0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

Storlek: px
Starta visningen från sidan:

Download "0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7"

Transkript

1 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5 tre tiondelar 0,3 nio tiondelar 0,9 två tiondelar 0,2 åtta tiondelar 0,8 tio tiondelar 1,0 Skriv talen i de tomma rutorna. 0,1 0,3 0,6 0,9 Vilka tal pekar pilarna på? A 0,2 B 0,5 C 0,7 Sidan 3: 2 tiondelar + 4 tiondelar = 6 tiondelar 6 tiondelar + 1 tiondel = 7 tiondelar 3 tiondelar + 6 tiondelar = 9 tiondelar 4 tiondelar + 4 tiondelar = 8 tiondelar Skriv svaret i decimalform. 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Skriv talet som fattas. 0,6 + 0,4 = 1 0,2 + 0,8 = 1 0,9 + 0,1 = 1 0,5 + 0,5 = 1 0,4 + 0,6 = 1 0,3 + 0,7 = 1 0,5 + 0,3 + 0,1 = 0,9 0,5 + 0,4 + 0,1 = 1

2 Sidan 4: Vilka tal pekar pilarna på? A 0,6 B 1,2 C 1,6 D 1,8 Skriv talen i de tomma rutorna. 0,2 0,8 1,3 1,7 Skriv talen i decimalform. 13 tiondelar = 1,3 11 tiondelar = 1,1 14 tiondelar = 1,4 18 tiondelar = 1,8 15 tiondelar = 1,5 10 tiondelar = 1,0 6 tiondelar + 5 tiondelar = 11 tiondelar = 1,1 9 tiondelar + 6 tiondelar = 15 tiondelar = 1,5 5 tiondelar + 7 tiondelar = 12 tiondelar = 1,2 0,6 + 0,6 = 12 tiondelar = 1,2 0,8 + 0,7 = 15 tiondelar = 1,5 0,9 + 0,4 = 13 tiondelar = 1,3 0,4 + 0,7 = 11 tiondelar = 1,1 Sidan 5: 0,5 + 0,3 = 0,8 0,6 + 0,5 = 1,1 0,1 + 0,9 = 1,0 0,7 + 0,2 = 0,9 0,9 + 0,3 = 1,2 0,9 + 0,6 = 1,5 0,5 + 0,5 = 1,0 0,8 + 0,6 = 1,4 0,4 + 0,8 = 1,2 0,9 + 0,2 = 1,1 0,3 + 0,7 = 1,0 0,9 + 0,9 = 1,8 0,7 + 0,7 = 1,4 0,7 + 0,6 = 1,3 0,8 + 0,8 = 1,6 0,8 + 0,5 = 1,3 0,9 + 0,7 = 1,6 0,7 + 0,8 = 1,5 Skriv talet som fattas. 0,9 = 0,5 + 0,4 1,1 = 0,5 + 0,6 1,3 = 0,9 + 0,4 1,2 = 0,8 + 0,4 1,4 = 0,9 + 0,5 1,8 = 0,9 + 0,9 1,5 = 0,8 + 0,7 1,6 = 0,8 + 0,8 1,7 = 0,8 + 0,9 Addera på enklaste sätt, först till 1 (en hel). 0,5 + 0,8 + 0,5 = 1,8 0,8 + 0,9 + 0,2 = 1,9 0,3 + 0,9 + 0,7 = 1,9 0,4 + 0,8 + 0,6 = 1,8 0,7 + 0,9 + 0,1 = 1,7 0,2 + 0,6 + 0,4 = 1,2 0,6 0,7 0,2 0,1 0,5 0,9 0,8 0,3 0,4

