KOPIRAS 4
5 FÖRMÅGOR formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband mellan begrepp, välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, föra och följa matematiska resonemang. NTRALT INNHÅLL Funktioner och räta linjens ekvation. Hur funktioner kan användas för att, såväl med som utan digitala verktyg, undersöka förändring, förändringstakt och samband. XTRAMATRIAL TILL MATMATIK X LIBR AB FÅR KOPIRAS 5
6 KUNSKAPSKRAV A Problemlösning 1, P1 leven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. leven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas sammanhanget. leven kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Begrepp 1 B1 leven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. leven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. leven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Begrepp 2 B2 leven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. leven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. leven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. Begrepp 3 B3 I beskrivningar av matematiska begrepp kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra. I beskrivningar av matematiska begrepp kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra. I beskrivningar av matematiska begrepp kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra. Metod leven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat. leven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat. leven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat. Resonemang I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. XTRAMATRIAL TILL MATMATIK X LIBR AB FÅR KOPIRAS 6
7 BDÖMNING Förmåga Nivå Kommentar för bedömning Testas i uppgift P1 leven testar sig fram för att hitta fler koordinater för att snygga till hjärtats form. leven utgår från koordinatsystemet för att finna fler koordinater som passar in i hjärtat. leven har en strategi för att skriva ett eget uttryck som beskriver en proportionalitet. uppgift 3 uppgift 3 del b: uppgift c4 B1 leven behärskar begreppet proportionalitet. uppgift a2 leven behärskar begreppet koordinater. hela uppgiften A leven visar god begreppsförståelse genom att använda relevanta begrepp när hen samtalar om och redovisar sina uppgifter. leven visar på mycket god begreppsförståelse genom att använda relevanta begrepp på ett korrekt sätt. hela uppgiften hela uppgiften B2 leven kan berätta om vad som kännetecknar en proportionalitet. uppgift a2 leven kan motivera vilka linjer som visar respektive inte visar en proportionalitet. uppgift b6 B3 leven kan koppla samman de flesta värdena i tabellen med punkterna i koordinatsystemet. leven kan med säkerhet koppla samman samtliga värden i tabellen med punkterna i koordinatsystemet. leven har en större förståelse för vad olika uttryck beskriver och kan koppla samman skillnader i själva uttrycken, med skillnader i linjernas placering i koordinatsystemet och lutning. uppgift 2 uppgift 2 uppgift b5 och c2 M leven kan använda sig av värdetabell och koordinatsystem. leven kan berätta om vad som visas på x- respektive y-axel. leven kan hitta information om pris genom att läsa av linjerna i koordinatsystemet. uppgift c3 4 uppgift c5 leven visar förståelse för linjernas skärningspunkter. uppgift c6 A leven använder uttryck och/eller koordinatsystemet för att göra beräkningar och för att kunna jämföra olika betalningsmetoder. uppgift c6 9 R A leven är delaktig i diskussionerna genom att föra och följ matematiska resonemang. Hen framför och bemöter matematiska argument på ett sätt som till viss del för resonemangen framåt. leven är delaktig i diskussionerna genom att föra och följa matematiska resonemang. Hen framför och bemöter matematiska argument på ett sätt som för resonemangen framåt. leven för och följer matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. uppgift c6 9 uppgift c6 9 uppgift c6 9 XTRAMATRIAL TILL MATMATIK X LIBR AB FÅR KOPIRAS 7
Extramaterial till Matematik X
LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TVÅ Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna
Extramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TT Samband och förändring LÄRAR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Desmos. leverna
Extramaterial till Matematik Y
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TT Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra
Extramaterial till Matematik Y
LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TVÅ Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra
Extramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TT Sannolikhet LÄRAR Nu ska du och dina elever få bekanta er med Google Kalkylark. I den här uppgiften får eleverna öva sig i att
Extramaterial till Matematik X
LIBR PROGRAMMRING OCH DIGITAL KOMPTNS xtramaterial till Matematik X NIVÅ TVÅ Sannolikhet LÄRAR Nu ska du och dina elever få bekanta er med Google Kalkylark. I den här uppgiften får eleverna öva sig i att
Extramaterial till Matematik X
LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna
Extramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Samband och förändring ELEV Du kommer nu att få bekanta dig med det digitala verktyget Desmos. I den här uppgiften får
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Extramaterial till Matematik X
LIBER PROGRAMMERING OH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ TVÅ Statistik LÄRARE I den här uppgiften kommer dina elever att använda sig av kalkylprogrammet Google Kalkylark. Deras uppgift
Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Extramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ TVÅ Samband och förändring ELEV Du kommer nu att få bekanta dig med det digitala verktyget Desmos. I den här uppgiften får
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Matematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Extramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ ETT Samband och förändring ELEV Du kommer nu att få bekanta dig med det digitala verktyget Desmos. I den här uppgiften får
_ kraven i matematik åk k 6
Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.
Extramaterial till Matematik X
LIBER PROGRMMERING OH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Sannolikhet LÄRRE Nu ska du och dina elever få bekanta er med Google Kalkylark. I den här uppgiften får eleverna öva sig i
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
Extramaterial till Matematik X
LIBER PROGRMMERING OCH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Programmering LÄRRE I den här uppgiften får du och dina elever en introduktion till programmering. Uppgiften vänder sig först
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
"Procent och sannolikhet 6D"
"Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
Planering Matematik åk 8 Samband, vecka
Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med
9A Ma: Statistik och Sannolikhetslära
9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Planering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Ma7-Åsa: Statistik och Sannolikhetslära
Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
9F Ma: Aritmetik och bråkbegreppet
9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
8F Ma: Aritmetik och bråkbegreppet
8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri
Ma Åk7-Conor: Aritmetik och bråkbegreppet
Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Ma Åk7-Conor: Aritmetik och bråkbegreppet Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Syfte med undervisningen är att du ska få utveckla din förmåga att...
Planering, kapitel 1 Statistik samt sannolikhet. Syfte med undervisningen är att du ska få utveckla din förmåga att... formulera och lösa problem med hjälp av matematik samt värdera valda strategier och
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
8E Ma: Aritmetik och bråkbegreppet
8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och
Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.
Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:
PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Såhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar
ALGEBRA & EKVATION PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 VT 2013 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja
8D Ma:bråk och procent VT 2018
8D Ma:bråk och procent VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp
8C Ma: Bråk och Procent
8C Ma: Bråk och Procent Syftet med undervisningen är att du ska utveckla din förmåga att: med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
Algebra och Ekvationer År 7
Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom
7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att:
7C Ma: VT 2018 Bråk och Procent/ statistik och sannolikhet Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier
9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Tummen upp! Matte ÅK 6
Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är
Observationsschema Problemlösningsförmåga
Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Geometri år 7C och 7D vt-14
Gemetri år 7C ch 7D vt-14 Förankring i kursplanens syfte I matematik tränas elevernas förmåga att: frmulera ch lösa prblem med hjälp av matematik samt värdera valda strategier ch metder använda ch analysera
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Kunskapskrav och nationella prov i matematik
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 46-51 HT 2015
Matematik Arbetslag: Gamma Klass: 8 S Veckor: 46-51 HT 2015 Samband och förändring Att kunna förstå och använda modeller för samband och förändring är viktigt för att ta del av och förstå tillexempel ekonomi
TALSYSTEMET. Syfte Lgr 11
TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Kunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
PROBLEMLÖSNING. strategier och övningar för åk 4-6 kopieringsunderlag. Innehållsförteckning
strategier och övningar för åk 4-6 kopieringsunderlag Innehållsförteckning Vad är problemlösning? 2 Lärarsida - Problem för pedagoger 3 Att läsa och lösa problem 4 Självskattning 5 Strategier Innehåll,
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
PRÖVNINGSANVISNINGAR
Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.
Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs