Facit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm.

Storlek: px
Starta visningen från sidan:

Download "Facit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm."

Transkript

1 Läa a) b) c) a) 6,8 b) 8, c) 66 a),99,09,,8,8 b) 0,0 Hon får 9 kr tillbaka. a) 00 b) 00 c) 00 6 a) 0 längder b) 7 m c) kr 7 Decimaltecknet skiljer heltalen från decimaltalen. Placeringen avgör om siffran betder ental, tiotal osv. eller tiondel, hundradel osv. 8 a) = b) = 7 c) 69 = Läa a) b), c) 8 00 a),96 b) 7, c) 7,6 60 cm 0,0 m 0, m 80 mm 0 cm dm 66 6 a) 0,0 b) 0, c) 0,00 7, och,0 är samma tal. Siffrorna och har samma värde. Nollor efter sista decimalen förändrar inte talets värde. 8 a) 7 b) 7 c) Nej, t.e. då går in kommer = ut. Läa A, D a) 0, b) 0, c) 0,9 a) b) 800 st a),98 b) 9098,8 c) 8,768 6 Åskådarna kan ligga mellan 0 och 9 vilket betder att 80, och 9 ej kan vara vinnare. 7 Om man delar något med ett tal mindre än blir svaret större, t.e. äpplen delat i halvor ger halvor. 8,7 Läa a) 00 b) 000 c) 0 d) 00 a) > b) < c) < ca kr 0 öre a) 0 kr 0 öre b) kr c) 7 kr 0 öre a) 6 b) 7 c),9 6 a) 60 b) c) 80 7 E: Rita en tallinje och sätt ut 7 och. Visa att 7 är längre till höger på tallinjen. 8 a) ( 7 + 7) ( 9 + ) = 0 b) ( + ( 7)) (7 ( 9)) = ( 9 + 7) c) ( 7 + ) = Läa 9 7 a) b) c) d) 8 a) O = 8 cm, A = 9 cm b) O = 6 cm, A = 6 cm T.e. med sidorna cm och cm, cm och 8 cm, cm och 6 cm cm 6 Pussifood 7 Area är ett mått på storleken av en ta. Man mäter arean genom att dela upp tan i areaenheter, t.e. m, och räkna ut hur många areaenheter som får plats. 8 cm cm och cm samt cm 6 cm och 6 cm 8 cm. Läa 6 a) 78 b) 0, c) 76 d) 679,8 a) 0 cm b) 0 cm c) 8 cm a) A = cm b) A = 0 cm a) 8 b) c) d) a) b) 0 c) 0 6 9,7 m 7 Omkrets är en sträcka runt ett område, t.e. längden av ett staket runt en gräsmatta. Arean är storleken på området, t.e. hur stort område gräsmattan upptar. 8 a) 7 cm b), cm c) 9 cm

2 Läa 7 a), b) 0 c) 0,8 d) 0 a) 6 cm b) 68 cm a) 0 cm b) cm a) 7 cm b) 66, cm a) C b) 7 C 6 a), m b) 7, m 7 Arean blir gånger större. 8 En cirkel med omkretsen 6 m. Arean blir 0 m. Läa 8 a) cm b) cm 9 kr a) 00 cm b) 0 cm c) 0 cm d) 0 cm 6 personer 0,8 m 6 a) Spegelsmmetri med smmetrilinjer. Se figur. Rotationssmmetri med rotationsordning. b) Spegelsmmetri med smmetrilinjer. Se figur. Rotationssmmetri med rotationsordning. c) Spegelsmmetri med 6 smmetrilinjer. Se figur. Rotationssmmetri med rotationsordning 6. 7 Man får arean genom att multiplicera basen med höjden och dela svaret med två cm Läa 9 a) 0a b) 0b c) a) cm b) 6, cm 6a a), dm b) dm c) 0 dm d) 88 dm 6 a) 6 ringar b) 7,7 kr 7 Man förenklar ett uttrck genom att räkna varje variabel för sig och talen för sig. 8 78, cm Läa 0 a) b) a a) a b) 9a b c) a a) + b) c) a) 99 cm b) 7 cm a) = b) 0 + = 6 6 a) L = + b) A = ( + ) c) 7 9 m 7 betder medan betder 8 Höjden är 6,8 cm. Läa a) = b) = 9 c) = a) a + b b) + 0 c) + a) = 8 b) = 7 a) + = 9 b) = 7,7 kr/kg 6 a) = 9 b) = 76 c) = 7 Finns det ett minustecken framför parentesen ändras alla tecken inuti parentesen när den tas bort. Finns det ett plustecken framför ändras inga tecken då parentesen tas bort. 8,, Läa a) = 7 b) = c) = 0,0 kr Nej, = 8. = = 6 a) C b) A 7 Sätt in värdet på i ekvationen och jämför om vänstra ledet har samma värde som högra ledet. 8 a) b) 0 c) + n Läa A = (, ) B = (, ) C = (, ) D = (, ) (, ) a) 9 b) 68 c) a) = 0, b) = 6 a), b) 8 7 Ett koordinatsstem är uppbggt av en vågrät ael, -aeln, och en lodrät, -aeln. Alarna, som egentligen är tallinjer, möts i punkten (0, 0), som kallas origo. En punkt som benämns (, ) ligger steg ut på -aeln och sedan två steg upp på -aeln vuenbiljetter såldes.

3 Läa a) 7,0 b) 8, c) 8,8 d), a) km/h b), m/s a) Ja b) 8 m/s Skär -aeln då = och -aeln då =. 6 a) = b) = 7 E. Ett kilopris på 8 kr innebär att kg kostar 8 kr = 6 kr, kg kostar kr etc. dvs. dubblas vikten så dubblas priset etc. Kostnaden är proportionell mot vikten. Det betder att kostnaden ökar lika mcket för varje kilogram. Om grafen ritas in i ett koordinatsstem, är det en rak linje som går genom origo. 8 a) 9 b) 0, Läa a) 6 b) 0 c) a) (6, 0) b) (0, ) 7 kr/kg 0 km/h = 6 a) kr b), c) Vikt (hg) Pris Pris (kr) Koordinater (, ) 0 0 (0, 0) 9 (, 9) 8 (, 8) (, ) 0 90 (0, 90) Vikt hg d),0 kr 7 a) E: Bensin kostar,0 kr per liter. Hur mcket kostar det att köpa liter? 8 a) A b) K = 0 c) K = 0 + Läa 6 Ett N. a) = 8 b) = c) = 9 a) kr b) kg a) 0 km/h b) km/h a) 0 km/h b), km c) 0 min d) 7, km/h 6 a) 6 b) värdet är alltid tre enheter större än motsvarande -värde. 8 9 min 8 sekunder

4 Läa 7 a) b) c) a) 6 b) 9 c) 6 d) 9 a) A b) Dividerar med ett tal som är lite mindre än ett. a) + b) ab + a c) a) bitar b) 6 7 Metod. Göra om till samma nämnare: t.e.: = = 0 Metod. Göra om till decimaltal, t.e.: + =, + 0,7 =, 8 ( + ) = 90 = 7 Läa 8 a) b) 0 c) 8 d) a) 0, b) 0,7 c) 0,7 d) 0,76 a) 6 b) c) 9 a) O = 0 cm, A = 6, cm b) O = 8 cm, A = cm c) O =, cm, A = 78, cm 7 % rabatt 6 0 % högre 7 T.e. Av 00 g flingor är 7 g protein 8 kr/st Läa 9 a) 00 kr b) 7 kr c) 00 kr a) % b) % c) 7, % 0 % Det högra erbjudandet. a) % billigare b) 0 % billigare 6 69 % 7 I Storvreta spelar 000 av eller 000 % I Stockholm spelar av eller %. Andelen spelare är störst i Storvreta, alltså är det vanligast i Storvreta. 8 Han tjänade 0 % Läa 0 a) 00 kr b) 0 kr c) kr a) b) 6 c) 7 0 a) 0 % b) 00 % a) 7 0 b) c) 9 a) b) personer 6 a) % mer b) 8 % mindre 7 Eftersom det na priset är större än det gamla blir % av det na priset också ett större tal att dra ifrån. Man hamnar alltså under det ursprungliga priset. 8 a) En halv liter b) 0 % = Läa,8 0,8 8 9,6 a) 6 b) c) a) 0,70 kr b) 0,99 kr kr a) =, b) = a) % b) 70 % 7 Sannolikheten för en händelse kan bara ligga mellan 0 och. Ett svar större än skulle betda att det finns fler gnnsamma händelser än möjliga, vilket är omöjligt. 8 a) 6, m b), m c),6 m Läa 0,0, 0, %, 0,6,, 0,8 0 = 6 % a) b) 0, c) 0 % a) % b) 8 % Lukas har köpt lotter. 6 a) = b) = 7 Hon måste dividera antalet vinstlotter med det totala antalet lotter. 8 a) Om man kastar två mnt finns det två sätt att få krona och klave men bara ett sätt att få två kronor och ett sätt att få två klave. b) Carl:, Linn:, Stina:

5 Läa a) 6,7 b) 0, c) 6 d), 9 lotter är vinstlotter. a) b) a) % b) 0 % 0 träffar 6 a) = b) = 8 7 Nej, du kan ta fler än nitlotter innan du tar en vinstlott kr Läa a), b) 69 c),7 d),6 a) 8 st b) 7 st c) 7 st 0,8 a) 9 = 7 % b) = % c) = 7 % a) 6 6 = 7, % b) 7 6 % c) 6 9 % 6 a) = 7 b) = 88 7 sannolikheten att händelsen inträffar 8 =, m Läa a) b) c) tusenlappar a) 0 b) 0 6 c) 0 d) 0 0 a) 00 = % b) 0 = % c) 0 = 0 % d) 9 0 = 90 %, km/h 6 Tom går π km. Kevin går π = π. De går alltså lika långt. 7 Ett prefi används för att inte behöva använda så många nollor när man ska beskriva stora eller små tal, t.e.: kg = 000 g, mm = 0,00 m 8 a) b) 7 c) 6 Höjd 00 m AA AB AC BA BB BC CA CB CC Läa 6 a) b) 0 c), 0 a) 000 b) c) A = (, ), B = (, 6), C = (, ), D = (, 6), E = (, ), F = (, ) a) 0 8 b) 0 c) 07 d) a) W b) kr c) W 6 a) = b) = 7 T.e.: = = = = 0 7 T.e.: = 0 6 = =, s min

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

LÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120

LÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120 acit till läorna LÄXA LÄXA a),75 0 b), 0 a) 7, b) 0, a) 0 b) 7 c) 00 00 km/s a), b) a) 900 b) 5, cm a) 50 cm b) 0 cm c) 0,5 cm a),5 b) 0,0 5,05,7,9,5, a) 00 b) 0 c) 79 7 a) b) 55 9,5 TIAN centi = hundradel,

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9

Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9 Tal Läxa 1 1 a) 307 b) 55 c) 00 003 a) 131 > 113 b) 1 > 1 c) 99 < 9 99 3 a) 1 170 b) 5 75 c) 91 a) 3 hundra b) 3 ental c) 3 tusen 5 a) 370 b) 0 a) 31 b) 1 3 c) 1 3 7 a) 99 b) 13 a) 37 b) 19 00 9 5 15 50

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

Övningar - Andragradsekvationer

Övningar - Andragradsekvationer Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

b) kg c) 900 g 1071 a) g b) kg c) 800 g 1072 a) 500 g b) kg 1073 a) 5 kg b) 4,5 kg c) 1,1 kg

b) kg c) 900 g 1071 a) g b) kg c) 800 g 1072 a) 500 g b) kg 1073 a) 5 kg b) 4,5 kg c) 1,1 kg BASHÄFTE X Kapitel a) b) c) a) 9 b) 9 c) 9 a) b) c) d) a), b),8 c), d) 9, a) b) 9 a) 9 b) a), b), 8 a), b), 9 Störst: 8 Minst: 88 Störst: 8, Minst:,8 a) 89 a) b) 8 kr kr a) 8 9 kr a) b) 8 kr 9 9 kr kr