3 Sidan 6: Vilka tal pekar pilarna på? A 0,6 B 1,4 C 1,9 D 2,3 E 2,8 Skriv talen i de tomma rutorna. 0,5 1,3 2,2 2,7 Skriv talen i storleksordning. Börja med det minsta talet. 0,1 0,9 1,5 1,9 2,2 2,6 2,9 Vilka tal pekar pilarna på? A 0,5 B 2,9 C 3,6 D 4,3 E 5,9 Skriv i decimalform. en hel och tre tiondelar 1,3 fyra hela och en tiondel 4,1 tre hela och sju tiondelar 3,7 fem hela och nio tiondelar 5,9 sex hela och två tiondelar 6,2 noll hela och sex tiondelar 0,6 två hela och åtta tiondelar 2,8 en hel och fem tiondelar 1,5 Sidan 7: Vilket tal är störst? 1,1 är större än 0,9 2,0 är större än 0,2 6,1 är större än 5,8 Skriv tre tal som är större än 0, men mindre än 1 0,6 0,7 0,8 (finns flera olika alternativ) större än 4,5 men mindre än 6 4,6 4,8 5,2 (finns flera olika alternativ) Vilka tal pekar pilarna på? A 25,3 B 26,5 C 27,5 D 28,9 E 30,2 Skriv talen i de tomma rutorna. 50,5 51,6 53,0 54,9 56,4 Skriv talen i storleksordning. Börja med det minsta talet. 0,8 2,5 19,3 20,9 21,0 30,6 41,2 0,3

4 Sidan 8: Avrunda till heltal. Skriv tecknet för ungefär lika med. 4,2 4 12, , ,3 34 0,8 1 30, , ,6 67 1,3 1 76, , ,5 100 Avrunda först till heltal, räkna sedan ut i huvudet. 6,7 + 4, = 11 12,5 + 12, = 25 0,8 + 22, = 23 33,3 + 66, = 100 7,4 + 19, = 27 22,8 + 52, = 76 15,3 + 34, = 50 82,8 + 21, = ,6 + 40, = 98 95,2 + 32, = 127 Sidan 9: Skriv talet i utvecklad form (olika talsorter). 7,5 = 7 + 0,5 12,6 = ,6 1,8 = 1 + 0,8 34,7 = ,7 10,4 = ,4 51,1 = ,1 22,2 = ,2 98,9 = ,9 50,5 = ,5 76,3 = , ,3 = 35, ,8 = 30, ,9 = 24, ,7 = 73, ,8 = 63, ,9 = 92, ,4 = 79, ,5 = 66, ,2 = 47, ,1 = 85, ,6 = 55, ,8 = 49,8 68,4 48,6 93,1 13,9 89,3 39,8

5 Sidan 10: Skriv mellanled som visar hur du tänker. 3,4 + 6,5 = 9 + 0,9 = 9,9 8,7 + 7,8 = ,5 = 16,5 5,6 + 6,2 = ,8 = 11,8 7,9 + 4,5 = ,4 = 12,4 9,3 + 9,4 = ,7 = 18,7 6,8 + 8,4 = ,2 = 15,2 7,3 + 5,7 = ,0 = 13 9,6 + 7,7 = ,3 = 17,3 24,4 + 32,7 = ,1 = 57,1 25,8 + 15,6 = ,4 = 41,4 62,8 + 34,2 = ,0 = 97 45,5 + 28,6 = ,1 = 74,1 47,5 + 47,7 = ,2 = 95,2 33,3 + 66,7 = ,0 = ,2 + 52,9 = ,1 = 72,1 59,2 + 26,5 = ,7 = 85,7 Om du ser att du inte behöver växla, kan du hålla mellanledet i huvudet och skriva svaret direkt. 23,5 + 23,3 = 46,8 53,1 + 24,4 = 77,5 62,6 + 33,2 = 95,8 16,4 + 12,5 = 28,9 71,7 + 28,2 = 99,9 44,3 + 14,5 = 58,8 34,3 + 34,4 = 68,7 46,6 + 41,3 = 87,9 55,2 + 22,3 = 77,5 41,2 + 18,6 = 59,8 24,5 + 41,2 = 65,7 32,6 + 54,1 = 86,7 Sidan 11: Skriv mellanled som visar hur du tänker. 49,9 + 37,4 = ,3 = 87,3 59,6 + 42,8 = ,4 = 102,4 35,4 + 39,8 = ,2 = 75,2 69,7 + 56,5 = ,2 = 126,2 79,7 + 18,5 = ,2 = 98,2 45,6 + 99,8 = 45, = 145,4 99,9 + 32,6 = ,5 = 132,5 59,9 + 74,5 = ,4 = 134,4 0,6 + 2,4 = 3 2,5 + 2,5 = 5 4,1 + 7,9 = 12 3,2 + 6,8 = 10 5,3 + 6,7 = 12 6,7 + 2,3 = 9 Om det finns flera termer, kan du ändra ordningen när du räknar ut på enklaste sätt. 0,6 + 4,7 + 1,4 = 2 + 4,7 = 6,7 3,2 + 5,9 + 2,8 = 6 + 5,9 = 11,9 3,8 + 2,5 + 2,5 = 5 + 3,8 = 8,8 2,7 + 7,8 + 3,3 = 6 + 7,8 = 13,8 4,8 + 2,4 + 7,2 = ,4 = 14,4

6 Sidan 12: Skriv talet i utvecklad form. 389,5 = ,5 521,3 = ,3 162,7 = ,7 693,8 = ,8 444,4 = ,4 703,2 = ,2 530,5 = ,5 917,6 = ,6 255,9 = ,9 880,8 = , ,6 = 387, ,4 = 495, ,8 = 975, ,6 = 708, ,7 = 408, ,3 = 829, ,5 = 600, ,9 = 560, ,4 = 950, ,2 = 444, ,8 = 941, ,7 = 493, ,2 = 561, ,4 = 347, ,5 = 681, ,1 = 268, ,3 = 811, ,8 = 984, ,6 = 721, ,0 = 672,0 Sidan 13: Räkna ut med skriftlig huvudräkning, varje talsort för sig. Skriv mellanled som visar hur du tänker. 327, ,4 = ,9 = 745,9 249, ,2 = ,8 = 766,8 482, ,7 = ,0 = , ,6 = ,4 = 963,4 184, ,7 = ,4 = 479,4 258, ,6 = ,0 = , ,4 = ,1 = 610,1 287, ,9 = ,8 = 575,8 Titta på talen innan du börjar räkna. Kan du hålla mellanledet i huvudet? 213, ,2 = 637,7 310, ,3 = 815,9 344, ,4 = 688,8 473, ,1 = 596,6 630, ,5 = 899,8 565, ,3 = 989,5 300,6

7 Sidan 14: Vilket tal ligger mitt emellan 0 och 0,10 0,05 0,20 och 0,30 0,25 0,80 och 0,90 0,85 Vilket tal pekar pilarna på? A 0,05 B 0,17 C 0,32 D 0,45 E 0,61 Skriv talet med siffror. noll hela och tjugofem hundradelar 0,25 sju hela och åtta tiondelar 7,8 tre hela och tolv hundradelar 3,12 femton hela och tre hundradelar 15,03 tjugo hela och sjuttio hundradelar 20,70 noll hela och en hundradel 0,01 Skriv talen i storleksordning. Börja med det minsta talet. 0,03 0,11 0,19 0,2 0,23 0,3 Sidan 15: 0,04 + 0,02 = 0,06 0,03 + 0,07 = 0,10 0,06 + 0,06 = 0,12 0,01 + 0,08 = 0,09 0,06 + 0,04 = 0,10 0,08 + 0,05 = 0,13 0,30 + 0,05 = 0,35 0,50 + 0,70 = 1,20 0,25 + 0,70 = 0,95 0,80 + 0,08 = 0,88 0,30 + 0,80 = 1,10 0,25 + 0,75 = 1,00 0,40 + 0,60 = 1,00 0,60 + 0,90 = 1,50 0,35 + 0,65 = 1,00 0,70 + 0,30 = 1,00 0,70 + 0,70 = 1,40 0,35 + 0,70 = 1,05 Skriv talet i heltal och hundradelar. 32,25 = ,25 156,75 = ,75 79,20 = ,20 395,50 = ,50 94,05 = ,05 156,10 = ,10 15,65 15,64 8,50 8,49 5,00 4,99

8 Sidan 16: ,09 = 20,09 57, = 87, ,3 + 0,03 = 30,33 6,5 + 6,05 = 12, ,45 = 32, ,1 + 1,80 = 18,90 0,24 + 0,32 = 0,56 1,65 + 1,24 = 2,89 2,35 + 0,15 = 2,50 0,45 + 0,50 = 0,95 2,30 + 6,18 = 8,48 0,08 + 5,37 = 5,45 0,37 + 0,12 = 0,49 7,38 + 7,61 = 14,99 9,73 + 0,06 = 9,79 Addera först heltalen, sedan hundradelarna. 24, ,45 = 87,77 35, ,27 = 70,92 52, ,09 = 88,55 67, ,34 = 89,40 Skriv mellanled när du räknar ut. 15, ,60 = ,10 = 33,10 67, ,60 = ,30 = 131,30 84, ,25 = = , ,55 = = , ,20 = ,05 = 151,05 25, ,34 = ,62 = 35,62 36, ,22 = ,99 = 135,99 Sidan 17: Vad avrundar man 14,50 till? 15 Ringa in talen som blir 25 när de avrundas till heltal. 25,35 25,29 25,09 25,48 Avrunda till heltal. Skriv tecknet för ungefär lika med. 4, , , , , , , , , , , , Avrunda först till heltal, räkna sedan ut i huvudet. 17, , = , , = , , = , , = , , = , , = ,56 634,52 987,65 587,69

9 Sidan 18: Tal i bråkform I rektangeln är fyra sjättedelar vita. Hur många sjättedelar är skuggade? 2/6 (två sjättedelar) Skriv i bråkform en tredjedel 1/3 en sjundedel 1/7 två åttondelar 2/8 fyra tiondelar 4/10 Skugga 3/5 av rektangeln tre fält ska vara skuggade Skugga 2/8 av cirkeln två fält ska vara skuggade Sidan 19: En tårta är delad i fyra delar. Vad kallas varje del? 1/4 (en fjärdedel) Vad kallas varje del när tårtan är delad i åtta delar? 1/8 (en åttondel) Vilken del är störst, 1/4 eller 1/8? 1/4 Hur många åttondelar är en hel? 8/8 Skriv talen i storleksordning. Börja med det minsta talet. 1/50 1/20 1/16 1/10 1/5 1/3 1/2 Räkna ut summan. 1/6 + 2/6 = 3/6 7/8 + 1/8 = 8/8 2/10 + 5/10 = 7/10 4/7 + 3/7 = 7/7 Räkna ut summan och skriv svaret i blandad form. 4/7 + 5/7 = 9/7 = 1 2/7 6/9 + 8/9 + 7/9 = 21/9 = 2 3/9 Addera först de hela talen. 3 1/ /9 = 9 4/9 7 5/ /8 = 16 8/8 = 17

10 Sidan 20: Hur många hundradelar är varje fjärdedel? 25/100 Skriv decimaltalet i den tomma rutan. 3/4 0,75 Skriv i bråkform och decimalform. 3 hundradelar = 3/100 = 0,03 50 hundradelar = 50/100 = 0,50 3 tiondelar = 3/10 = 0,3 1 halv = 1/2 = 0,50 25 hundradelar = 25/100 = 0,25 75 hundradelar = 75/100 = 0,75 1 fjärdedel = 1/4 = 0,25 3 fjärdedelar = 3/4 = 0,75 Sidan 21: Skriv i decimalform och procentform. 25/100 = 0,25 = 25 % 46/100 = 0,46 = 46 % 8/100 = 0,08 = 8 % 50/100 = 0,50 = 50 % 4/100 = 0,04 = 4 % 80/100 = 0,80 = 80 % Skriv som procent. 0,07 = 7 % 0,30 = 30 % 0,65 = 65 % 0,99 = 99 % 17/100 = 17 % 70/100 = 70 % 5/100 = 5 % 100/100 = 100 % 1/2 = 50 % 1/4 = 25 % 3/4 = 75 % 1 = 100 % Hur många hundradelar är varje femtedel? 20/100 Skriv decimaltalen i de tomma rutorna. 1/5 2/5 3/5 4/5 0,20 0,40 0,60 0,80 Skriv i decimalform och procent. 1/5 = 20 % 3/5 = 60 % 2/5 = 40 %

11 Sidan 22: 1. 4,2 + 3,8 + 4,5 = ,5 = 12,5 Svar: 12,5 m 2. 2,8 + 0,3 + 0,4 = 2 + 1,5 = 3,5 Svar: 3,5 kg ,9 0,7 = 4 3,6 = 0,4 (4 3,6 = 0,4) Svar: 0,4 m Sidan 23: 4. Svar. 27 kr 5. 5,45 kr 5,50 kr 68,25 kr 68,50 kr 137,55 kr 137,50 kr 295,40 kr 295,50 kr 6. Svar: 8,50 cm 7. 16, ,70 = ,40 = 33,40 33,40 kr 33,50 kr Svar: 33,50 kr 8. Svar: Julia = 55 Svar: 55 %

Facit följer uppgifternas placering i häftet.

Facit följer uppgifternas placering i häftet. Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Arbetsblad 5:2. Förkorta och förlänga bråk. 1 Förkorta med 2. 2 Förkorta med 5. 3 Förkorta med 3. 4 a) 4 = b) a) 6 = b) 16.

Arbetsblad 5:2. Förkorta och förlänga bråk. 1 Förkorta med 2. 2 Förkorta med 5. 3 Förkorta med 3. 4 a) 4 = b) a) 6 = b) 16. Arbetsblad 5:1 sid 142, 156 Repetition av bråk 1 Hur stor del av figuren är färgad? Skriv som ett bråk. a) b) c) d) 2 a) Skriv de bråk som är lika med en halv. b) Skriv de bråk som är mindre än en halv.

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km

1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.

Läs mer

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret.

1 Boris stegmätare visar att han har gått steg. Vad visar den när Boris har gått tio steg till? Fortsätt talmönstret. Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Lärarhandledning. Bråk från början. en tredjedel ISBN 978-91-86611-44-6

Lärarhandledning. Bråk från början. en tredjedel ISBN 978-91-86611-44-6 Lärarhandledning Bråk från början en tredjedel ISBN ---- Innehåll Arbeta med bråk............................. Sidorna -................... Sidorna -................... Sidorna 0-................. Sidorna

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

Lathund, bråk och procent åk 7

Lathund, bråk och procent åk 7 Lathund, bråk och procent åk 7 Är samma som / som är samma som en tredjedel och samma som en av tre. är täljaren (den säger hur många delar vi har), tänk täljare = taket = uppåt är nämnaren (den säger

Läs mer

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. 7, Bonnier Utbildning och författarna

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. 7, Bonnier Utbildning och författarna Arbetsblad 1:1 Hela tal på tallinjen 1 Skriv rätt tal på linjen. 55 0 50 100 2 0 10 20 3 0 100 200 300 100 200 5 1 000 2 000 6 50 000 60 000 7 100 000 200 000 Arbetsblad 1:2 Positionssystemet 1 Skriv talen

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > < Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, Bråkform i vardagssituationer Stambråk, bråkuttryck med 1

Läs mer

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller = n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental

Läs mer

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d)

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d) Arbetsblad 1:1 Egyptiska och romerska talsystemet Skriv med vanliga siffror 1 a) b) c) d) 2 a) b) c) d) Skriv med egyptiska talsymboler 3 a) 8 b) 42 c) 189 d) 2 431 4 a) 111 111 b) 43 245 c) 402 000 d)

Läs mer

PLANERINGAR ÅK 4 OCH 5*

PLANERINGAR ÅK 4 OCH 5* MATEMATIK PLANERINGAR ÅK 4 OCH 5* **Gäller period 1 av 2 av VT-2016* MATEMATIK, ÅK 5 VOLYM (K4) Du kommer att fördjupa dig i områden om volym och volymbegrepp, omvandlingar och jämförelser. När du arbetat

Läs mer

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket.

1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket. Test 9, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, 4 Bråkform i vardagssituationer 4 Stambråk,

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000

1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000 Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4 Kapitel 1 6A-boken inleds med ett kapitel om decimaltal. Kapitlet börjar med en repetition av tiondelar och hundradelar. Sedan följer en introduktion av tusendelar med utgångspunkt i hur vikt anges på

Läs mer

TAL OCH RÄKNING HELTAL

TAL OCH RÄKNING HELTAL 1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Volym liter och deciliter

Volym liter och deciliter Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl

Läs mer

Avrundning till heltal

Avrundning till heltal arbetsblad 9:1 Avrundning till heltal Avrunda till närmaste heltal. > > 6,2 6,6 7,1 6 7 7 6,0 6,5 7,0 7,5 8,0 > > 34,3 34 35,8 36 35,5 36 34,0 34,5 35,0 35,5 36,0 > > Avrunda till närmaste heltal. 8,1

Läs mer

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik . Diagnoserna i området avser att kartlägga elevernas förståelse och färdighet avseende tal i bråkform, tal i decimalform, proportionalitet och procent. Området består av följande tre delområden: B Bråk

Läs mer

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod Taluppfattning Kapitlets innehåll I kapitel möter eleverna decimaltal för första gången. Det första avsnittet handlar om vårt talsystem och att de hela tal eleverna tidigare jobbat med går att dela in

Läs mer

Snabbslumpade uppgifter från flera moment.

Snabbslumpade uppgifter från flera moment. Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr

Läs mer

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers Marie Mäkiranta Att diagnostisera elevers kunskaper och missuppfattningar Författaren har i ett fördjupningsarbete under en kurs i Lärarlyftet arbetat med boken Förstå och använda tal en handbok av Alistair

Läs mer

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar:

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 8. MATEMATIK ÅK 5 8.1. Elevhäfte 8.1.1. Problemlösning 1 1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 2. Storleken av bildrutan

Läs mer

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2 epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

Addition och subtraktion av bråk Multiplikation och division av bråk med heltal Multiplikation av bråk med bråk Division av bråk

Addition och subtraktion av bråk Multiplikation och division av bråk med heltal Multiplikation av bråk med bråk Division av bråk Innehåll Vårt talsystem... 4 Heltal till och med en miljon... 4 Decimaltal... 5 Heltal upp till en miljard... 6 Heltal upp till en kvadriljon... 6 Räknesätten... 7 Addition och subtraktion... 7 Addition

Läs mer

Tal i decimalform. Kapitlet behandlar. Att förstå tal

Tal i decimalform. Kapitlet behandlar. Att förstå tal Tal i decimalform Kapitlet behandlar Test Beteckningar, även pengar och mätetal 4, 5 Talens storlek 4, 5, 6, 7, 8 Talens relativa storlek 5, 6, 7, 8, 9 Decimalernas värde i positionssystemet 7, 8, 9 5

Läs mer

Procent 1, 50 % är hälften

Procent 1, 50 % är hälften Innehåll (Facit) Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3-

Läs mer

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1

Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1 Matematik klass 3 Vårterminen Anneli Weiland Matematik åk 3 VT 1 Minns du från höstens bok? Räkna. Se upp med likhetstecknet, var finns det? 17-5= 16+ =19 18-2= 15-4= 19=12+ 19-3= 15+4= 20-9= 18=20- +16=20

Läs mer

Procent 1, 50 % är hälften

Procent 1, 50 % är hälften Innehåll Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3- Geometriska

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

identifiera geometriska figurerna cirkel och triangel

identifiera geometriska figurerna cirkel och triangel MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna

Läs mer

Matematikboken Gamma. Facit till Bashäfte. Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras 1

Matematikboken Gamma. Facit till Bashäfte. Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras 1 Matematikboken Gamma Facit till Bashäfte Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras Tal och räkning a) 9 9 c) 9 a) 00 00 c) 00 a) c) 0 a) 9 99 c) 09 a) 90 c) 00 a), c),0

Läs mer

Procent - procentenheter

Procent - procentenheter Procent - procentenheter Uppgift nr 1 Hur skriver man i matematiken tecknet för procent och vad betyder ordet procent? Uppgift nr 2 Av 100 mopeder på en parkering är 16 vita. Hur många procent av mopederna

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna Arbetsblad : Hela tal på tallinjen Skriv rätt tal på linjen. 55 0 50 00 0 0 0 0 00 00 00 00 00 5 000 000 50 000 0 000 7 00 000 00 000 Arbetsblad : Positionssystemet Skriv talen med siffror. Placera in

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Höst LP 1-2 Flik 02 Förtest (8768) Lev 1.qxd 2004-01-20 18:10 Sida 1 Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Mål Blå kursen Röd kurs

Mål Blå kursen Röd kurs Tal Mål När eleverna har arbetat med det här kapitlet ska de förstå varför vi använder decimaler kunna storleksordna decimaltal förstå betydelsen av orden deci, centi och milli kunna räkna med decimaltal

Läs mer

c) a) b) c) tre och en halv miljon

c) a) b) c) tre och en halv miljon REPETITION 1 A 1 Hur många procent av figurerna är gula a) b) c) 2 Hur mycket är a) 10 % av 7 kr b) 30 % av 600 kr c) 7 % av 20 000 kr 3 Skriv bråken i enklaste form. a) 4 28 b) 1 2 c) 16 40 4 Skriv i

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Jämföra bråk 1. grön. grön blå. > > Måla. > > Måla de böcker där bråket är lika med 1 2.

Jämföra bråk 1. grön. grön blå. > > Måla. > > Måla de böcker där bråket är lika med 1 2. arbetsblad 7: Jämföra bråk > > Måla av figuren. Skriv med ett annat bråk hur stor del du målat. 0 > > Måla de böcker där bråket är lika med. _ 0 > > Måla så stor del av figuren som bråket visar. Måla grönt

Läs mer

Uppfattningar om tal i decimalform

Uppfattningar om tal i decimalform Gard Brekke Uppfattningar om tal i decimalform Texten är en översättning av Oppfattninger av desimaltall, Nämnaren 1995:4, s 27 44. Översättningen är gjord av Anders Wallby. Blå text är obligatorisk läsning.

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

2-7: Bråk-förlängning Namn:.. Inledning

2-7: Bråk-förlängning Namn:.. Inledning 2-7: Bråk-förlängning Namn:.. Inledning I kapitlet om addition och subtraktion av bråk fick du lite problem när du stötte på bråk som hade olika nämnare. Då kunde man inte förenkla uttrycket, eftersom

Läs mer

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt. Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal

Läs mer

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -

Läs mer

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22 Arbetsblad 1:1 sid 8, 22 Decimaltal på tallinjen 1 1 Skriv rätt tal på linjen. 0,8 0 1 2 0 1 3 1,1 1 2 4 0,05 0 0,1 5 0,2 0,3 6 0,5 0,6 7 0,9 1 8 1,9 2 Arbetsblad 1:2 sid 8, 22 Decimaltal på tallinjen

Läs mer

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem? 2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.

Läs mer

Bråk, procent och decimaler

Bråk, procent och decimaler Bråk, procent och decimaler Det här nedladdningsbara materialet innhåller 21 kopieringsunderlag.varje sida innehåller en bild för ett procenttal, bråktalet, decimaltalet och procent. Du kan använda materialet

Läs mer

1 Aritmetik. Base camp 1. Uppgifter

1 Aritmetik. Base camp 1. Uppgifter Aritmetik Base camp, a) 9, d) 0 e) 00 f) g) h) a), >,0 > 9,, kr/kg, 9,0 kr a) 000 0, 0 Hundratalet ska ändras. Det ska vara 00 i stället för 00.,, 00 Kontoutdraget visade 00 kr fel. 0 a) 0 + 9 d) 9 9 Ett

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

Facit Träningshäfte 9:2

Facit Träningshäfte 9:2 Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

4. En aktie ökade med 60 % ett år. Hur mycket var den värd då om den från början hade värdet 80kr?

4. En aktie ökade med 60 % ett år. Hur mycket var den värd då om den från början hade värdet 80kr? D. Beräkna och svara i enklaste form. 7 a) b) c) d) 7 e) f). Pedro, Lina och Amir spelar på lotto. Pedro har betalat % av insatsen. Lina har satsat 0 % och Amir har betalat resten, dvs. 0 kr.. I Sverige

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6 Subtrahera. Räkna framåt på tallinjen. 90 00 0 0 0 8-99= 9 0 0 0 0 0-8= Subtrahera. -9= - 099= - 96= - 99= 9 6 9 6 868-797= 77-688= 8-7= 67-98= 7 9 8 77 6-87= 0-= 76-97= -89= 78 79 6 Subtrahera. Öka termerna

Läs mer

Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium Känguru 2013 Junior sida 1 / 8 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala

Läs mer

Förhandsexemplar av kapitel 1

Förhandsexemplar av kapitel 1 5B Mera Favorit matematik Förhandsexemplar av kapitel 1 Katariina Asikainen Kimmo Nyrhinen Pekka Rokka Päivi Vehmas Illustrationer: Maisa Rajamäki Studentlitteratur AB Box 141 221 00 Lund Besöksadress

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

en femma eller en sexa?

en femma eller en sexa? REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.

Läs mer

Vikt och volym. Kapitel 4 Vikt och volym

Vikt och volym. Kapitel 4 Vikt och volym Vikt och volym Kapitel 4 Vikt och volym I kapitlet får eleverna arbeta med vikt och volym. Avsnittet om volym tar upp enheterna liter, deciliter och centiliter. Avsnittet om vikt tar upp enheterna kilogram,

Läs mer

1Mer om tal. Mål. Grunddel K 1

1Mer om tal. Mål. Grunddel K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna

Läs mer

Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21

Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21 1 Tal Arbetsblad 1:1 1 0,1 0,5 0,8 1, 0,3 0,8 1,1 1,5 3 1,1 1,6,1,4 4 0,01 0,05 0,11 0,14 5 0,1 0,5 0,31 0,34 6 0,5 0,56 0,61 0,65 7 0,94 0,98 1,01 1,05 8 1,91 1,95 1,99,0 Arbetsblad 1: 1 0,3 0,6 0,9 1,1

Läs mer

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..

Läs mer

Alistair McIntosh NSMO NCM

Alistair McIntosh NSMO NCM Alistair McIntosh NSMO NCM Syfte Hjälpa lärare att förebygga missuppfattningar och svårigheter genom god undervisning Utveckla elevers taluppfattning så långt deras förmåga räcker för fortsatta studier,

Läs mer

1Tal. Mål K 1. Tal 11

1Tal. Mål K 1. Tal 11 Tal Mål När eleverna studerat det här kapitlet ska de kunna: förstå hur vårt talsystem är uppbyggt använda de matematiska orden som hör ihop med de fyra räknesätten storleksordna hela tal och tal i decimalform

Läs mer

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik Extrauppgifter för skolår 7-9 Pärm med kopieringsunderlag. Fri kopieringsrätt inom utbildningsenheten! Författare: Mikael Sandell Copyright 00 Sandell

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Örebro naturskola, e-post naturskolan@orebro.se

Örebro naturskola, e-post naturskolan@orebro.se ST 19: HEMLIGT MÅL (MH) Matematiskt innehåll: Fyra räknesätten Huvudräkning Procent (H) Centralt innehåll ur kursplanen som berörs: Åk 4-6: Centrala metoder för beräkningar med naturliga tal och enkla

Läs mer

Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen?

Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen? Arbetsblad 5:1 sid 143 Tal och tallinjer 1 Skriv rätt tal på tallinjen. a) 0 0,5 1 b) 0 0,5 1 c) 0 1 2 2 Ordna talen i storleksordning med det minsta först. 0,4 0,404 0,44 0,04 0,45 3 Vilka tal kommer

Läs mer

Problem Svar

Problem Svar Känguru Benjamin, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt

Läs mer

PRIMA MATEMATIK EXTRABOK 2 FACIT

PRIMA MATEMATIK EXTRABOK 2 FACIT PRIMA MATEMATIK EXTRABOK FACIT Skriv rätt tecken. Välj mellan = < < 11 1 = > 1 0 = > 1 1 > > < = < < Skriv så att det stämmer. ; 11= ; 11 0 ; ; ; ; ; 1= ; 1 = ; ; ; 1 ; 0 1 ; 0 ; = ; ; Skriv rätt tecken.

Läs mer

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar 2 Beräkna a) 0,7 50 d) 45110 b) 1000 0,04 e) 78,2/100 c) 0,08 0,5 f) 555511000 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 4

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Cadet, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt svar

Läs mer