PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd Skriv 0,03 i procentform. 2 Skriv i blandad form.

Storlek: px
Starta visningen från sidan:

Download "PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form."

Transkript

1 Steg 9 10 Bråk och procent Godkänd Skriv 0,03 i procentform Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0, ,12 1,8 4 Skriv 7 % i decimalform. 5 Hur många minuter är 3 2 av en timme? 6 Skriv med siffror: nitton hundradelar. 7 Vilket av bråken ,,,, och ligger närmast 1? 8 Beräkna 12 % av 400 kr. 9 Hur många procent är 5 3?

2 56 10 Förkorta bråket med Vilken symbol (<, > eller =) fattas? 5 % av 600 kr 6 % av 500 kr 12 4 av en kvadrat är gulfärgad. Hur stor del av kvadraten är inte gul? 9 13 Beräkna 2 % av Stina som har 180 kr i månadspeng lyckas förhandla sig fram till en höjning med 10 % efter nyår. Hur stor blir månadspengen nästa år? Väl godkänd Mewita som har 180 kr i månadspeng lyckas förhandla sig fram till 200 kr i månaden efter årsskiftet. Hur många procents ökning får hon? 16 Rita en kvadrat och färglägg 3 2. Förklara hur du tänker. 17 Utanför ett äldreboende är maxhastigheten sänkt till 30 km/h. Högsta tillåtna hastighet är 50 km/h genom samhället. Hur många procent är maxhastigheten sänkt? 18 Hur många procent är 12 kr av 240 kr? 19 Formulera en egen text som handlar om procent till uttrycket 0, Lös sedan uppgiften. 20 Beräkna

3 21 Hur mycket är 7 6 av kr? 22 Var 10:e lott är en vinstlott i ett lotteri med sammanlagt lotter. Chansen att dra en högvinst är 0,25 %. Hur många små och mellanstora vinster finns det i lotteriet? Mycket väl godkänd Priset på en cykel höjdes med 20 % i början av året. Men inför semestern sänktes priset med 20 %. Kommer den att kosta mer, mindre eller lika mycket efter de båda prisändringarna? Motivera ditt svar. 24 Stella och Tora diskuterar en matteuppgift. Stella säger att en ökning från 25 kr till 50 kr är en ökning med 100 %. Tora säger att då måste en minskning från 50 kr till 25 kr innebära en minskning med 100 %. Stella håller inte med. Kommentera vad som är rätt och fel i Stellas och Toras resonemang. Steg Godkänd Ett par skor kostar 499 kr. Under en realisation sänktes alla priser med 30 %. Hur mycket kostar skorna när rabatten är fråndragen? 2 Vilken symbol (<, > eller =) fattas? 101 % av 500 kr 500 kr 3 Skriv 16 4 i decimalform. 4 Hur många procent är 8 5? 5 Beräkna hälften av 0,25. 6 Hur mycket är 36? Ringa in rätt svar. 0,97

4 lite mer än 36 mycket mer än 36 lite mindre än 36 mycket mindre än 36 7 Svaret är orimligt! Siffrorna är korrekta men det saknas ett decimaltecken. Sätt ut decimaltecknet! 54 1,07 = På ett bankkonto finns kr. Hur mycket får du i årsränta, om räntesatsen är 2 %? 9 Hur många procent motsvarar uttrycket tre av fyra? Väl godkänd Vilket bråk passar inte in? Motivera ditt svar % av ett tal är 15. Vilket är talet? 12 Är svaret rimligt? Motivera ditt svar. 500,8 0,99 = 495, Fastighetsskatten sänktes med 0,3 procentenheter från 1,8 %. Hur många procent är skatten efter sänkningen? 14 Fastighetsskatten sänktes med 0,3 procentenheter till 1,5 %. Hur stor var minskningen i procent? Svara med en decimal % av ett tal är 60. Hur mycket är 5 % av samma tal? 16 Under en fartkontroll på en 30-sträcka körde 9,3 % av bilarna för fort. Hur många bilar passerade hastighetskontrollen, om 12 bilar körde för fort? Vilket bråk ska du multiplicera med för att produkten ska bli 3? 15

5 18 Vilket av alternativen ger den största kvoten? A B 200 0, ,255 C D 200 0, ,3 19 Priset på en TV sänks under en realisation med 20 %. Efter en tid höjs reapriset med 20 %. Vilket blir det nya priset, om apparaten från början kostar kr? Ringa in rätt svar. A mycket mer än kr B mycket mindre än kr C exakt kr D lite mer än kr E lite mindre än kr Mycket väl godkänd Priset på en TV sänks under en realisation med 20 %, efter en tid höjs priset igen. Hur många procent måste priset höjas, för att priset ska bli exakt detsamma som det var från början (= ordinarie pris)? 21 Herman har räknat efter konstens alla regler, tror han, och får summan av 7 2 och 3 2 till 0,96. Vilket misstag har han gjort? Motivera ditt svar. Steg Godkänd Vad är produkten av en femtedel och en fjärdedel. Svara i decimalform. 2 Priset på ett par skor sänktes från 200 kr till 150 kr. Hur många procent sänktes priset? 3 I ett motionslopp bröt 12 % av deltagarna. Hur många procent kom i mål?

6 4 Hur mycket är 1,5 % av 600 kr? 5 Hur många minuter är en femtedels timme? 6 Du får 10 % i rabatt på en vara som kostar 300 kr. Hur mycket ska du betala? 7 Vilken symbol (<, > eller =) fattas? a) 0,55 5,5 % b) 1 0, Vilken symbol (<, > eller=) fattas? 1,1 1,2 400 kr 1,2 400 kr 9 Är svaret rimligt? Motivera ditt svar. 78 1,076 = 839,28 10 Vad vet du om talet 3 1? Ringa in det/de rätta alternativet/en. A Talet är större än 33 %. B 1 är samma tal som 1,3. 3 C Talet är lika stort som Vid en kontroll av 45 cyklar visade det sig att 7 st hade fel på lyset. Hur många procent av cyklarna hade detta fel? Avrunda till hela procent. Väl godkänd Priset på ett linne sänktes från 69 kr till 59 kr. Hur många procent lägre blev priset? Svara i hela procent. 13 Jens bytte ut en 40 W-lampa till en 25 W-lampa. Hur mycket minskade effekten? Svara i hela procent.

7 14 Ett fat innehåller 200 liter bensin. Hur mycket väger bensinen som finns kvar i fatet, om en fjärdedel har runnit ut? Antag att en liter bensin väger 0,7 kg. 15 En barnfamilj gör av med 3 liter mjölk varje dag. Vid ett tillfälle sänktes mjölkpriset med 2,5 % per liter. Hur mycket sparar familjen på ett år, om de kan köpa mjölk till det lägre priset? Antag att normalpriset för en liter mjölk är 7,20 kr. 16 Avståndet mellan Kilimanjaro International Airport och Dar es-salaam är 45 mil. Beräkna tidsvinsten för Pontus som kör med medelhastigheten 75 km/h, om han efter halva sträckan ökar medelhastigheten med 20 %. 17 Vad vet du om talet 5 3? Ringa in det/de rätta alternativet/en. A Talet är större än 2 1. D Talet är mindre än 4 3. B Talet är lika med 0,6. E 3 9 är lika stort som C Talet är större än. F är samma tal som 3, , = 252. Hur mycket större är 1,06 240? Vilket alternativ är rätt? A 240 B 241 C 2,4 D 1,01 19 Hur många bor i Stockholm med förorter? Antag att Sveriges befolkning är ungefär 8, och att 20 % bor i Stockholm med förorter. Svara i grundpotensform Summan av två bråk är och differensen av de två bråken är. 6 6 a) Beräkna produkten. b) Beräkna kvoten mellan det mindre och det större bråket. 21 Antag att befolkningen i ett storstadsområde ökar med 11 % per år. Hur många år tar det innan antalet invånare har fördubblats?