Läs mer

identifiera geometriska figurerna cirkel och triangel

identifiera geometriska figurerna cirkel och triangel MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna

Läs mer

Kapitel 4 Inför Nationella Prov

Kapitel 4 Inför Nationella Prov Kapitel 4 Inför Nationella Prov Sidan 3 Tretusen fyrahundra fyra 2 a 9 0 b Minsta fyrsiffriga tal är 09 (0029 = 29 är tvåsiffrigt.) 3 a 3 43 b 5 042 c 890 4 a 9 08 b 0 09 c 2 500 000 d 2 050 000 5 a 900

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

Lathund algebra och funktioner åk 9

Lathund algebra och funktioner åk 9 Lathund algebra och funktioner åk 9 För att bli en rackare på att lösa ekvationer är det viktigt att man kan sina förutsättningar, dvs vilka matematiska regler som gäller. Prioriteringsreglerna (vilken

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

Tal Räknelagar Prioriteringsregler

Tal Räknelagar Prioriteringsregler Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.

Läs mer

8 Facit till Bashäfte X

8 Facit till Bashäfte X Facit till Bashäfte X KAPITEL a) b) c) a) b) c) a) b) a) b) kr kr a) b) kr a) b) kr kr kr a) C b) C a) C b) C c) C Visa din lärare Visa din lärare = + = = a) b) a) b) a) b) Visa din lärare a) b) Visa din

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

5Genrepet. Mål. Arbetssätt K 5

5Genrepet. Mål. Arbetssätt K 5 Genrepet Mål I det här kapitlet får eleverna möjlighet att repetera och reparera grunderna i grundskolans matematik. apitlet är indelat i se avsnitt: Tal Bråk och procent Geometri Algebra Statistik och

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Koordinatsystem och lägesmått

Koordinatsystem och lägesmått Koordinatsstem och lägesmått Kapitel Koordinatsstem och lägesmått I kapitlet får eleverna för första gången arbeta med koordinatsstem. De får lära sig innebörden av na begrepp som -ael, -ael, koordinat

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar 2 Beräkna a) 0,7 50 d) 45110 b) 1000 0,04 e) 78,2/100 c) 0,08 0,5 f) 555511000 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 4

Läs mer

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4 LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200

Läs mer

Facit till Arbetsblad

Facit till Arbetsblad Facit till Arbetsblad På denna och nästa sida hittar du facit till Arbetsblad :8 och :9 samt diagram till :8 uppgift och. Facit till övriga Arbetsblad finns på efterföljande sidor markerade direkt i Arbetsbladen.

Läs mer

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4 Kapitel 1 6A-boken inleds med ett kapitel om decimaltal. Kapitlet börjar med en repetition av tiondelar och hundradelar. Sedan följer en introduktion av tusendelar med utgångspunkt i hur vikt anges på

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2 epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20

Läs mer

Matematik M1c. M 1c SJUNNESSON HOLMSTRÖM SMEDHAMRE

Matematik M1c. M 1c SJUNNESSON HOLMSTRÖM SMEDHAMRE M 1c SJUNNESSON HOLMSTRÖM SMEDHAMRE JONAS SJUNNESSON MARTiN HOLMSTRÖM EvA SMEDHAMRE Best.nr 47-08556-9 Trck.nr 47-08556-9 Matematik M1c 1 15 6 Repetitionsuppgifter Repetition 1 6001 Beräkna: 1+ 0 ( ) +

Läs mer

Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen?

Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen? Arbetsblad 5:1 sid 143 Tal och tallinjer 1 Skriv rätt tal på tallinjen. a) 0 0,5 1 b) 0 0,5 1 c) 0 1 2 2 Ordna talen i storleksordning med det minsta först. 0,4 0,404 0,44 0,04 0,45 3 Vilka tal kommer

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIKPROV KORT LÄROKURS..0 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte

Läs mer

4Funktioner och algebra

4Funktioner och algebra Funktioner och algebra Mål När eleverna har studerat det här kapitlet ska de: känna till begreppet funktion kunna tolka och räkna med enkla funktioner kunna multiplicera in i parentesuttrck kunna förenkla

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

(1) Trädgården har 24 buskar och hälften av dessa har blivit klippta. (2) Av de 18 buskar som ursprungligen behövde klippas är 1/3 inte klippta.

(1) Trädgården har 24 buskar och hälften av dessa har blivit klippta. (2) Av de 18 buskar som ursprungligen behövde klippas är 1/3 inte klippta. 1. En trädgård har ett antal buskar varav en del behöver klippas. En del av dessa har redan blivit klippta. Hur många buskar som behöver klippas är ännu inte klippta? (1) Trädgården har 24 buskar och hälften

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

1Mer om tal. Mål. Grunddel K 1

1Mer om tal. Mål. Grunddel K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna

Läs mer

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > < Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

L ÄR ARHANDLEDNING. Gunilla Viklund Birgit Gustafsson Anna Norberg

L ÄR ARHANDLEDNING. Gunilla Viklund Birgit Gustafsson Anna Norberg L ÄR ARHANDLEDNING Gunilla Viklund Birgit Gustafsson Anna Norberg Negativa tal Utför beräkningarna. Addera svaren i varje grupp till en kontrollsumma. Alla kontrollsummor ska bli lika. 2 5 13 + ( 2) 11

Läs mer

Lokala betygskriterier Matematik åk 8

Lokala betygskriterier Matematik åk 8 Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270 Förtest Bråk och procent Steg a) b) dl Pizzadeg vatten jäst olja salt vetemjöl personer dl / paket msk / tsk / dl I den högra är störst del skuggad. a) T ex ruta av b) T ex rutor av Steg dl a) b) eller

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

Lathund, samband & stora tal, åk 8

Lathund, samband & stora tal, åk 8 Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i

Läs mer

2 646 km 1 068 km. schäfer. 767 km. ungefär 2 900. 424 km längre. tränar

2 646 km 1 068 km. schäfer. 767 km. ungefär 2 900. 424 km längre. tränar Tabellen visar avstånden mellan några huvudstäder i Europa. vstånden är i kilometer. msterdam erlin Köpenhamn Paris Rom Stockholm Trampolinen 9 0 9 9 9 09 0 9 9 09 9 9 Läs av i tabellen och svara på frågorna.

Läs mer

!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6

!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6 LÄXA. 1 1 En fönsterruta har måtten 0,8 m x 1,5 m. Vilken är rutans a) omkrets b) area 2 Räkna utan miniräknare 62000 7,5 a) 0,6 700 b) 200 c) 0,05 3 Beräkna a) 7 + (-3) d) (-7) (-3) b) 7 (-3) e) (-7)

Läs mer

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22 Arbetsblad 1:1 sid 8, 22 Decimaltal på tallinjen 1 1 Skriv rätt tal på linjen. 0,8 0 1 2 0 1 3 1,1 1 2 4 0,05 0 0,1 5 0,2 0,3 6 0,5 0,6 7 0,9 1 8 1,9 2 Arbetsblad 1:2 sid 8, 22 Decimaltal på tallinjen

Läs mer

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA Röd kurs Mål: I den här kursen får du lära dig att: ~ multiplicera parenteser ~ använda kvadreringsregler ~ använda konjugatregeln ~ uttrycka formler på olika sätt Matteord första kvadreringsregeln andra

Läs mer

Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21

Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21 1 Tal Arbetsblad 1:1 1 0,1 0,5 0,8 1, 0,3 0,8 1,1 1,5 3 1,1 1,6,1,4 4 0,01 0,05 0,11 0,14 5 0,1 0,5 0,31 0,34 6 0,5 0,56 0,61 0,65 7 0,94 0,98 1,01 1,05 8 1,91 1,95 1,99,0 Arbetsblad 1: 1 0,3 0,6 0,9 1,1

Läs mer

Facit Träningshäfte 9:2

Facit Träningshäfte 9:2 Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12

Läs mer

1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010. 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7

1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010. 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7 1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7 b) 7500 g c) 0,7 ton b) 33-6,5. (10,8-7) 4 En bil drog

Läs mer

Formula 9 facit. 1 Beräkningar med positiva tal 1

Formula 9 facit. 1 Beräkningar med positiva tal 1 Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25

Läs mer

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna Arbetsblad : Hela tal på tallinjen Skriv rätt tal på linjen. 55 0 50 00 0 0 0 0 00 00 00 00 00 5 000 000 50 000 0 000 7 00 000 00 000 Arbetsblad : Positionssystemet Skriv talen med siffror. Placera in

Läs mer

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning 2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är

Läs mer

3-8 Proportionalitet Namn:

3-8 Proportionalitet Namn: 3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt

Läs mer

Räta linjens ekvation & Ekvationssystem

Räta linjens ekvation & Ekvationssystem Räta linjens ekvation & Ekvationssstem Uppgift nr 1 Lös ekvationssstemet eakt = 3 + = 28 Uppgift nr 2 Lös ekvationssstemet eakt = 5-15 + = 3 Uppgift nr 8 Lös ekvationssstemet eakt 9-6 = -69 5 + 11 = -35

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

Aritmetik. Base camp 1. Uppgifter

Aritmetik. Base camp 1. Uppgifter Aritmetik Base camp, a) 9 c), d) 0 e) 00 f) g) h) a), >,0 > 9,, kr/kg, 9,0 kr a) 000 0, 0 Hundratalet ska ändras. Det ska vara 00 i stället för 00.,, 00 Kontoutdraget visade 00 kr fel. 0 a) 0 c) + 9 d)

Läs mer

PRIMA MATEMATIK EXTRABOK 3 FACIT

PRIMA MATEMATIK EXTRABOK 3 FACIT PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,

Läs mer

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

TAL OCH RÄKNING HELTAL

TAL OCH RÄKNING HELTAL 1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot

Läs mer

Algebra och ekvationer

Algebra och ekvationer Algebra och ekvationer Mål När eleverna har studerat det kapitlet ska de kunna: lösa olika slags ekvationer kontrollera en lösning till en ekvation med hjälp av prövning lösa problem med hjälp av ekvationer

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs A som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare).

Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare). Lokal kursplan för Ängkärrskolan år 9 Rev. 009-09- Matematik år 9 MOMENT MÅL KRITERIER/EXEMPELl Taluppfattning, aritmetik Repetition av: Skriv med siffror tolv -Positionssystemet. hundradelar. 0,, 0,7

Läs mer

Facit följer uppgifternas placering i häftet.

Facit följer uppgifternas placering i häftet. Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem? 2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Förändringshastighet ma C

Förändringshastighet ma C DOP-matematik Copright Tord Persson Förändringshastighet ma C 2012-01-0 Uppgift nr 1 Givet funktionen f() 2 + 8 Beräkna f() Uppgift nr 2 Givet funktionen f() 9 + 1 Beräkna f(7) Uppgift nr 6 Uppgift nr

Läs mer

Högskoleverket NOG 2007-10-27

Högskoleverket NOG 2007-10-27 Högskoleverket NOG 2007-10-27 Uppgifter 1. En kock försöker att skala en potatis i så långa remsor som möjligt. Hur lång är den längsta remsa som kocken lyckas åstadkomma? (1) Medianlängden av de tre längsta

Läs mer

Poolbygge. fredag 11 april 14

Poolbygge. fredag 11 april 14 Poolbygge Första lektionen vart jag klar med att rita och skriva ritningen. Först skrev jag poolen i skalan 1:60 vilket vi inte fick göra så jag gjorde den till 1:30, alltså har jag minskat den 30 gånger

Läs mer

Min pool. Hanna Lind 7:2 Alfa

Min pool. Hanna Lind 7:2 Alfa Min pool Hanna Lind 7:2 Alfa RITNING Jag började med att räkna ut ett antal rimliga mått som jag visste blev heltal när jag delade dom på 30, det gjorde jag då skalan var 1:30. I min ritning visar jag

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer