Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28"

Transkript

1 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth

2 Kul matematik utan lärobok

3 Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier vid lösning av ett problem, Tolka resultat och dra slutsatser, Bedöma om svaret är rimligt, Bedöma en matematisk modells begränsningar) Begrepp (Använda begreppen, Beskriva begreppen, Beskriva likheter och skillnader mellan begreppen, Visa samband mellan begreppen ) Metoder (Använda en skriftlig räknemetod som är anpassad till uppgiften, Använda huvudräkningsmetoder som är effektiva, Använda digitala hjälpmedel (miniräknare eller dator) då detta är lämpligt) Resonemang (Ställa och besvara frågor med matematiskt innehåll i grupp, Följa andra elevers förklaringar och bidra med idéer, Motivera lösningen med matematiska resonemang, muntligt eller skriftligt) Kommunkation (Förklara vad som menas med, Göra skriftligliga lösningar så att någon annan förstår vad som menas, Beskriva och förklara lösningen muntligt eller skriftligt. Berätta och förklara lösningen för en kamrat. Använda olika matematiska uttrycksformer som figurer, diagram och matematiskt språk)

4 Crossing the river Ett klassiskt problem med många bottnar

5 Crossing the river 7 vuxna och 2 barn, hur tar de sig över?

6 Crossing the river Vad är svaret? Hur är det redovisat? och vilket betyg ger det?

7 Bedömning Kunskapskrav för betyget C i slutet av årskurs 9 Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget. Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.

8 Crossing the river Vad händer om det finns fler än 2 barn? Vad händer om det finns fler än en liten båt?

9 Matematikrapport Namn på uppgiften:. Datum: Vi som arbetat med uppgiften är:.. Beskriv problemet med egna ord: Vilken strategi använde ni för att lösa problemet: Visa med tabell, diagram, figur, uträkningar eller liknande hur ni löste problemet: Skriv lösningen/lösningarna på problemet: Vilka slutsatser kan ni dra: Skriv ett eget liknande problem och lös det.

10 Area och omkrets - Rita en rektangel med samma omkrets som figuren. - Rita en rektangel med samma area som figuren. - Går det rita en rektangel som har både samma omkrets och area som figuren? Motivera.

11 Matematikrapport Namn på uppgiften: Triangelproblem Datum: Vi som arbetat med uppgiften är: Per Berggren (& Maria Lindroth) Beskriv problemet med egna ord (vad är det ni ska ta reda på?): Vi skulle beräkna omkrets och area på en triangel och rita rektanglar som hade lika stor omkrets och area. Frågan var om det gick att göra en rektangel där båda var samma. Vilken strategi använde ni för att lösa problemet? Vi mätte triangelns sidor och höjd för att beräkna omkrets och area. Först gissade vi hur rektangeln skulle se ut men sedan kom vi på att det gick att räkna ut. Visa på något sätt med ord,bild, uträkning, diagram hur ni löste problemet: Sidorna på triangeln var 11 cm, 8,1 cm och 5,5 cm. Höjden mot sidan som är 11 cm var 4 cm. Omkrets = 11+8,1+5,5 = 24,6 cm Area =!!! = 22!"!! Rektangel 1 Omkrets 24, 6 cm 10,3 cm 2 cm Rektangel 2 Area 22 cm 2 5,5 cm 4 cm

12 Visa på något sätt med ord,bild, uträkning, diagram hur ni löste problemet (forts): Rektangel 3 Omrkets 26 cm Area 22 cm 2 11 cm 2 cm Skriv lösningen eller lösningarna på problemet: Den första rektangeln gissade vi omkretsen på men sedan kom vi på att man kan räkna ut den genom att bestämma hur lång en av sidorna ska vara. Den sidan finns det två av och det som blir över delas sedan mitt itu så får man veta hur lång den andra sidan är. I den andra rektangeln så tänkte vi att 5 4 = 20 och då är det 2 kvar och 0,5 4 = 2. Om man gör om den till 2 x 11 så får man en rektangel med samma area som nästan har samma omkrets och då tänkte vi att det borde gå att komma nära. Kanske till och med exakt, men det vet vi inte. Vilka slutsatser kan ni dra/vad har ni lärt er: Eftersom rektanglar kan ha väldigt olika form men ändå ha samma area så kan man göra rektanglar med samma area och omkrets som trianglar. Skriv ett eget liknande problem och lös det: En rektangel har sidorna 3 cm och 12 cm. Kan man göra en triangel med samma omkrets och area.

13 E-nivå Sätter inte ut alla enheter/felaktig cm istället för cm 2. Redovisar inte uträkningar Gör bara något/ett par försök men drar inte någon slutsats. Ger ingen förklaring om uträkning av rektangelns omkrets och/eller area. Har inget eller enkelt eget problem. A-nivå Har med alla enheter korrekt Redovisar ALLA uträkningar Redovisar hypotes(er) / kloka gissningar Gör flera försök och drar slutsats(er) Ger förklaring till beräkning av omkrets och area för rektanglarna Drar en korrekt slutsats om att det går att göra en rektangel med både samma omkrets och area som motiveras genom försöken (eventuellt med förklaring om hur man kan lösa det generellt ) Har ett eget liknande problem som ändå är annorlunda t ex som det i exemplet eller med andra geometriska figurer

14 Lika eller olika

15 Laborationsrapport Namn på uppgiften:_lika eller olika Datum: Vi som arbetat med uppgiften är: David Jonsson Beskriv problemet med egna ord (vad är det ni ska ta reda på?): I en påse har man röda och vita kulor. Hur många av varje färg ska det vara för att det ska vara lika stor chans för att man utan återläggning tar upp två kulor med samma färg som med olika färg? Finns det flera lösningar och i så fall hur många? Vilken strategi använde ni för att lösa problemet? Jag använde mig först av att gissa på några nummer och sedan testa ifall de stämmde. När jag kom fram till några nummer letade jag efter samband så att jag kunde beräkna ännu fler tal. Utifrån de sambanden försökte jag komma på en formel för att utifrån numret i ordningen som talen kom i. Visa på något sätt med ord,bild, uträkning, diagram hur ni löste problemet: Jag bara gissade och provade men så här kom jag fram till att kombinationen stämmde: Jag hade provat med 1 vit och 3 röda kulor. Då tänkte jag att det var 25% chans att ta en vit i den första dragningen och i så fall skulle man med 100% säkerhet ta en röd. Då blev de 25% chans att det blev olika färg på kulorna. Att man däremot tar en röd i första dragningen är 75% chans. Av de 75% finns det 2 olika händelser, det kan alltså bli en vit eller en röd. Att det ska bli en vit och därmed olika färg på kulorna är 75/3= =50% chans att det blir olika färg på kulorna och därmed 50% chans att det blir samma färg på kulorna. Skriv lösningen eller lösningarna på problemet: 1-3, 3-6, 6-10, 10-15, formel för vit kula: nx(0,5n+0,5)=v Formel från vit kula till röd kula: v+n+1=r n=figurnummer, v=vit kula, r=röd kula. Vilka slutsatser kan ni dra/vad har ni lärt er: Dels har jag övat på problemlösning men en mer konkret sak är att när man skriver formler och ökningen för ett tal ökar med 1 måste man alltid ta n(xn) någonstans i formeln.

16 Tydliga mål Planering med: Hur länge vi arbetar med ett avsnitt När vi ska ha examination(er) Vilken/vilka former examinationerna har Krav för respektive betygsnivå (förtydligande av kunskapskraven) Vi ska inte hålla på med geometri. När vi är färdiga med ett avsnitt ska alla kunna Tydliga förväntningar istället för förhoppningar!

17 Feedback och bedömning Eleverna väljer vilken rapport som ska bedömas Kamratrespons Självbedömning Names in a hat

18 Hur ger vi feedback? - Jättebra! Du hade bara ett fel! Red pencil assessment? - Jag ser i ditt arbete att du vet vad jag vill att du ska Personligt eller opersonligt? - Jag har rättat dina fel så att du kan se Ska vi lärare rätta felen? - Provet visar bra förståelse och resonemang. Betyg/Bedömning på Betyg: C arbeten?

19 Hur ger vi feedback? = = x 17 = 10 x x 7 = = = = = = 41 R 13 x 17 = 10 x x 7 = = = = 18 12

20 Feedback som utvecklar Två av uppgifterna är inte rätt lösta. Försök hitta felen och lös dem så att svaren blir rätt. Hitta två liknande uppgifter i boken som är svårare och två som är liknande men lättare. Vad är det som gör dem svårare eller lättare? Feedback med bara kommentar, utan betyg (eller tvärtom). Bedöm arbetet och innehållet, inte personen. Ge konkreta förslag på hur arbetet kan bli bättre.

21 Tack för att ni lyssnade! Kul Matematik Geijersvägen Stockholm

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2015-01-31 Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2014-06-17 Vad är mönstret värt? Lika eller olika Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika

Läs mer

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29 Bedömning för lärande i matematik i praktiken Per Berggren och Maria Lindroth 2012-11-29 Inlärningsnivåer i matematik 1. Intuitiv tänka, tala 2. Konkret göra och pröva 3. Representationsformer synliggöra

Läs mer

KOSMOS - Små och stora tal

KOSMOS - Små och stora tal Undervisning KOSMOS - Små och stora tal Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer

Läs mer

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka

Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka Matematik Enheter - Tid Utveckla och Känner till några enheter och enstaka mätinstrument. Utför enkla mätningar. Avläser analoga och digitala tider.använder både muntliga och skriftliga metoder samt tekniska

Läs mer

4-6 Trianglar Namn:..

4-6 Trianglar Namn:.. 4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?

Läs mer

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. 111a Geometri med snöre Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. Areabegreppet När elever får frågan vad area betyder ges mestadels svar som antyder hur man

Läs mer

Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser.

Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Du berättar på ett enkelt sätt om det du tycker är viktigt i texten.

Läs mer

Delprov D handlar om omkrets, punkt och sträcka. Eleverna har möjlighet att visa begrepps-, metod- och kommunikationsförmåga.

Delprov D handlar om omkrets, punkt och sträcka. Eleverna har möjlighet att visa begrepps-, metod- och kommunikationsförmåga. Ämnesprovet i matematik i årskurs 3, 2015 Anette Skytt PRIM-gruppen, Stockholms universitet Inledning Syftet med de nationella på proven är att stödja en likvärdig och rättvis bedömning och att ge underlag

Läs mer

Betygskriterier MATEMATIK. År 9

Betygskriterier MATEMATIK. År 9 Betygskriterier MATEMATIK År 9 Allmänt ha förvärvat sådana kunskaper och färdigheter, som behövs för att kunna lösa problem i vardagliga situationer fortsätta studierna Vid bedömning av en elev tar man

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Matematik 5 PRÖVNINGSANVISNINGAR Kurskod MATMAT05 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 5 Skriftligt prov, 4h Teoretiskt prov Bifogas Provet består av två delar.

Läs mer

Trianglar - Analys och bedömning av elevarbeten

Trianglar - Analys och bedömning av elevarbeten BEDÖMARTRÄNING - MATEMATIK ÅRSKURS 6 Trianglar - Analys och bedömning av elevarbeten Analys och bedömning av Jennifers arbete Metod och beräkning Resonemang och kommunikation Eleven löser uppgiften genom

Läs mer

UPPGIFT: SKRIV EN DEBATTARTIKEL

UPPGIFT: SKRIV EN DEBATTARTIKEL Åk 9 Historia & Svenska Namn: UPPGIFT: SKRIV EN DEBATTARTIKEL Du ska skriva en debattartikel på 1-2 sidor (Times new roman 12). Den ska ta upp exempel på hur mänskliga rättigheter försvagas i dagsläget.

Läs mer

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken

Läs mer

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas.

Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Inledning... 4 Bedömningsanvisningar... 4 Allmänna bedömningsanvisningar...

Läs mer

NATIONELLA MATEMATIKTÄVLING

NATIONELLA MATEMATIKTÄVLING NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen

Läs mer

Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3

Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3 Kunskapskraven åk k 3 - matematik 20 Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3 Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med

Läs mer

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan. Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier

Läs mer

Veckomatte åk 6 med 10 moment

Veckomatte åk 6 med 10 moment Veckomatte åk 6 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik Lgr -11 3 Grundläggande struktur i Veckomatte - Åk 6 4 Strategier för Veckomatte - Åk 6

Läs mer

Upplägg och genomförande - kurs D

Upplägg och genomförande - kurs D Upplägg och genomförande - kurs D Provet består av fyra delprov: Läsa A och B Höra Skriva Tala Läsförståelse Hörförståelse Skriftlig produktion Muntlig produktion och interaktion Tid på respektive provdel

Läs mer

Världshandel och industrialisering

Världshandel och industrialisering Pedagogisk planering i historia: Världshandel och industrialisering I vår moderna värld finns många som är rika och många som är fattiga. Flera orsaker finns till detta, men många av dem ligger långt tillbaka

Läs mer

BRA VIBRATIONER. Namn: Klass: Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012.

BRA VIBRATIONER. Namn: Klass: Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012. BRA VIBRATIONER Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012. Namn: Klass: Förmågor som vi kommer att träna på: Genomföra systematiska undersökningar i fysik. Använda begrepp, modeller

Läs mer

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter

Läs mer

Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.

Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6. Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat

Läs mer

Individuellt Mjukvaruutvecklingsprojekt

Individuellt Mjukvaruutvecklingsprojekt Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel

Läs mer

Väga paket och jämföra priser

Väga paket och jämföra priser strävorna 2AC 3AC Väga paket och jämföra priser begrepp rutinuppgifter tal geometri Avsikt och matematikinnehåll Den huvudsakliga avsikten med denna aktivitet är att ge elever möjlighet att utveckla grundläggande

Läs mer

Två konstiga klockor

Två konstiga klockor strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende

Läs mer

Svenska som andraspråk, år 8

Svenska som andraspråk, år 8 1 (6) 2006-03-09 Svenska som andraspråk, år 8 Mål för betyget Godkänd Läser och förstår böcker på ca. 100 sidor eller mer. Läser och förstår svårare böcker. Kan läsa och följa instruktioner Förstår innehållet

Läs mer

bedömning Per Berggren och Maria Lindroth 2014-05-23

bedömning Per Berggren och Maria Lindroth 2014-05-23 Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2014-05-23 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Kursplan i svenska. Därför tränar vi följande färdigheter under elevens skoltid i ämnet svenska: Tala, lyssna och samtala. År 1

Kursplan i svenska. Därför tränar vi följande färdigheter under elevens skoltid i ämnet svenska: Tala, lyssna och samtala. År 1 Kursplan i svenska Språket är människans främsta redskap för att tänka, kommunicera och lära. Genom språket kan människor utveckla sin identitet, uttrycka känslor och tankar och förstå hur andra känner

Läs mer

Diskussionsfrågor till version 1 och 2

Diskussionsfrågor till version 1 och 2 Diskussionsfrågor till version 1 och 2 Version 1 Tillgång till internet i hemmet A. Vilken åldersgrupp har haft den största ökningen av tillgång till internet under perioden? B. Kan man med hjälp av de

Läs mer

Kvalitetsrapport Så här går det

Kvalitetsrapport Så här går det Kvalitetsrapport Så här går det Uppföljning av det systematiska kvalitetsarbetet på Lärkan förskola, Öja Verksamhetsåret 2013/2014 Kort sammanfattning av enhetens kvalitetsarbete under verksamhetsåret

Läs mer

Bild Engelska Idrott

Bild Engelska Idrott Bild skapa bilder med digitala och hantverksmässiga tekniker och verktyg samt med olika material, kommunicera med bilder för att uttrycka budskap, undersöka och presentera olika ämnesområden med bilder,

Läs mer

Matris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4

Matris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4 Ur Kunskapskrav Lgr11 Bedömningsaspekter Förstå recept och instruktioner Matris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4 Behöver lärarstöd med att förstå och följa ett recept. Är

Läs mer

Artikel/reportage år 9

Artikel/reportage år 9 7 9 LGR11 SvA Sv Artikel/reportage år 9 1 av 10 Artikel/reportage år 9 2 av 10 Planeringen gäller vecka 37-40 Pedagog: Katja Hellsten Ämne: svenska/svenska som andra språk Aktivitet under perioden: Veta

Läs mer

Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9

Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9 Kängurutävlingen genomförs 9 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas, däremot

Läs mer

Lathund, procent med bråk, åk 8

Lathund, procent med bråk, åk 8 Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform

Läs mer

Viktoriaskolans kursplan i matematik år 3

Viktoriaskolans kursplan i matematik år 3 Viktoriaskolans kursplan i matematik år 3 Nationella kursplanens uppnåendemål för år 5 Eleven skall förstå och kunna använda addition, subtraktion, multiplikation och division samt kunna upptäcka talmönster

Läs mer

Nationella prov i årskurs 3 våren 2013

Nationella prov i årskurs 3 våren 2013 Utbildningsstatistik 1 (8) Nationella prov i årskurs 3 våren 2013 Syftet med de nationella proven är i huvudsak att dels stödja en likvärdig och rättvis bedömning och betygsättning i de årskurser där betyg

Läs mer

Något om permutationer

Något om permutationer 105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar

Läs mer

912 Läsförståelse och matematik behöver man lära sig läsa matematik?

912 Läsförståelse och matematik behöver man lära sig läsa matematik? 912 Läsförståelse och matematik behöver man lära sig läsa matematik? Med utgångspunkt från min egen forskning kring läsförståelse av matematiska texter kommer jag att diskutera olika aspekter av läsning

Läs mer

Kiwiböckerna metod och begrepp

Kiwiböckerna metod och begrepp Kiwiböckerna metod och begrepp kiwiböckerna nyckeln till livslångt lärande Läsa för, tillsammans med och självständigt. Grunden för läsinlärning är att läsa för barnet, tillsammans med barnet och vara

Läs mer

Konsekvenser sv/sva åk 8 vt 13

Konsekvenser sv/sva åk 8 vt 13 Konsekvenser sv/sva åk 8 vt 13 1 av 10 Konsekvenser sv/sva åk 8 vt 13 för 2 av 10 Planeringen gäller Pedagog: Mobina Chohan Dzankovic Ämne: sv/sva Aktivitet under perioden: Februari-Mars Tema: Konsekvenser

Läs mer

Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0

Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0 Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0 2) Ställ upp ett ekvationssystem för situationen

Läs mer

Södervångskolans mål i svenska

Södervångskolans mål i svenska Södervångskolans mål i svenska Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret känna till och kunna ljuda alla bokstäver kunna läsa enkla ord, ordbilder och enkel text samt förstå

Läs mer

Sundbybergs stad Skolundersökning 2015 Föräldrar förskola Fristående förskolor totalt 2015. Antal svar samtliga fristående förskolor: 360 (57 %)

Sundbybergs stad Skolundersökning 2015 Föräldrar förskola Fristående förskolor totalt 2015. Antal svar samtliga fristående förskolor: 360 (57 %) Sundbybergs stad Skolundersökning Föräldrar förskola Antal svar samtliga fristående förskolor: ( %) Innehåll Om undersökningen Förklaring av diagram Resultat - Per fråga - NöjdKundIndex (NKI) Frågorna

Läs mer

Lösningar s. 8 Perspek9v s. 7

Lösningar s. 8 Perspek9v s. 7 Källkri9k s. 11 Diskussion s. 2 Åsikter s. 3 Samarbete s. 10 Fördelar och nackdelar s. 4 ELEVHJÄLP Slutsatser s. 9 Konsekvenser s. 5 Lösningar s. 8 Perspek9v s. 7 Likheter och skillnader s. 6 1 Vad är

Läs mer

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014

Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Antal elever: 47 Antal svarande: 40 Svarsfrekvens: 85% Klasser: 12BAa, 12BAb, 12LL Skolenkäten Skolenkäten går ut en gång per

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 4 6 Tydlig och medveten matematikundervisning En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

Svenska som andraspråk, 1000 verksamhetspoäng

Svenska som andraspråk, 1000 verksamhetspoäng Svenska som andraspråk, 1000 verksamhetspoäng Ämnet handlar om hur svenska språket är uppbyggt och fungerar samt om hur det kan användas. Ämnet ger elever med annat modersmål än svenska en möjlighet att

Läs mer

Elevinflytande i planeringen av undervisningen. BFL-piloter 121114 Mats Burström

Elevinflytande i planeringen av undervisningen. BFL-piloter 121114 Mats Burström Elevinflytande i planeringen av undervisningen BFL-piloter 121114 Mats Burström Ur Lgr 11 2.3 Elevernas ansvar och inflytande Läraren ska svara för att alla elever får ett reellt inflytande på arbetssätt,

Läs mer

Kurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000

Kurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000 Kurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000 Kursen ger elever med annat modersmål än svenska en möjlighet att utveckla sin förmåga att kommunicera på svenska. Ett rikt språk ger

Läs mer

Uppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera?

Uppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera? Uppdrag: Huset Praktiskt arbete: (Krav) Göra en skiss över ditt hus. Bygga en modell av ett hus i en kartong med minst två rum. Koppla minst tre lampor och två strömbrytare till ditt hus. Visa både parallellkoppling

Läs mer

4-3 Vinklar Namn: Inledning. Vad är en vinkel?

4-3 Vinklar Namn: Inledning. Vad är en vinkel? 4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande

Läs mer

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13

Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014 Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Skolenkäten Skolenkäten går ut en gång per termin till de skolor

Läs mer

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.

Läs mer

Bedömningsuppgift i geografi och svenska (se kraven och bedömning för svenska längre ned)

Bedömningsuppgift i geografi och svenska (se kraven och bedömning för svenska längre ned) Bedömningsuppgift i geografi och svenska (se kraven och bedömning för svenska längre ned) Du ska skriva en faktatext om en världsdel. Frågorna du ska utgå ifrån i din inledning är: 1. Hur påverkar klimatet

Läs mer

Skolans styrdokument, från förskolan

Skolans styrdokument, från förskolan kerstin hagland Rita en bild! Ofta ger lärare sina elever tipset att rita en bild när de har kört fast på ett problem. Men vad menas egentligen med det? Här ges exempel på olika typer av bilder som kan

Läs mer

På väggen i mitt klassrum sitter ett dekorerat anslag med fem matematiska

På väggen i mitt klassrum sitter ett dekorerat anslag med fem matematiska Maria Hilling-Drath Kommunikation mål och medel i undervisningen Artikelförfattaren berättar här om vilken betydelse såväl den muntliga som den skriftliga kommunikationen i klassrummet har för elevernas

Läs mer

Sundbybergs stad Skolundersökning 2015 Föräldrar förskola Stella Nova förskola

Sundbybergs stad Skolundersökning 2015 Föräldrar förskola Stella Nova förskola Sundbybergs stad Skolundersökning 2 Föräldrar förskola Stella Nova förskola Antal svar Stella Nova förskola: 2 ( %) Antal svar samtliga fristående förskolor: (5 %) 1 Innehåll Om undersökningen Förklaring

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2003 2. Del I, 7 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2003 2. Del I, 7 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5 freeleaks NpMaB vt003 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 003 Del I, 7 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast publicerat

Läs mer

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E: 3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra

Läs mer

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.

Läs mer

Skriva B gammalt nationellt prov

Skriva B gammalt nationellt prov Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska

Läs mer

2005-01-31. Hävarmen. Peter Kock

2005-01-31. Hävarmen. Peter Kock 2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.

Läs mer

Tentamen. Makroekonomi NA0133. Juni 2016 Skrivtid 3 timmar.

Tentamen. Makroekonomi NA0133. Juni 2016 Skrivtid 3 timmar. Jag har svarat på följande fyra frågor: 1 2 3 4 5 6 Min kod: Institutionen för ekonomi Rob Hart Tentamen Makroekonomi NA0133 Juni 2016 Skrivtid 3 timmar. Regler Svara på 4 frågor. (Vid svar på fler än

Läs mer

Vad är det att vara en bra brandman? Vad kan man då?

Vad är det att vara en bra brandman? Vad kan man då? Vad är det att vara en bra brandman? Vad kan man då? Vad säger omvärlden? Youtube? Bra brandman? Google? Bra brandman? Varför bedömning som lärande? Många föreställningar och erfarenheter Inget är så dåligt

Läs mer

Vi skall skriva uppsats

Vi skall skriva uppsats Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som

Läs mer

Kristendomen i världen och i Sverige

Kristendomen i världen och i Sverige Kristendomen i världen och i Sverige Vilka kors kan du? Ortodoxt kors Georgekors krucifix Latinskt kors Grekiskt kors Tyska ordens kors (järnkors) Lpp Katolska, Protestantiska och Ortodoxa kyrkan Under

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

SKOLMATEN OCH ELEVINFLYTANDE

SKOLMATEN OCH ELEVINFLYTANDE Ämne: Samhällskunskap, Svenska, Hem- och konsumentkunskap Årskurs: 4-6 SYFTE Elevdemokrati innebär en möjlighet att vara med och påverka och det innebär också ett ansvar. GENOMFÖRANDE Övningen inleds med

Läs mer

Modersmål - finska som nationellt minoritetsspråk

Modersmål - finska som nationellt minoritetsspråk Grundsärskolan Modersmål - finska som nationellt minoritetsspråk Sverigefinnar är en nationell minoritet med flerhundraåriga anor i Sverige. Deras språk finska är ett officiellt nationellt minoritetsspråk.

Läs mer

Subtraktion - Analys och bedömning av elevarbeten

Subtraktion - Analys och bedömning av elevarbeten Analys och bedömning av elevarbete 1 Eleven anpassar sitt val av metoder efter de ingående talen genom att använda flera olika metoder för beräkningar; räknar uppåt när talen ligger nära varandra, räknar

Läs mer

Elektronen och laddning

Elektronen och laddning Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

SVENSKA FÖR DÖVA OCH HÖRSELSKADADE ELEVER MED UTVECKLINGSSTÖRNING

SVENSKA FÖR DÖVA OCH HÖRSELSKADADE ELEVER MED UTVECKLINGSSTÖRNING SVENSKA FÖR DÖVA OCH HÖRSELSKADADE ELEVER MED UTVECKLINGSSTÖRNING Språk är människans främsta redskap för att tänka, kommunicera och lära. Genom språket utvecklar människor sin identitet, uttrycker känslor

Läs mer

Nämnarens adventskalendern 2007

Nämnarens adventskalendern 2007 Nämnarens adventskalendern 2007 1 När det närmar sig jul är det kallt. Då behöver de tre tomtenissarna både halsduk och mössa när de leker i snön. I korgen ligger en röd, en blå och en randig halsduk.

Läs mer

Enkätresultat. Enkät: Utvärdering moment 2. Datum: 2011-04-26 16:28:20 Aktiverade deltagare (Klinisk psykologi 1 (22,5hp)) Besvarad av: 27(47) (57%)

Enkätresultat. Enkät: Utvärdering moment 2. Datum: 2011-04-26 16:28:20 Aktiverade deltagare (Klinisk psykologi 1 (22,5hp)) Besvarad av: 27(47) (57%) Enkätresultat Enkät: Utvärdering moment 2 Status: öppen Datum: 2011-04-26 16:28:20 Grupp: Aktiverade deltagare (Klinisk psykologi 1 (22,5hp)) Besvarad av: 27(47) (57%) 1. I vilken utsträckning anser du

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998. Tidsbunden del Nationellt kursprov i Matematik kurs B ht 1998 sida 1 (av 7) Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen

Läs mer

Energi & Miljötema Inrikting So - Kravmärkt

Energi & Miljötema Inrikting So - Kravmärkt Energi & Miljötema Inrikting So - Kravmärkt 21/5 2010 Sofie Roxå 9b Handledare Torgny Roxå Mentor Fredrik Alven 1 Innehållsförteckning Inledning s. 3 Bakgrund s. 3 Syfte s. 3 Hypotes s. 3 Metod s. 4 Resultat

Läs mer

Serieliknande bilder som visar olika påståenden om ett begrepp eller en situation i en vardaglig kontext.

Serieliknande bilder som visar olika påståenden om ett begrepp eller en situation i en vardaglig kontext. Begrepps bilder 1 Serieliknande bilder som visar olika påståenden om ett begrepp eller en situation i en vardaglig kontext. Publikrekord avrundning Millgate House Education Åsikter presenteras visuellt

Läs mer

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel

10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007

Läs mer

LPP laboration. Förmågor: Centralt innehåll: Kunskapskrav:

LPP laboration. Förmågor: Centralt innehåll: Kunskapskrav: LPP laboration Syfte: Eleverna ska få möjlighet att undersöka vardagliga naturvetenskapliga händelser och skapa förståelse kring varför dessa händelser äger rum. Eleverna ska göra det med hjälp av naturvetenskapliga

Läs mer

Det är bra om även distriktsstyrelsen gör en presentation av sig själva på samma sätt som de andra.

Det är bra om även distriktsstyrelsen gör en presentation av sig själva på samma sätt som de andra. Modul: Föreningspresentation Ett stort blädderblocksblad delas upp i fyra rutor. Deltagarna, som under detta pass är indelade föreningsvis, får i uppgift att rita följande saker i de fyra rutorna: Föreningsstyrelsen

Läs mer

Stockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan

Läs mer

Anvisningar om elevbedömning. Grundläggande utbildning åk 1-6

Anvisningar om elevbedömning. Grundläggande utbildning åk 1-6 Anvisningar om elevbedömning Grundläggande utbildning åk 1-6 ANVISNINGAR OM ELEVBEDÖMNING Under den tid då grundläggande undervisning ges har bedömningen till uppgift att ge eleven mångsidig respons om

Läs mer

Matematikundervisningens mål och innehåll

Matematikundervisningens mål och innehåll Föräldraguide till Föräldraguide till matematikserien Innehåll Matematikundervisningens mål och innehåll Vad kan jag göra för att hjälpa mitt barn? Möjligheter i Mästerkatten Tid för reflektion och eftertanke

Läs mer

Arbetsplan Jämjö skolområde

Arbetsplan Jämjö skolområde Arbetsplan Jämjö skolområde 2016 för Torhamns skola Jämjö skolområde: Jämjö skolområde består av ett antal skolor inklusive fritidshem där vår gemensamma målsättning är att ge alla elever bästa förutsättningar

Läs mer

Per Berggren och Maria Lindroth 2012-10-30

Per Berggren och Maria Lindroth 2012-10-30 Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Centralt innehåll år 1-3

Centralt innehåll år 1-3 Röda tråden Bild Årskurs 1-3 Centralt innehåll år 1-3 Ämne: Bild Åk 1 Åk 2 Åk 3 Bildframställning Framställning av berättande bilder, till exempel sagobilder. Framställning av berättande bilder, till exempel

Läs mer

Sid. 87-99 i boken Rekrytering. Författare Annica Galfvensjö, Jure Förlag

Sid. 87-99 i boken Rekrytering. Författare Annica Galfvensjö, Jure Förlag Sid. 87-99 i boken Rekrytering Författare Annica Galfvensjö, Jure Förlag Nedan finner du en intervjuguide med förslag på frågor som du kan använda under intervjun. Det är många frågor så välj de du tycker

Läs mer

Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning BONNIERS. Andra upplagan, reviderade sidor

Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning BONNIERS. Andra upplagan, reviderade sidor Matte Direkt Margareta Picetti Siw Elofsdotter Meijer Safari 2A Lärarhandledning BONNIERS 2 Plus och minus Kapitlet behandlar addition och subtraktion inom talområdet 0-100 med uppgifter som 42 + 3 och

Läs mer

2. Tidsplanering. 21 Studiedag

2. Tidsplanering. 21 Studiedag 1. Introduktion Video CV är ett utmärkt tillfälle att visa din presentationsteknik. De kan användas när du vill göra gott intryck hos en arbetsgivare. Bara det att ha tagit tid att förbereda en video CV

Läs mer

SVENSKA ÖVERGRIPANDE MÅL FÖR ÅR 6, 7, 8, 9: LYSSNA

SVENSKA ÖVERGRIPANDE MÅL FÖR ÅR 6, 7, 8, 9: LYSSNA SVENSKA ÖVERGRIPANDE MÅL FÖR ÅR 6, 7, 8, 9: Att DU kan LYSSNA, och förstå vad du hör. Att DU kan TALA, så man förstår vad du säger. Att DU kan LÄSA, och förstå vad du läser. Att DU kan SKRIVA, så man förstår

Läs mer

STATISTIK. Statistik är: 1. Insamling av data 2. Analys av data 3. Presentation av data. tomas.persson@edu.uu.se

STATISTIK. Statistik är: 1. Insamling av data 2. Analys av data 3. Presentation av data. tomas.persson@edu.uu.se STATISTIK Statistik är: 1. Insamling av data 2. Analys av data 3. Presentation av data tomas.persson@edu.uu.se Insamling av data Tänk efter först! Samla sedan in data. Om du vill att eleverna skall undersöka

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

Kursplanen i ämnet moderna språk

Kursplanen i ämnet moderna språk DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kursplanen i ämnet moderna språk Läsåret 2011/12 införs en samlad läroplan för var och en av de obligatoriska skolformerna grundskolan, grundsärskolan, sameskolan

Läs mer

My Language a g Biography

My Language a g Biography Min i n språkbiografip r å k b i o g r a f i My Language a g Biography Europeisk språkportfolio: bemyndigad version Nr. 60.2004 European Language Portfolio: accredited model No. 60.2004 Innehåll / Contents

Läs mer

Rapport uppdrag. Advisory board

Rapport uppdrag. Advisory board 1 Rapport uppdrag Advisory board 2 Advisory board AB är en dialogmodell som på ett stukturerat sätt ger möjlighet till samråd och dialog med unga i utvecklingsarbeten/verksamhetsutveckling inom kommunen,

Läs mer