8 22 Beräkna Mycket väl godkänd När Rutger och Sven räknade uppgiften fick de helt olika svar Uppgiften var att ge ett exakt svar men också ett närmevärde, avrundat till två decimaler. Rutger fick närmevärdet 1,37 och Sven fick 1,11. Vem räknade rätt? Vilket är det exakta svaret? Förklara vilka fel som gjordes. 24 Ge exempel på två tal sådana att differensen är 12 mellan 60 % av det ena talet och 20 % av det andra talet. 25 En plastdunk som rymmer 4 liter är helt fylld med färdigblandad saft. Blandningen består av fyra delar vatten och en del jordgubbssaft. Tanya häller 10 % av den färdigblandade saften i ett stort glas, och fyller sedan vatten i dunken tills den är helt fylld igen. Hur många procent saft är det nu i dunken? Steg Godkänd Hur mycket är 130 % av kr? 2 Av 15 trianglar är tre liksidiga. Hur många procent motsvarar det? 3 Skriv ett tal som är dubbelt så stort som Skriv ett tal som är hälften så stort som Skriv med siffror etthundratolv tiondelar. 6 Vilken symbol (<, > eller =) fattas? 5 % av 600 kr 6 % av 500 kr

9 7 Beräkna rabatten om du får köpa fyra par strumpor och endast behöver betala för tre par. 8 Hur många procent är 360 kr av 300 kr? 9 Katja tjänar kr i månaden och betalar 30 % av lönen i skatt. Hur mycket blir det i kronor? Väl godkänd Vasilikis timlön höjdes från 112,50 kr till 114,75 kr. Beräkna ökningen i procent. 11 Hur många tal finns det mellan 3/6 och 4/6? inga tal ett tal några få tal många tal Förklara ditt svar och ge exempel. 12 Mehmed satte in kr på ett bankkonto för ett år sedan. Vilken ränta har han på sitt bankkonto, om han nu har 9 712,80 kr på kontot. 30 % av ränteinkomsten har dragits i kapitalskatt. 13 Jonathan har tagit ett lån på kr för att köpa en begagnad bil. Årsräntan på lånet är 13,1 %. a) Hur mycket betalar Jonathan i räntekostnad per månad? b) Hur mycket ska Jonathan amortera per månad om han vill betala lånet på 36 månader. Han vill betala lika mycket varje månad. 14 Beräkna 5 av Formulera en egen text, som handlar om procent, till uttrycket 1,15 0, Lös sedan uppgiften 16 Beräkna 3 1 av Hur mycket är 10 % av ? Svara i grundpotensform.

10 18 Är svaret rimligt? Motivera ditt svar. 4,3 0,63 = Vilken eller vilka av summorna är större än 1? Ringa in rätt svar. A B C D Antoni köpte en begagnad bil för kr. Ett år senare värderades bilen till kr. Hur mycket bör bilen vara värd efter ytterligare två år, om värdet varje år minskar med lika många procent som under första året? Mycket väl godkänd I rabatten framför Rådhuset växer rosenbuskar, 20 % av dem har rosa blommor och 80 % har röda blommor. Av de rosa blommorna är det 50 % som doftar gott, och av de röda är det 25 % som är väldoftande. Sammanlagt är det 60 buskar som är av den doftande sorten. Hur många rosenbuskar finns det i rabatten? 22 Antag att Adams längd är a cm och Bertils längd är b cm. Vad betyder påståendet b + 0,3 b = a? Vilket eller vilka alternativ är rätt? Motivera ditt svar. A Bertil är längre än Adam. B Adam är längre än Bertil. C Bertil är 0,3 m kortare än Adam. D Adam är 0,3 m längre än Bertil. E Bertil är 30 % kortare än Adam. F Adam är 30 % längre än Bertil. 23 En kvadrat och en rektangel har båda omkretsen 12 cm. Rektangelns längd förhåller sig till dess bredd som 2:1. a) Beräkna och jämför de båda figurernas area. b) Vilken area har en cirkel med lika stor omkrets? Svara med två gällande siffror.

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 % = 00 0 % = 0 20 % = 5 25 % = 4 50 % = 2 % = 0,0 0 % = 0,0 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 -----------------------------------------------------------------------------------------------------------------

Läs mer

3-7 Procentuella förändringar

3-7 Procentuella förändringar Namn: 3-7 Procentuella förändringar Inledning Du har arbetat mycket med procent, rabatter och påslag. Nu skall du lära dig konsten att beräkna procentuella förändringar. Som alltid gäller att du måste

Läs mer

Utvärdering av dina matematiska förmågor - Procent

Utvärdering av dina matematiska förmågor - Procent Utvärdering av dina matematiska förmågor - Procent Göra beräknar med promille och ppm 1. En person med 4,8 liter blod i kroppen har en alkoholhalt i blodet som är 0,25 promille. Hur många centiliter alkohol

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2 Kapitel 2.1 2101, 2102, 2103, 2104 Exempel som löses i boken. 2105 Hela cirkeln är 100 %. Den ofärgade delen är 100 % - 45 % = 55 % 2106 a) Antalet färgade rutor 3 = b) 3 = 0, 6 c) 0,6 = 60 % Totala antalet

Läs mer

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Procent anger hundradelar och kan användas när man vill jämföra andelar.

Procent anger hundradelar och kan användas när man vill jämföra andelar. Repetition kapitel 2 2.1 Andelen, delen och det hela Viktiga begrepp Procent Hundradel, 1 procent skrivs 1 % Andel Promille Tusendel, 1 promille skrivs 1 ppm Miljondel (parts per million), skrivs 1 ppm

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Lästal från förr i tiden

Lästal från förr i tiden Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Ecolier, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform ARBETSBLAD 1 Procent i olika form 1. Hur stor del är färgad? Bråkform Decimalform Procentform a) b) c) d) 2. Skriv i procentform. a) 0,06 b) 0,19 c) 0,024 d) 0,801 e) 1,07 f) 0,003 3. Skriv i decimalform.

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

1 G. Förlänga och förkorta. z-2. a b. a± b c- 12. a bl c. 9 Vilket tal har bråket förkortats med?

1 G. Förlänga och förkorta. z-2. a b. a± b c- 12. a bl c. 9 Vilket tal har bråket förkortats med? 7? 9!? 2 Brilk OCkpfOC Förlänga och förkorta G 2/3 av rektangeln är hia. 8/2 av rektangeln är röd. Lika stora delar av rektanglarna är färgade vilket betyder att 2/3 = 8/2. 2 2 8 Vi har förlängt 2/3 med.

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

Högskoleverket. Delprov NOG 2005-04-09

Högskoleverket. Delprov NOG 2005-04-09 Högskoleverket Delprov NOG 2005-04-09 1. Eva, Pia och Linus köpte totalt 18 frukter. Hur många frukter köpte Eva? (1) Eva och Linus köpte sammanlagt dubbelt så många frukter som Pia. (2) Pia köpte tre

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

3-4 Procent Namn: Inledning. Vad menas med procent?

3-4 Procent Namn: Inledning. Vad menas med procent? 3-4 Procent Namn: Inledning Du har kommit i kontakt med begreppet procent i många sammanhang tidigare. Kan du nämna några? Visst, det finns hur mycket som helst. Prisökningar, rabatter, arbetslöshet, partisympatier

Läs mer

Högskoleverket. Delprov NOG 2002-10-26

Högskoleverket. Delprov NOG 2002-10-26 Högskoleverket Delprov NOG 2002-10-26 1. Det ordinarie priset på en skjorta, som såldes på rea, var 600 kr. Inför slutrean sänktes priset till halva ursprungliga reapriset. Vad var det ursprungliga reapriset

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500 Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal

Läs mer

5Genrepet. Mål. Arbetssätt K 5

5Genrepet. Mål. Arbetssätt K 5 Genrepet Mål I det här kapitlet får eleverna möjlighet att repetera och reparera grunderna i grundskolans matematik. apitlet är indelat i se avsnitt: Tal Bråk och procent Geometri Algebra Statistik och

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Sammanfattning: Matematik 1b

Sammanfattning: Matematik 1b Sammanfattning: Matematik 1b Ma1c kräver kompletterande delar om vektorer samt trigonometri 1. Kapitel 1: Aritmetik Centrala delar i kapitlet: - Räkneordning - Tal i bråkform och decimalform - Tal i potensform

Läs mer

delbart med fler tal än sig själv och 1. b) Ett primtal är endast delbart med sig själv och 1. REPETITIONSUPPGIFTER 2 1 a) B b) D och E c) A och C

delbart med fler tal än sig själv och 1. b) Ett primtal är endast delbart med sig själv och 1. REPETITIONSUPPGIFTER 2 1 a) B b) D och E c) A och C epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Facit till Arbetsblad

Facit till Arbetsblad Facit till Arbetsblad På denna och nästa sida hittar du facit till Arbetsblad :8 och :9 samt diagram till :8 uppgift och. Facit till övriga Arbetsblad finns på efterföljande sidor markerade direkt i Arbetsbladen.

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

3-6 Procent: rabatt och pålägg

3-6 Procent: rabatt och pålägg Namn: 3-6 Procent: rabatt och pålägg Inledning Nu börjar du bli en hejare på procenträkning. Du vet vad som menas med procent, och du kan räkna ut hur mycket en viss procent är av t.ex. ett belopp. I detta

Läs mer

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0)

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0) DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Vilket tal pekar pilen på? 30 31 32 33 34 Svar: (1/0/0) 2. Du åker buss kvart i sju från Motala busstation. Hur dags beräknas du vara

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2009-03-28 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGg Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden = Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2013-04-06 Provpass 2 Högskoleprovet Svarshäfte nr. Kvantitativ del h Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

3Procent. Mål. Grunddel K 3

3Procent. Mål. Grunddel K 3 Procent Mål När eleverna har studerat det här kapitlet ska de kunna: förstå och utföra de tre olika typerna av procentberäkningar räkna ut delen räkna ut hur många procent något är räkna ut det hela använda

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

0,799 0,801 0,8 0,719 0,78. c) 005, du betalar 2 495 kr kontant när du hämtar den och resten enligt erbjudandet i annonsen?

0,799 0,801 0,8 0,719 0,78. c) 005, du betalar 2 495 kr kontant när du hämtar den och resten enligt erbjudandet i annonsen? .... Laxor Laxor Läxa 1 Efter avsnitt 1.2 1 Beräkna med huvudräkning a) 106 9 b) 998 + 15 c) 100 100 d) 10 0,1 e) 1 200 / 6 f) 8,7 + 3,3 95 kr 2 Hanna köper sex stolar. Hur mycket får hon tillbaka när

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet?

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? 2 1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? (1) Tiotalssiffran är dubbelt så stor som tusentalssiffran. (2) Hundratalssiffran är hälften så stor

Läs mer

Namn: 2 Du behöver en och en halv liter färg. [6] Hur många burkar måste du köpa om burkarna innehåller

Namn: 2 Du behöver en och en halv liter färg. [6] Hur många burkar måste du köpa om burkarna innehåller FÖRTEST Bråk och procent steg 9 1 I Mathildas klass går hälften så många flickor som pojkar. [7] Tre av pojkarna, vilket motsvarar en sjättedel av pojkarna, har bruna ögon. Hur många elever går i klassen?

Läs mer

KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer!

KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer! vardag KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer! Vi reser idag mer och mer och ofta längre och längre. Redan för 40 år sedan var vägtrafiken det dominerande

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6 Subtrahera. Räkna framåt på tallinjen. 90 00 0 0 0 8-99= 9 0 0 0 0 0-8= Subtrahera. -9= - 099= - 96= - 99= 9 6 9 6 868-797= 77-688= 8-7= 67-98= 7 9 8 77 6-87= 0-= 76-97= -89= 78 79 6 Subtrahera. Öka termerna

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1999. NATIONELLT

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer

Familjens ekonomi. Skatter Det finns många olika slags skatter. Huvudsakligen kan man dela in dem i Varuskatter och Inkomstskatter.

Familjens ekonomi. Skatter Det finns många olika slags skatter. Huvudsakligen kan man dela in dem i Varuskatter och Inkomstskatter. Bilaga 3 1. Ur Samhällskunskap A Familjens ekonomi Olika familjer Det finns många olika sorters familjer. Man kan leva i en s k kärnfamilj, med mamma, pappa och barn. Man kan leva som ensamstående. Det

Läs mer

Örebro naturskola, e-post naturskolan@orebro.se

Örebro naturskola, e-post naturskolan@orebro.se ST 19: HEMLIGT MÅL (MH) Matematiskt innehåll: Fyra räknesätten Huvudräkning Procent (H) Centralt innehåll ur kursplanen som berörs: Åk 4-6: Centrala metoder för beräkningar med naturliga tal och enkla

Läs mer

PROVUPPGIFTER Mått och mätning 9 16

PROVUPPGIFTER Mått och mätning 9 16 Mått och mätning 9 16 Steg 9 10 Godkänd 9 10 1 Omvandla enheterna! a) 25 dl = l b) 18 cm =...mm c) 0,575 kg =... g 2 Beräkna och svara i cm. 417 cm + 13 dm 6mm 3 Vilken storleksordning är rätt? 1, 10,

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

a) 7 9 b) 32 / 4 c) 6 7 d) 201 193 e) 45 / 9 f) 3 13 a) 7,9 7,95 b) 3 5 c) 7 1 a) 735 + 87 + 9 b) 1 035 768 c) 6 235

a) 7 9 b) 32 / 4 c) 6 7 d) 201 193 e) 45 / 9 f) 3 13 a) 7,9 7,95 b) 3 5 c) 7 1 a) 735 + 87 + 9 b) 1 035 768 c) 6 235 .... Laxor Laxor Läxa 1 Efter avsnitt 1.2 1 Beräkna med huvudräkning a) 7 9 b) 32 / 4 c) 6 7 d) 201 193 e) 45 / 9 f) 3 13 2 Sätt ut rätt tecken (> eller

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Miniräknare ej tillåten Del B1 Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng (0/1). Provtid: 80 minuter för Del B1 och Del B2 tillsammans.

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del Nationellt prov i Matematik kurs A vt 1998 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del Np MaA vt 1997 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av april 1998.

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Vardagsmatematik 1. SUSANNE SPARAR 10 KR I VECKAN. HUR MYCKET BLIR DET PÅ ETT ÅR?

Vardagsmatematik 1. SUSANNE SPARAR 10 KR I VECKAN. HUR MYCKET BLIR DET PÅ ETT ÅR? Vardagsmatematik 1. SUSANNE SPARAR 10 KR I VECKAN. HUR MYCKET BLIR DET PÅ ETT ÅR? 2. VID EN HASTIGHETSKONTROLL STOPPADE POLISEN EN BILIST SOM KÖRDE 69 KM/H. HÖGSTA TILLÅTNA HASTIGHET VAR 50KM/H. HUR MYCKET

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Problem avdelningen. 920 Då vårterminen slutade skakade alla de 24 eleverna hand med varandra. Hur många handskakningar blev det?

Problem avdelningen. 920 Då vårterminen slutade skakade alla de 24 eleverna hand med varandra. Hur många handskakningar blev det? Problem avdelningen Matematiska knep- och knåpproblem kan vara en bra inkörsport då man vill skapa intresse för och träna problemlösning. Ibland blir det tvärtom. En del elever känner sig otillräckliga

Läs mer

c) 75, 005, om du betalar 2 495 kr kontant när du hämtar den och resten enligt erbjudandet?

c) 75, 005, om du betalar 2 495 kr kontant när du hämtar den och resten enligt erbjudandet? .... Laxor Laxor Läxa 1 Efter avsnitt 1.2 1 Vilken är dörrens a) omkrets b) area 2 Räkna utan miniräknare 62 000 a) 0,6 700 b) 200 c) 75, 005, 3 Hur länge dröjer det innan TV:n är betald om du betalar

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer