Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson
|
|
- Ellen Arvidsson
- för 9 år sedan
- Visningar:
Transkript
1 Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson
2 Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens arbete med de nationella proven Validitet och reliabilitet Allt hänger ihop Den skickliga läraren / Astrid Pettersson
3 PRIM-gruppen Forskningsgruppen för bedömning av kunskap och kompetens Gruppen utvecklar olika instrument för bedömning och utvärdering och ger kompetensutveckling inom bedömningsområdet samt bedriver forskning. Läs mer på
4 Uppdrag från Skolverket Ämnesprov i matematik för åk 3, åk 6 och åk 9 Kursprov i kurs 1a, 1b och 1c för gymnasieskolan Material som ska ge stöd för lärare att följa elevers kunskapsutveckling i matematik Material som ska ge hjälp att tolka och konkretisera kunskapskraven i Lgr 11 Internationella utvärderingar PISA Bedömningsstöd i yrkesämnen
5 Exempel på övriga uppdrag Kommunala utvärderingar i matematik (UiM) för åk 2, 5 och 8 Reggio Emilias skolprojekt Kompetensutvecklingssatsning om Bedömning för lärande i Stockholm stad
6 - Vad är bedömning? - Varför bedömning? Från relativ till mål och kunskapsrelaterat - bedömningssystem Bedömningen speglar - Syn på kunskap och lärande och undervisning - Syn på ämnet / Astrid Pettersson
7 Att göra det väsentligaste bedömbart och inte det enkelt mätbara till det väsentligaste Vad är det väsentligaste att kunna i matematik? Vilka bedömningssituationer och uppgifter fokuserar det väsentligaste? Det är bara den visade kunskapen som kan bedömas. Hur ska vi göra för att eleverna ska visa sin kunskap? / Astrid Pettersson
8 Lgr 11 Kursplanen Matematisk verksamhet utmärks av sökande, utforskande och resonerande aktiviteter kräver en förtrogenhet med begrepp, metoder och uttrycksformer Kursplanen lyfter vikten av att möta och använda matematik i olika sammanhang och situationer inom olika ämnesområden kommunicera matematik med olika uttrycksformer
9 Lgr 11 Skolan ansvarar för att varje elev efter genomgången grundskola - kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet - Behärskar grundläggande matematiskt tänkande och kan tillämpa det i vardagslivet (Lpo 94) / Astrid Pettersson
10 Lgr 11 Gy2011 Kursplanens/ämnesplanens tre dimensioner Kunskapskrav Förmågor
11 Förmågor Lgr 11 Problemlösningsförmåga Begreppsförmåga Metodförmåga Resonemangsförmåga formulera och lösa matematiska problem samt värdera valda strategier och metoder använda och analysera matematiska begrepp samt samband mellan begreppen välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter föra och följa matematiska resonemang Kommunikationsförmåga använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
12 Utgå från förmåga och formulera bedömningssituationer/uppgifter Utgå från en uppgift och analysera vilka förmågor som är möjliga att visa med uppgiften Utgå från elevarbeten och analysera vilka förmågor som eleven visat / Astrid Pettersson
13 Vilken/vilka förmåga/förmågor ger uppgiften möjlighet att visa?
14 Vilka förmågor visar elevens arbete?
15 Vilka förmågor visar elevens arbete?
16 Centralt innehåll -rubriker Förskola Grundskola Gymnasieskola 1a 1b 1c Mängder, antal, ordning, talbegrepp Tal och tals användning Algebra Taluppfattning, aritmetik, algebra Rum, form, läge, riktning, mätning Förändring, tid Geometri Sannolikhet och Statistik Samband och förändring Problemlösning Geometri Sannolikhet och Statistik Samband och förändring Problemlösning
17 Åk 3 Åk 6 Åk 9 Algebra A61 Obekanta tal och deras egenskaper samt situationer där det finns behov av att beteckna ett obekant tal med en symbol. A91 Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. A32 Matematiska likheter och likhetstecknets betydelse. A34 Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas. A62 Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven. A63 Metoder för enkel ekvationslösning. A64 Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas A92 Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven. A93 Metoder för ekvationslösning.
18 Åk 3 Åk 6 Åk 9 Samband och förändring F31 Olika proportionella samband, däribland dubbelt och hälften. F61 Proportionalitet och procent samt deras samband. F62 Grafer för att uttrycka olika typer av proportionella samband vid enkla undersökningar. F91 Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. F63 Koordinatsystem och strategier för gradering av koordinataxlar F94 Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
19 Förmågor och centralt innehåll i Lgr 11 Taluppfattning och tals användning Algebra Geometri Statistik och sannolikhet Samband och förändring Problem -lösning Problemlösning Begrepp Metod Resonemang Kommunikation
20 Förmågor och kunskapskrav Problemlösning Betyget E Betyget C Betyget A Begrepp Metod Resonemang Kommunikation
21 Åk 3 Godtagbara Åk 6 Betyget E Åk 9 Betyget E Metod Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar med naturliga tal och lösa enkla rutinuppgifter med tillfredställande resultat. Eleven kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0-20, samt för beräkningar av enkla tal i ett utvidgat talområde. Vid addition och subtraktion kan eleven välja och använda skriftliga räknemetoder med tillfredställande resultat när talen och svaren ligger inom heltalsområdet Eleven kan även avbilda och, utifrån instruktioner, konstruera enkla geometriska objekt samt hantera enkla matematiska likheter och använder då likhetstecknet på ett i huvudsak riktigt sätt. Eleven kan göra enkla mätningar, jämförelser och uppskattningar av längder, massor, volymer och tider och använder vanliga måttenheter för att uttrycka resultatet. Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat
22 Kunskapskrav åk 6 Metod Betyget E Betyget C Betyget A Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
23 Förmågor och kunskapskrav Betyget E Betyget C Betyget A Problemlösning E P C P A P Begrepp E B C B A B Metod E M C M A M Resonemang E R C R A R Kommunikation E K C K A K
24 Kunskapskrav och värdeord - Kunskapskraven utgår från förmågorna och ger en helhetsbild av elevens kunnande - Varken förmågorna eller delar av kunskapskraven är särskiljande utan går i varandra - Värdeorden beskriver de olika kvalitetsnivåerna i kunnandet Astrid Pettersson, PRIM, MND
25 Analys av elevarbeten Metodförmågan - Hur metoden genomförs - Hur väl metoden anpassas till uppgiften - Hur metoden anpassas till situationen eller sammanhanget - Hur utvecklingsbar den valda metoden är - Hur generell metoden är Astrid Pettersson
26 Nike gör 2 smörgåsar och Anton gör 3 smörgåsar på samma tid. De gör 100 smörgåsar tillsammans. Hur många smörgåsar gör Anton? I huvudsak fungerande Ändamålsenliga Ändamålsenliga och effektiva Astrid Pettersson, PRIM, MND
27 Syftet med nationella provsystemet Är i huvudsak att stödja en likvärdig och rättvis bedömning och betygssättning ge underlag för en analys av i vilken utsträckning kunskapskraven nås på skolnivå, på huvudmannanivå och på nationell nivå De nationella proven kan också bidra till att konkretisera kursplanerna och ämnesplanerna en ökad måluppfyllelse för eleverna Proven är inte utformade så att de prövar elevens kunskaper mot alla kunskapskrav och centralt innehåll
28 Arbetets uppläggning med det nationella provsystemet fr. o. m. 1994/95 Språkgranskning Ev ny utprövning Bearbetning av utprövning Sammanställning av slutliga versioner, provspecifikationer, bedömningar, autentiska elevlösningar mm. Kravgränssättning Sammanställning av provdelar med bedömningsanvisningar Uppgiftsgranskning Utprövning Uppgiftskonstruktion Principiella diskussioner
29 Arbetets uppläggning med det nationella provsystemet forts Bearbetning av data
30 Bedömningsprocessen - Styrdokument - Verksamhetens och undervisningens inriktning - Vad? - Hur? - Analysera och tolka - Dokumentera - Kommunicera - Gensvar hur gå vidare?
31 Validitet vadfrågan Trovärdighet att bedöma det som ska bedömas Riskerna: underrepresentation och irrelevans / Astrid Pettersson
32 Reliabilitet - hurfrågan Tillförlitlighet Att bedöma likvärdigt Inter/intrareliabilitet - Överens med sig själv och andra / Astrid Pettersson
33 Allt hänger ihop För att bedömning ska kunna vara ett kraftfullt verktyg för lärande måste bedömning ses i ett sammanhang Vi kan inte frikoppla bedömning från undervisningen
34
35 Den skickliga läraren Fokus på vad som är väsentligt att kunna En god lärandemiljö med bra relationer till eleverna Situationsanpassar undervisningen Följer upp och ger framåtsyftande feedback Höga och realistiska förväntningar på eleverna (och på sig själv som lärare) Goda kunskaper och kan använda sina kunskaper i samspel med elever och skolans uppdrag (C Robertsson) / Astrid Pettersson PRIM-gruppen
36 / Astrid Pettersson
37 Självbedömning som lärare, se bedömarträningsmaterialet i engelska för Äp6 Jag relaterar alltid min bedömning till styrdokumenten Mina elever vet vad som kommer att bedömas Jag kan se styrkor i elevernas arbeten Jag kan se svagheter i elevernas arbeten Jag kan ge konstruktiv feedback Jag kan hjälpa eleverna att bedöma sina egna prestationer Jag låter alltid eleverna ge förslag på hur undervisningen kan förbättras / Astrid Pettersson PRIM-gruppen
Kunskapskrav och nationella prov i matematik
Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens
Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Gunilla Olofsson
Bedömning av kunskap för lärande och undervisning i matematik PRIM-gruppen Gunilla Olofsson PRIM-gruppen Forskningsgruppen för bedömning av kunskap och kompetens Gruppen utvecklar olika instrument för
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
2014-09-26. Dagens innehåll. Syftet med materialet är att. Bedömning för lärande i matematik. Katarina Kjellström
Bedömning för lärande i matematik Växjö 18 september 2014 Katarina Kjellström PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet Varför ser det ut som det
matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55
Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att
Bedömning för lärande i matematik
Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet
Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Katarina Kjellström
Bedömning av kunskap för lärande och undervisning i matematik PRIM-gruppen Katarina Kjellström PRIM-gruppen Forskningsgruppen för bedömning av kunskap och kompetens Gruppen utvecklar olika instrument för
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
Kursplan Grundläggande matematik
2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Kurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ
Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lgr 11 Nya kursplaner Nytt betygssystem
Lgr 11 Nya kursplaner Nytt betygssystem Nya betygsskalan A-F samt - F= ej klarat kunskapskraven för lägsta nivå E - = det finns ej underlag för en bedömning. Det livslånga lärandet. Samma förmågor hela
Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik
prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.
Förslag den 25 september Matematik
Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN
RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Göteborg 23 november 2011 PRIM-gruppen Astrid Pettersson
Bedömning av kunskap för lärande och undervisning i matematik Göteborg 23 november 2011 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Lgr 11 och matematik Det nationella provsystemet
Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen
Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen Inledning Konstruktionen av de nationella ämnesproven utgår från syftet med dessa, d.v.s. att stödja en likvärdig och rättvis bedömning
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Inledning...3. Kravgränser...21. Provsammanställning...22
Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21
Problemlösning som metod
Problemlösning som metod - för att lära matematik Fuengirola november 2014 eva.taflin@gu.se evat@du.se Problemlösningsmodulens övergripande syfte Att initiera utveckling av lärares egen undervisning utifrån
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Studenter i lärarprogrammet Ma 4-6 I
Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Kunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Målet med undervisningen är att eleverna ges förutsättningar att:
Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat
Katarina Kjellström Ett bedömningsstöd för grundskolans matematiklärare På Skolverkets webbplats finns nu ett fritt tillgängligt bedömnings stöd. Artikel författaren har deltagit i arbetet med att ta fram
Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.
1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
MATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta
Med fokus på matematik
SKOLVERKETS AKTUELLA ANALYSER 2015 Med fokus på matematik Analys av samstämmighet mellan svenska styrdokument och den internationella studien PISA Med fokus på matematik Analys av samstämmighet mellan
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Bedömning för lärande i matematik. PRIM-gruppen. Inger Ridderlind. Inger Ridderlind, PRIM-gruppen
Bedömning för lärande i matematik Workshop 15 juni 16 juni Inger Ridderlind PRIM-gruppen Workshop Komma igång med materialet Avgränsa ett Tema- Kunskapsområde Algebra (Samband och förändring) Hela materialet
_ kraven i matematik åk k 6
Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.
Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72
Sedan vårterminen 2009 görs nationella prov i svenska och matte för årskurs 3 i hela landet. Från och med höstterminen 2009 får varje elev i Valdemarsviks kommun skriftligt omdöme varje termin i de ämnen
Kursplanen i ämnet matematik
DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kursplanen i ämnet matematik Läsåret 2011/12 införs en samlad läroplan för var och en av de obligatoriska skolformerna grundskolan, grundsärskolan, sameskolan
Matematik åk 9. Lärarinstruktion Digital diagnos Matematik Åk 9
träning Insikt Lärarinstruktion Digital diagnos Matematik Åk 9 1 Till läraren Diagnosen Pejlo Insikt för åk 9 är framtagen för att ge dig som lärare överblick över dina elevers kunskaper i matematik. Diagnosen
Kursplan för Matematik
Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för
Nationella prov i åk 6 ur ett skolledarperspektiv
Nationella prov i åk 6 ur ett skolledarperspektiv Lena Löfgren lena.lofgren@hkr.se Britt Lindahl britt.lindahl@hkr.se Diagnoser ino bakgrund och erfarenheter för arbete med NP Diagnosmaterialets övergripande
Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.
Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Dagens innehåll Bedömning för lärande i matematik. PRIM-gruppen. Inger Ridderlind och Anette Skytt. Vad är syftet med detta bedömningsstöd
Bedömning för lärande i matematik Seminarium 30 september Inger Ridderlind och Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbetat med materialet Varför ser
Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven
Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära
Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap
Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik
Handlingsplan Matematik F - Gy
Utveckling av matematiska förmågor 2013 Handlingsplan Matematik F - Gy Svedala kommun 2013-01-25 Utveckling av matematiska förmågor Handlingsplan Matematik F GY Att kunna matematik Undervisningen ska bidra
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
Hur ska måluppfyllelsen öka? Matematiklyftet
Matematiklyftet Ökad måluppfyllelse Hur ska måluppfyllelsen öka? Matematiklyftet Fortbildning i matematikdidaktik för alla matematiklärare Stöd för arbetet med matematik i förskolan och förskoleklassen
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande:
Matematik Skolverkets förslag, redovisat för regeringen 2010-09-23. Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans
Observationsschema Problemlösningsförmåga
Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Matematik för alla 15 högskolepoäng Provmoment: Matematik 3hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet SMEN/GSME/MIG 2 TentamensKod: Tentamensdatum: 12-02-03 Tid: 09.00-13.00 Hjälpmedel:
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
Lokal pedagogisk planering i matematik för årskurs 8
Lokal pedagogisk planering i matematik för årskurs 8 Arbetsområde 2. Algebra Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera över matematikens
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth
Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
ÄMNESPROV. Matematik ÅRSKURS. Vårterminen 2009. Sekretess t.o.m. 2009-06-30. Lärarinformation om hela ämnesprovet Delprov A med bedömningsanvisningar
ÄMNESPROV Matematik ÅRSKURS 9 Vårterminen 009 Sekretess t.o.m. 009-06-30 Lärarinformation om hela ämnesprovet Delprov A med bedömningsanvisningar Förvara detta provhäfte på ett betryggande sätt Prov som
Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del
prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Matematik - Åk 9 Funktioner och algebra Centralt innehåll
Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Matematikpolicy Västra skolområdet i Linköping
Matematikpolicy Västra skolområdet i Linköping Syfte Denna matematikpolicy är framtagen i syfte att underlätta och säkerställa arbetet med barns och elevers matematiska utveckling på förskolorna och skolorna
Elever med funktionsnedsättning betyg och nationella prov. Helena Carlsson Maj Götefelt Roger Persson
Elever med funktionsnedsättning betyg och nationella prov Helena Carlsson Maj Götefelt Roger Persson Betyg och nationella prov Strukturerad undervisning Bedömning och betyg Undantagsbestämmelsen Nationella
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng
Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter
Planering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer
Om Favorit matematik för åk 4-6 och Lgr 11
Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning