Lokal pedagogisk planering i matematik för årskurs 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Lokal pedagogisk planering i matematik för årskurs 8"

Transkript

1 Lokal pedagogisk planering i matematik för årskurs 8 Arbetsområde 2. Algebra Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera över matematikens betydelse, användning och begränsning i vardagslivet, i andra skolämnen och under historiska skeenden och därigenom kunna se matematikens sammanhang och relevans. använda och analysera matematiska begrepp och samband mellan begrepp. välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter. föra och följa matematiska resonemang. använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. uppleva matematik som en utmanande, kreativ och estetisk verksamhet. använda digital teknik för matematiskt arbete. Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven. Metoder för ekvationslösning. Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden. Enkla matematiska modeller och hur de kan användas i olika situationer. 1

2 Kunskapskrav Konkretiserade mål Till exempel Kunna beskriva logiska mönster med ord och enkla matematiska formler. beskrivs med formeln 2n - 1 Ex. på talserie: 1,3,5,7,9 Veta vad algebraiska uttryck är. Kunna beräkna värdet av ett uttryck. 3a 4b Värdet av uttrycket i rutan ovan om a=5 och b=2 blir = 15 8 = 7 Kunna förenkla uttryck med parantes. 5+(x + 3) = 5+x+3 = 8+x 4-(y-2) = 4-y+2 = 6-y Kunna multiplicera uttryck med parantes. 5(2x-3) = 10x (3x-4) = 3-(6x-8) = 3-6x+8 = 11-6x Veta att en ekvation är en likhet med minst en obekant. Den består av två led, vänstra och högra ledet. Vanligen förkortas dessa VL och HL. 6x - 4 = 26 Kunna lösa enkla ekvationer. 6x 4 = 26 6x = x = 30 6x x = 5 Kunna lösa ekvationer innehållande parantes. 4(x+2) = 40 4x+8 = 40 4x = 32 X = 8 Kunna pröva om ett tal är lösning till en ekvation. Pröva om y = 4 är lösning till ekvationen 6y 10 = 22 2y VL = = = 14 HL = = 22 8 = 14 VL = HL y = 4 är en lösning till ekvationen 2

3 Kunna lösa problem genom att först teckna och därefter lösa ekvationer. Arne är 8 gånger äldre än sin sonson Adrian. Tillsammans är de 72 år. Hur gamla är Arne och Adrian? x + 8x = 72 9x = 72 X = 8 Svar: Adrian är 8 år och hans farfar är 8 8 = 64 år. Viktiga begrepp (ord) att förstå: Algebra, mönster, aritmetisk talföljd, geometrisk talföljd, formel, numeriskt uttryck, algebraiskt uttryck, variabel, förenkla, likhet, ekvation, obekant och prövning. Arbetssätt genomgång och diskussion arbete, enskilt och i grupp laborativt arbete Bedömning Du kommer att bedömas utifrån hur VÄL du visar att du behärskar nedanstående förmågor Begrepp- I vilken grad du visar kunskaper om matematiska begrepp och samband mellan dessa. Metoder- Kvaliteten på metoder du använder, hur väl procedurer och beräkningar genomförs. Med metod menas genomförande av metod/procedur. Problemlösning- Hur väl du använder samband och generaliseringar. Val av strategi/metod för att lösa uppgiften. Hur väl du kan lösa en uppgift där lösningsmetoden inte är given i frågeställningen. Resonemang- Kvaliteten på dina slutsatser, analyser och reflektioner och andra former av matematiska resonemang. Kommunikation- Kvaliteten på din redovisning och hur väl du använder matematiskt språk och uttrycksformer. Hur tydlig du är i dina redovisningar av lösningarna. 3

4 Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra. Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredsställande resultat. samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till För de olika kunskapsnivåerna gäller följande: Kunskapskrav betyg E Kunskapskrav betyg C Kunskapskrav betyg A bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt. bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget. Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativa tillvägagångs- bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget. Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt. sätt. Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra. Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat. samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra. Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat. samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska 4

5 syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt. till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. uttrycksformer med god anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. Examination laborativt arbete läxförhör muntliga och skriftliga prov 5

KOSMOS - Små och stora tal

KOSMOS - Små och stora tal Undervisning KOSMOS - Små och stora tal Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer

Läs mer

Du kommer känna igen en del av området och få chansen att repitera detta men samtidigt kommer du att stöta på lite nytt.

Du kommer känna igen en del av området och få chansen att repitera detta men samtidigt kommer du att stöta på lite nytt. Aritmetik för år 9 Under några veckor kommer vi att arbeta med området Tal. Du kommer känna igen en del av området och få chansen att repitera detta men samtidigt kommer du att stöta på lite nytt. Som

Läs mer

Matematik - Åk 8 Geometri

Matematik - Åk 8 Geometri Matematik - Åk 8 Geometri Centralt innehåll Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. Geometriska satser och formler och behovet av

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Syfte Lgr 11 Meningen med att du ska läsa matematik i skolan är för att du ska utveckla förmågan att

Syfte Lgr 11 Meningen med att du ska läsa matematik i skolan är för att du ska utveckla förmågan att Lokal Pedagogisk Planering i Matematik S7 Ämnesområde: Bråk och procent Ansvarig lärare Birgitta Lindgren E-post Birgitta.lindgren@live.upplandsvasby.se Syfte Lgr 11 Meningen med att du ska läsa matematik

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Matematik 5 PRÖVNINGSANVISNINGAR Kurskod MATMAT05 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 5 Skriftligt prov, 4h Teoretiskt prov Bifogas Provet består av två delar.

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 7

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 7 PLANERING OCH BEDÖMNING MATEMATIK ÅK 7 TERMINSPLAN HÖSTTERMINEN ÅK 7: 1 FÖRDIAGNOS 2 FYRA RÄKNESÄTT 3 FYRA RÄKNESÄTT 4 1.1 NATURLIGA TAL 5 1.2 NEGATIVA HELA TAL 6 1.3 TAL I BRÅKFORM 7 FORTS. 1.3 TAL I

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Planering Matematik år 9 Repetition inför nationella provet

Planering Matematik år 9 Repetition inför nationella provet Planering Matematik år 9 Repetition inför nationella provet Centralt innehåll Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.

Läs mer

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka Matematik Enheter - Tid Utveckla och Känner till några enheter och enstaka mätinstrument. Utför enkla mätningar. Avläser analoga och digitala tider.använder både muntliga och skriftliga metoder samt tekniska

Läs mer

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III TentamensKod: Tentamensdatum:

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

NO Fysik Åk 4-6. Syfte och mål

NO Fysik Åk 4-6. Syfte och mål NO Fysik Åk 4-6 Syfte och mål Undervisningen i ämnet fysik ska syfta till att eleverna utvecklar kunskaper om fysikaliska sammanhang och nyfikenhet på och intresse för att undersöka omvärlden. Genom undervisningen

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.

Läs mer

Varierad undervisning för lust a1 lära

Varierad undervisning för lust a1 lära Varierad undervisning för lust a1 lära Per Berggren & Maria Lindroth 2012-01- 17 Lgr11- Matema@ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3

Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3 Kunskapskraven åk k 3 - matematik 20 Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3 Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med

Läs mer

Bild Engelska Idrott

Bild Engelska Idrott Bild skapa bilder med digitala och hantverksmässiga tekniker och verktyg samt med olika material, kommunicera med bilder för att uttrycka budskap, undersöka och presentera olika ämnesområden med bilder,

Läs mer

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri

Läs mer

_ kraven i matematik åk k 6

_ kraven i matematik åk k 6 Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Studenter i lärarprogrammet KKME. Lgr 11, miniräknare och skrivmaterial. 32 p 16 p

Studenter i lärarprogrammet KKME. Lgr 11, miniräknare och skrivmaterial. 32 p 16 p Matematik i grundskolan 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: 4,5 högskolepoäng Matematik (rumsuppfattning, statistik, sannolikhetslära, algebra och funktioner) Studenter i lärarprogrammet

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Upplägg och genomförande - kurs D

Upplägg och genomförande - kurs D Upplägg och genomförande - kurs D Provet består av fyra delprov: Läsa A och B Höra Skriva Tala Läsförståelse Hörförståelse Skriftlig produktion Muntlig produktion och interaktion Tid på respektive provdel

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

BRA VIBRATIONER. Namn: Klass: Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012.

BRA VIBRATIONER. Namn: Klass: Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012. BRA VIBRATIONER Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012. Namn: Klass: Förmågor som vi kommer att träna på: Genomföra systematiska undersökningar i fysik. Använda begrepp, modeller

Läs mer

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas.

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Inledning... 4 Bedömningsanvisningar... 4 Allmänna bedömningsanvisningar...

Läs mer

valsituationer som rör energi, miljö, hälsa och samhälle. Undervisningen ska bidra till att eleverna utvecklar förtrogenhet med kemins begrepp,

valsituationer som rör energi, miljö, hälsa och samhälle. Undervisningen ska bidra till att eleverna utvecklar förtrogenhet med kemins begrepp, 1 KEMI Naturvetenskapen har sitt ursprung i människans nyfikenhet och behov av att veta mer om sig själv och sin omvärld. Kunskaper i kemi har stor betydelse för samhällsutvecklingen inom så skilda områden

Läs mer

3.9 Biologi. Syfte. Grundskolans läroplan Kursplan i ämnet biologi

3.9 Biologi. Syfte. Grundskolans läroplan Kursplan i ämnet biologi 3.9 Biologi Naturvetenskapen har sitt ursprung i människans nyfikenhet och behov av att veta mer om sig själv och sin omvärld. Kunskaper i biologi har stor betydelse för samhällsutvecklingen inom så skilda

Läs mer

Ämne - Fysik. Ämnets syfte

Ämne - Fysik. Ämnets syfte Ämne - Fysik Fysik är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld. Fysik behandlar allt från växelverkan mellan materiens minsta beståndsdelar

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

Modersmål - finska som nationellt minoritetsspråk

Modersmål - finska som nationellt minoritetsspråk Grundsärskolan Modersmål - finska som nationellt minoritetsspråk Sverigefinnar är en nationell minoritet med flerhundraåriga anor i Sverige. Deras språk finska är ett officiellt nationellt minoritetsspråk.

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr

Läs mer

Matematik - Åk 9 Funktioner och algebra Centralt innehåll

Matematik - Åk 9 Funktioner och algebra Centralt innehåll Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

Artikel/reportage år 9

Artikel/reportage år 9 7 9 LGR11 SvA Sv Artikel/reportage år 9 1 av 10 Artikel/reportage år 9 2 av 10 Planeringen gäller vecka 37-40 Pedagog: Katja Hellsten Ämne: svenska/svenska som andra språk Aktivitet under perioden: Veta

Läs mer

Problemlösning som metod

Problemlösning som metod Problemlösning som metod - för att lära matematik Fuengirola november 2014 eva.taflin@gu.se evat@du.se Problemlösningsmodulens övergripande syfte Att initiera utveckling av lärares egen undervisning utifrån

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

Föräldrabroschyr. Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan?

Föräldrabroschyr. Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan? Föräldrabroschyr Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan? Vad ska barnen lära sig i skolan? Tanken med den här broschyren är att ge Er föräldrar en bild av

Läs mer

DATORISERAD MÖNSTERHANTERING

DATORISERAD MÖNSTERHANTERING DATORISERAD MÖNSTERHANTERING Ämnet datoriserad mönsterhantering behandlar konstruktion av mönster, vilket är en förutsättning för tillverkning av kläder. Vid konstruktion av mönster krävs ett helhetstänkande

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

8E Ma: Aritmetik och bråkbegreppet

8E Ma: Aritmetik och bråkbegreppet 8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och

Läs mer

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.

Läs mer

Konsekvenser sv/sva åk 8 vt 13

Konsekvenser sv/sva åk 8 vt 13 Konsekvenser sv/sva åk 8 vt 13 1 av 10 Konsekvenser sv/sva åk 8 vt 13 för 2 av 10 Planeringen gäller Pedagog: Mobina Chohan Dzankovic Ämne: sv/sva Aktivitet under perioden: Februari-Mars Tema: Konsekvenser

Läs mer

Planering Matematik åk 8 Algebra, vecka Centralt innehåll

Planering Matematik åk 8 Algebra, vecka Centralt innehåll Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

Betygskriterier MATEMATIK. År 9

Betygskriterier MATEMATIK. År 9 Betygskriterier MATEMATIK År 9 Allmänt ha förvärvat sådana kunskaper och färdigheter, som behövs för att kunna lösa problem i vardagliga situationer fortsätta studierna Vid bedömning av en elev tar man

Läs mer

Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson

Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Pedagogik GR (C), Pedagogik, 30 hp

Pedagogik GR (C), Pedagogik, 30 hp 1 (5) Kursplan för: Pedagogik GR (C), Pedagogik, 30 hp Education BA (C) Allmänna data om kursen Kurskod Ämne/huvudområde Nivå Progression Inriktning (namn) Högskolepoäng PE014G Pedagogik Grundnivå (C)

Läs mer

ALGEBRAISKT TÄNKANDE EN KORT HISTORISK EXPOSÉ ÖVER BEGREPP, UTTRYCKSSÄTT OCH ANVÄNDNINGSOMRÅDEN

ALGEBRAISKT TÄNKANDE EN KORT HISTORISK EXPOSÉ ÖVER BEGREPP, UTTRYCKSSÄTT OCH ANVÄNDNINGSOMRÅDEN ALGEBRAISKT TÄNKANDE EN KORT HISTORISK EXPOSÉ ÖVER BEGREPP, UTTRYCKSSÄTT OCH ANVÄNDNINGSOMRÅDEN MEN FÖRST något om kursens algebradel och den nya läroplanens mål angående algebra. SYFTE Syftet med kursens

Läs mer

Algebra och Ekvationer År 7

Algebra och Ekvationer År 7 Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom

Läs mer

Världshandel och industrialisering

Världshandel och industrialisering Pedagogisk planering i historia: Världshandel och industrialisering I vår moderna värld finns många som är rika och många som är fattiga. Flera orsaker finns till detta, men många av dem ligger långt tillbaka

Läs mer

Svenska som andraspråk, 1000 verksamhetspoäng

Svenska som andraspråk, 1000 verksamhetspoäng Svenska som andraspråk, 1000 verksamhetspoäng Ämnet handlar om hur svenska språket är uppbyggt och fungerar samt om hur det kan användas. Ämnet ger elever med annat modersmål än svenska en möjlighet att

Läs mer

Anvisningar för ansökan om bedömning av reell kompetens för grundläggande och/eller särskild behörighet

Anvisningar för ansökan om bedömning av reell kompetens för grundläggande och/eller särskild behörighet Malmö högskola / Gemensamt verksamhetsstöd Studentcentrum 1(5) September 2014 Anvisningar för ansökan om bedömning av reell kompetens för grundläggande och/eller särskild behörighet Reell kompetens vad

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet

Läs mer

Göteborg 23 november 2011 PRIM-gruppen Astrid Pettersson

Göteborg 23 november 2011 PRIM-gruppen Astrid Pettersson Bedömning av kunskap för lärande och undervisning i matematik Göteborg 23 november 2011 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Lgr 11 och matematik Det nationella provsystemet

Läs mer

Kurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000

Kurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000 Kurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000 Kursen ger elever med annat modersmål än svenska en möjlighet att utveckla sin förmåga att kommunicera på svenska. Ett rikt språk ger

Läs mer

Matris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4

Matris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4 Ur Kunskapskrav Lgr11 Bedömningsaspekter Förstå recept och instruktioner Matris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4 Behöver lärarstöd med att förstå och följa ett recept. Är

Läs mer

Såhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar

Såhär kommer vi att arbeta mot målen: Genomgångar, räkna i aktuellt kapitel, jobba med arbetsblad, läxor, muntliga redovisningar ALGEBRA & EKVATION PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 VT 2013 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

3.7.5 Modersmål - romani chib som nationellt minoritetsspråk

3.7.5 Modersmål - romani chib som nationellt minoritetsspråk 3.7.5 Modersmål - romani chib som nationellt minoritetsspråk Romer är en nationell minoritet med flerhundraåriga anor i Sverige. Deras språk romani chib är ett officiellt nationellt minoritetsspråk. De

Läs mer

Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare).

Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare). Lokal kursplan för Ängkärrskolan år 9 Rev. 009-09- Matematik år 9 MOMENT MÅL KRITERIER/EXEMPELl Taluppfattning, aritmetik Repetition av: Skriv med siffror tolv -Positionssystemet. hundradelar. 0,, 0,7

Läs mer

DESIGN. Ämnets syfte. Kurser i ämnet

DESIGN. Ämnets syfte. Kurser i ämnet DESIGN Ämnet design behandlar den arbetsprocess där man medvetet och innovativt utvecklar produkter så att de uppfyller målgruppens funktionella och estetiska krav. Ibland är design ett led i att utveckla

Läs mer

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29 Bedömning för lärande i matematik i praktiken Per Berggren och Maria Lindroth 2012-11-29 Inlärningsnivåer i matematik 1. Intuitiv tänka, tala 2. Konkret göra och pröva 3. Representationsformer synliggöra

Läs mer

Planering - LPP Fjällen år 5 ht-16

Planering - LPP Fjällen år 5 ht-16 Planering - LPP Fjällen år 5 ht-16 Under en månads tid kommer du att få lära dig mer om livet i de svenska fjällen, vilka djur och växter som trivs där samt vilka ekosystemstjänster som är tillgängliga.

Läs mer

Vad är det att vara en bra brandman? Vad kan man då?

Vad är det att vara en bra brandman? Vad kan man då? Vad är det att vara en bra brandman? Vad kan man då? Vad säger omvärlden? Youtube? Bra brandman? Google? Bra brandman? Varför bedömning som lärande? Många föreställningar och erfarenheter Inget är så dåligt

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 4 6 Tydlig och medveten matematikundervisning En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

Ä mne Matematik. Ämnets syfte. 2016-04-20 Remissversion

Ä mne Matematik. Ämnets syfte. 2016-04-20 Remissversion Ä mne Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Kristendomen i världen och i Sverige

Kristendomen i världen och i Sverige Kristendomen i världen och i Sverige Vilka kors kan du? Ortodoxt kors Georgekors krucifix Latinskt kors Grekiskt kors Tyska ordens kors (järnkors) Lpp Katolska, Protestantiska och Ortodoxa kyrkan Under

Läs mer

Planering - Geometri i vardagen v.3-7

Planering - Geometri i vardagen v.3-7 Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Bedömningsgrunder och kriterier för examensarbete. Studenten ska för respektive omdöme:

Bedömningsgrunder och kriterier för examensarbete. Studenten ska för respektive omdöme: Bedömningsgrunder och kriterier för examensarbete. Studenten ska för respektive omdöme: Bedömningsgrunder Utmärkt Bra Tillräckligt Underkänt Självständigt planera och genomföra arbetet inom överenskomna

Läs mer

SKOLFS 2012:18. Kurs: Svenska Kurskod: GRNSVE2 Verksamhetspoäng: 1000

SKOLFS 2012:18. Kurs: Svenska Kurskod: GRNSVE2 Verksamhetspoäng: 1000 Kurs: Svenska Kurskod: GRNSVE2 Verksamhetspoäng: 1000 Språk är människans främsta redskap för reflektion, kommunikation och kunskapsutveckling. Genom språket kan människan uttrycka sin personlighet, uttrycka

Läs mer

använda ämnesspecifika ord, begrepp och symboler.

använda ämnesspecifika ord, begrepp och symboler. IDROTT OCH HÄLSA Fysiska aktiviteter och en hälsosam livsstil är grundläggande för människors välbefinnande. Positiva upplevelser av rörelse och friluftsliv under uppväxtåren har stor betydelse för om

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.

Läs mer

"Procent och sannolikhet 6D"

Procent och sannolikhet 6D "Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,

Läs mer

3.17 Svenska. Syfte. Grundskolans läroplan Kursplan i ämnet svenska

3.17 Svenska. Syfte. Grundskolans läroplan Kursplan i ämnet svenska 3.17 Svenska Språk är människans främsta redskap för att tänka, kommunicera och lära. Genom språket utvecklar människor sin identitet, uttrycker känslor och tankar och förstår hur andra känner och tänker.

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Viktoriaskolans kursplan i matematik år 3

Viktoriaskolans kursplan i matematik år 3 Viktoriaskolans kursplan i matematik år 3 Nationella kursplanens uppnåendemål för år 5 Eleven skall förstå och kunna använda addition, subtraktion, multiplikation och division samt kunna upptäcka talmönster

Läs mer

SVENSKA FÖR DÖVA OCH HÖRSELSKADADE ELEVER MED UTVECKLINGSSTÖRNING

SVENSKA FÖR DÖVA OCH HÖRSELSKADADE ELEVER MED UTVECKLINGSSTÖRNING SVENSKA FÖR DÖVA OCH HÖRSELSKADADE ELEVER MED UTVECKLINGSSTÖRNING Språk är människans främsta redskap för att tänka, kommunicera och lära. Genom språket utvecklar människor sin identitet, uttrycker känslor

Läs mer

KURSPLAN,! KUNSKAPSKRAV! ELEVARBETEN!

KURSPLAN,! KUNSKAPSKRAV! ELEVARBETEN! KURSPLAN, KUNSKAPSKRAV och exempel på ELEVARBETEN KURSPLAN enligt Lgr11 I undervisningen skall du få möjlighet att uttrycka tankar och idéer med hjälp bilder, du skall få möjlighet att skapa egna bilder

Läs mer

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007

Läs mer

Nationella prov i årskurs 3 våren 2013

Nationella prov i årskurs 3 våren 2013 Utbildningsstatistik 1 (8) Nationella prov i årskurs 3 våren 2013 Syftet med de nationella proven är i huvudsak att dels stödja en likvärdig och rättvis bedömning och betygsättning i de årskurser där betyg

Läs mer

Bilaga till ansökan om bidrag för utvecklingsinsatser i matematik

Bilaga till ansökan om bidrag för utvecklingsinsatser i matematik 1 (6) Bilaga till ansökan om bidrag för utvecklingsinsatser i matematik Skolhuvudmannens namn (gäller kommunala, statliga och fristående huvudmän) Linköpings kommun Namn på skolhuvudmannens företrädare

Läs mer

Undervisningsplanering i Matematik Kurs D (100 poäng)

Undervisningsplanering i Matematik Kurs D (100 poäng) Undervisningsplanering i Matematik Kurs D (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande

Läs mer

Kungsmarksskolan MATEMATIK. Skolan skall i sin undervisning i matematik sträva efter att eleven:

Kungsmarksskolan MATEMATIK. Skolan skall i sin undervisning i matematik sträva efter att eleven: Kungsmarksskolan MATEMATIK Lokal kursplan i ämnet Matematik Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för att fatta

Läs mer