Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1

Storlek: px
Starta visningen från sidan:

Download "Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1"

Transkript

1 Matematik klass 3 Vårterminen Anneli Weiland Matematik åk 3 VT 1

2 Minns du från höstens bok? Räkna. Se upp med likhetstecknet, var finns det? 17-5= 16+ = = 15-4= 19= = 15+4= 20-9= 18= = = 17-15= 18+2= -3=12 +12= = 14=19- -4=16 +14= = Räkna subtraktion, ibland blir svaret negativt! 19-15= 16-10= 17-12= 15-7= 10-16= 18-12= 14-18= 12-10= 14-16= 18-8= 16-9= 19-4= 17-16= 13-14= 11-17= 10-15= 12-17= 15-14= 18-17= 13-11= En talserie Anneli Weiland Matematik åk 3 VT 2

3 Addition, varje talsort för sig, skriv mellanled under = 36+52= 51+32= 74+64= 74+16= 18+65= 28+37= 85+33= Addition, flytta tal mellan termerna, skriv mellanled under = 89+24= 57+41= 51+84= 48+52= 23+57= Anneli Weiland Matematik åk 3 VT 3

4 Subtraktion, varje talsort för sig, skriv mellanled under = 46-28= 82-65= 94-57= 94-68= 63-25= Subtraktion, höja / sänka BÅDA termerna för att få andra termen till jämt tiotal. Mellanled under = 86-28= 76-51= 78-22= 79-39= 57-39= Anneli Weiland Matematik åk 3 VT 4

5 Subtraktion, bakifrån med plus, räkna upp. Mellanled under = = 60-42= 50-14= 70-38= 90-67= Räkna nu på smartaste sätt! Mellanled under = 74-38= 69+11= 90-54= 46+82= 38-18= 52+78= 80-37= Anneli Weiland Matematik åk 3 VT 5

6 Hela multiplikationstabellen, fyll i de tal som fattas. Måla kvadrattalen röda. * Räkna multiplikation 2*2= 3*3= 4*4= 8*8= 7*7= 0*0= 5*5= 11*11= 5*5= 12*12= 10*10= 6*6= Anneli Weiland Matematik åk 3 VT 6

7 Mer om kvadrattal. Skriv talen 1-24 som en summa av 1, 2, 3, eller 4 kvadrattal. Alla tal går att skriva som en summa av högst 4 kvadrattal! 1=1 9= 17= 2=1+1 10= 18= 3= 11= 19= 4= 12= 20= 5= 13= 21= 6= 14= 22= 7= 15= 23= 8= 16= 24= Räkna division 36/6= 56/7= 40/8= 25/5= 9/3= 64/8= 16/4= 32/4= 36/4= 27/3= 100/10= 49/7= 4/2= 81/9= 56/8= 18/3= 42/6= 48/6= 45/9= 63/9= Anneli Weiland Matematik åk 3 VT 7

8 Blanda räknesätt Skriv under hur du tänker. Multiplikation och division räknas före addition och subtraktion om det inte finns parentes. ( ) 3*5+2=17 20/4+6= 3*(8-4)= *(5+2)=21 20/2+14= 5*(6-6)= 3*7 4*6+10= 12/4+7= 49/7-2= 5*(2+5)= 27/3+9= 36/9-4= 4+4*5= 16/2+6= 2+3*6-10= 5+7+3*4= 28/4+3+10= 3*2*2= 5*(5+5)= (9+9) / 3= 5*3*0= Anneli Weiland Matematik åk 3 VT 8

9 Bråk Måla 1/3 av cirkeln Måla en 1/4 av cirkeln Måla en 1/5 av cirkeln Måla 2/3 av cirkeln Måla 2/4 av cirkeln Måla 5/5 av cirkeln Anneli Weiland Matematik åk 3 VT 9

10 Räkna division 24/8= 10/5= 12/4= 16/4= 15/5= 20/5= 18/6= 14/7= 9/3= 16/8= 40/8= 45/9= 30/6= 36/6= 48/8= 50/10= 25/5= 42/7= 35/7= 54/9= 60/6= 56/8= 72/9= 49/7= 63/9= 64/8= 90/9= 36/9= 81/9= 56/7= En tallinje från -5 till +5. Sätt ut alla heltal. Vilket är störst? Sätt ut > < eller =. Se på tallinjen! Störst är längst till höger på tallinjen. -3 < Anneli Weiland Matematik åk 3 VT 10

11 Vilket bråk är störst? Titta på sidan 9 och fundera innan du svarar. Sätt ut > = < 1/2 1/3 2/3 1/3 1/5 1/4 5/5 3/3 2/4 1/2 1/5 1/2 En sudoku Anneli Weiland Matematik åk 3 VT 11

12 Var hamnar du? Tänk att du börjar på 1 på tallinjen. Gå +2 sedan +3 sedan -1 sedan -5. Var är du? Tänk att du börjar på 10 på tallinjen. Gå -6 sedan +3 sedan -2. Var är du? Tänk att du börjar på 5 på tallinjen. Gå +6 sedan -1 sedan -2 sedan +8. Var är du? Vilket är bäst? Måla det bästa alternativet grönt, det sämsta rött. Få 7 presenter (+7) 8 presenter (+8) Vinna 10 kronor (+10) 5 kronor (+5) Förlora 8 kulor (-8) 2 kulor (-2) Tjäna 150 kronor (+150) 100 kronor (+100) Tappa bort 3 sudd (-3) 1 sudd (-1) Temperatur, varmast= -2 grader (-2) -17 grader (-17) högst Anneli Weiland Matematik åk 3 VT 12

13 Räkna multiplikation. Där produkten är lika ska det vara olika varianter, se första exemplet. 12=2*6 18= 20= 24= 12=6*2 18= 20= 24= 12=3*4 18= 20= 24= 12=4*3 18= 20= 24= 30= 40= 16= 36= 30= 40= 16= 36= 30= 40= 16= 36= 30= 40= Skriv de tal som fattas Anneli Weiland Matematik åk 3 VT 13

14 Skriv talen i utvecklad form. Talet hundratal tiotal ental 137= = 402= 920= 456= Nu tvärtom hundratal tiotal ental = talet = En tallinje från 0 till Sätt ut alla hela hundratal. Anneli Weiland Matematik åk 3 VT 14

15 Vad blir då nu står talen inte i ordning! = = = = = = = Hur skriver och säger man höga tal? miljarder miljoner tusen miljarder 456 miljoner 789 tusen 12= Etthundratjugotre miljarder fyrahundrafemtiosex miljoner sjuhundraåttionio tusen tolv. Anneli Weiland Matematik åk 3 VT 15

16 miljarder miljoner tusen miljarder 315 miljoner 52 tusen miljarder miljoner tusen - 95 miljarder 106 miljoner 45 tusen 5. miljarder miljoner tusen miljarder 2 miljoner 74 tusen 25. miljarder miljoner tusen miljarder 405 miljoner 985 tusen 369. miljarder miljoner tusen - 9 miljarder 78 miljoner 80 tusen 900. Anneli Weiland Matematik åk 3 VT 16

17 Räkna addition och subtraktion, mellanled under = 87-28= 72+18= 56-35= 57+48= 94-61= 65+89= 46-28= Måla hundratalssiffran röd, tiotalssiffran blå och entalssiffran grön Skriv talet i utvecklad form. 851= 904= 320= 844= Anneli Weiland Matematik åk 3 VT 17

18 Räkna addition med högre tal, skriv mellanled under. Måla hundratalen röda, tiotalen blå och entalen gröna så ser du lättare = = varje talsort för sig = = flytta tal = = = = = = Anneli Weiland Matematik åk 3 VT 18

19 En tredjedel av äggen går åt till en sockerkaka = stycken Hälften går åt till pannkaka = stycken Ett ägg råkar gå sönder! Hur många hela ägg blir över? stycken I verktygslådan finns 8 verktyg. Hälften är skruvmejslar: 1/4 av verktygen är hammare: Det finns 1 skiftnyckel: och 1 tång: Rita verktygen i rätt ruta Anneli Weiland Matematik åk 3 VT 19

20 Räkna subtraktion med högre tal, skriv mellanled under. Måla hundratalen röda, tiotalen blå och entalen gröna så ser du lättare = = varje talsort för sig = = höj båda = = bakifrån med plus = = = = Anneli Weiland Matematik åk 3 VT 20

21 Sätt ut tal på tallinjen på ett ungefär dra streck från talen Fler tal på ny tallinje, dra streck Tredje försöket, gör likadant Anneli Weiland Matematik åk 3 VT 21

22 Räkna addition, mellanled under = = = = = = = = = Räkna multiplikation. 9*9= 10*7= 6*6= 10*8= 7*8= 5*9= 5*8= 4*7= 6*8= 10*9= 7*9= 3*3= 8*9= 6*7= 4*6= 6*9= 7*7= 4*5= 6*10= 3*4= 5*5= 8*8= 4*8= 5*7= Anneli Weiland Matematik åk 3 VT 22

23 Lös sudokun En talserie, minns du Fibonacci? En tallinje mellan 250 och 750. Sätt ut alla tal som slutar på 50. Anneli Weiland Matematik åk 3 VT 23

24 Räkna subtraktion, mellanled under = = = = = = = = = Räkna division 4/2= 25/5= 6/2= 16/4= 24/3= 35/7= 21/3= 15/3= 24/6= 8/2= 21/7= 20/5= 12/4= 30/6= 14/2= 18/6= 16/2= 32/8= 48/8= 27/3= 18/3= 30/3= 18/2= 36/6= Anneli Weiland Matematik åk 3 VT 24

25 Avrunda tal ett vågigt likhetstecken. Räkna ungefär, göra ett överslag. Man kan avrunda till tiotal, hundratal, tusental det beror på hur noga man behöver vara. Talet är tiotal hundratal tusental Anneli Weiland Matematik åk 3 VT 25

26 Siffersumma Ett tals siffersumma är summan av siffrorna som finns i talet. Talet är siffersumman är = Är siffersumman delbar med 3 så är hela talet delbart med 3. Är siffersumman delbar med 9 så är hela talet delbart med 9. Prova med miniräknare! / 3 =? =12 12 / 3=4 alltså går det att dela i tre. Vad blir det? Prova fler tal! En tallinje från 700 till Sätt ut hela hundratal och de som slutar på 50. Anneli Weiland Matematik åk 3 VT 26

27 Primtal Primtal kan bara delas i 1 och sig självt. Sålla fram alla primtal på hundrarutan. Din lärare visar hur du ska göra. Eratosthenes såll kallas metoden. Greken Eratosthenes levde runt 200 f.kr. eller år -200! Född 276 f.kr. - död 194 f.kr Anneli Weiland Matematik åk 3 VT 27

28 Primtalslianer, att dela upp tal i faktorer. Ta gärna höga tal! Prova dig fram med miniräknare. En del blir långa, andra korta, kanske stöter du på ett högt primtal, då går det inte att dela! *2*2*71=568 Här blev primtalen tre 2:or och 71. Prova nu själv! Välj ett tal och skriv det överst, dela sedan. Anneli Weiland Matematik åk 3 VT 28

29 Välj fyra olika siffror 1-9 och gör 24 nya tal av dem. Ordna den sedan i storleksordning i rutorna. Räkna addition och subtraktion med mellanled under = = = = = = = = = = = = Anneli Weiland Matematik åk 3 VT 29

30 Koordinatsystem i rutor. Rutorna får namn efter X-axeln, vågrät, och sedan y-axeln, lodrät, med ett semikolon ; emellan och parentes runt om. Skriv i koordinaterna i de tomma rutorna. 3 (1;3) (4;3) 2 (1;2) (2;2) 1 (1;1) (2;1) (3;1) (4;1) (5;1) Nu får du måla rutor i ett koordinatsystem. Måla (1;1) (2;2) (3;3) (4;4) (1;7) (2;6) (3;5) (7;7) (6;6) (5;5) (5;3) (6;2) (7;1) Anneli Weiland Matematik åk 3 VT 30

31 Räkna multiplikation och division. 56=7* 32=4* 28=4* 48=6* 21=3* 36=4* 36=6* 18=3* 40=5* 30=5* 56=8* 49=7* 42=6* 24=6* 14=2* 25=5* 100/10= 18/2= 56/7= 54/6= 32/8= 90/9= 54/9= 48/8= 63/9= 64/8= 72/9= 20/4= 27/3= 45/5= 32/4= 36/9= Koordinatsystem med punkter. Dra streck mellan punkterna i ordning. (2;1) (3;3) (3;5) (4;6) (5;5) (5;3) (6;1) (4;1) (5;3) (3;3) (4;1) (2;1) Anneli Weiland Matematik åk 3 VT 31

32 Räkna addition och subtraktion = = = = = = = = = = = = Räkna multiplikation 8*7= 4*7= 6*7= 4*8= 6*7= 7*5= 5*6= 2*8= 3*9= 4*9= 8*9= 3*5= Anneli Weiland Matematik åk 3 VT 32

33 Räkna division 12/3= 56/7= 63/7= 24/6= 48/6= 35/5= 20/5= 42/6= 30/6= 56/7= 54/6= 49/7= Avrunda till närmaste tiotal Avrunda till närmaste hundratal Några kluringar med X 6=X-5+2 X= 7+X-5=5 X= X-3=6-0 X= 5-2=X-6 X= Anneli Weiland Matematik åk 3 VT 33

34 Vilket tecken fattas + - * / för att det ska bli en likhet? = = = = 20 7 Alla möjliga sätt att räkna på! En riktig utmaning! X = * 7 = Y 64 / Z = X= = X + 50 Y= Y + 10 = 10 * 10 Z= = 4 * Z X= 24 * 2 = X Y= 3 * 2 * 7 = 50 - Y Z= Z / 9 =2 * 3 X= Y= Z= Anneli Weiland Matematik åk 3 VT 34

35 Räkna addition och subtraktion = = = = = = = = = = = = Fortsätt mönstret Anneli Weiland Matematik åk 3 VT 35

36 Skriv höga tal med siffror Fem miljarder sjuhundrafemton miljoner sexhundrafem tusen åttahundratjugofem = Etthundrasjutton miljarder tvåhundraarton miljoner trehundranitton tusen fyrahundratjugo = Skriv nu med bokstäver = Avrunda höga tal. Avrunda som du tycker är lämpligt! Anneli Weiland Matematik åk 3 VT 36

37 Till slut ett koordinatsystem! Det blir en figur av koordinaterna i varje ruta A (1;2) (2;4) (3;2) (1;2) D (2;5) (1;7) (2;9) (3;7) (2;5) B (4;3) (3;4) (4;5) (5;4) (4;3) E (5;5) (5;8) (6;8) (6;5) (5;5) C (6;2) (5;2) (6;4) (6;2) F (6;10) (2;10) (4;11) (6;10) Anneli Weiland Matematik åk 3 VT 37

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1 Matematik klass 3 Höstterminen Anneli Weiland Matematik åk 3 HT 1 Minns du från klass 2? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Extra-bok nummer 3B. i matematik

Extra-bok nummer 3B. i matematik Extra-bok nummer 3B i matematik Anneli Weiland 1 Skriv vart femtonde tal i ordning. Börja från vänster och skriv alla siffror uppifrån så blir de fina. 0 15 30 90 240 390 540 Större än, mindre än eller

Läs mer

Extra-bok nummer 3. i matematik

Extra-bok nummer 3. i matematik Extra-bok nummer 3 i matematik Anneli Weiland 1 Skriv vart femte tal i ordning. Börja från vänster och skriv alla siffror uppifrån så blir de fina. -70-65 -35-25 -20 0 25 75 Sätt ut < = eller > i rutan.

Läs mer

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1 Matematik klass 2 Höstterminen Anneli Weiland Matematik åk 2 HT 1 Minns du från klass 1? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Matematik klass 3 Facit

Matematik klass 3 Facit Matematik klass 3 Facit Höstterminen s. 2-6 Vårterminen s. 7-10 Extrabok 3A s. 11-14 Extrabok 3B s. 15-18 Anneli Weiland Matematik åk 3 FACIT 1 s.2 tiokamraterna 5 9 8 5 6 10 1 6 3 7 4 0 8 9 7 3 4 5 2

Läs mer

Matematik klass 1. Vår-terminen

Matematik klass 1. Vår-terminen Matematik klass 1 Vår-terminen Rita din matematik-bild Skriv ditt namn i rutan Måla alla rutor där svaret blir 10 3+2 1+9 5+4 6+4 3+7 5+5 4-4 8+4 3+7 9+0 2+8 2+4 7+3 7-6 5+2 5+5 4+4 3+7 6-2 6+4 8+3 6+1

Läs mer

Extra-bok nummer 2B i matematik

Extra-bok nummer 2B i matematik Extra-bok nummer 2B i matematik Anneli Weiland 1 Öka 10 hela tiden -20-10 50 90 150 270 280 Skriv +, -, * eller / så att likheten stämmer 18 3 = 3 7 5 17 = 30 8 8 12 = 0 4 15 15 = 17 0 10 2 = 20 4 12 15

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

Facit följer uppgifternas placering i häftet.

Facit följer uppgifternas placering i häftet. Facit följer uppgifternas placering i häftet. Sidan 2: Ringa in talet som är närmast en hel. 0,9 Skriv talet i decimalform. tre tiondelar 0,3 en tiondel 0,1 två tiondelar 0,2 sex tiondelar 0,6 sju tiondelar

Läs mer

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -

Läs mer

TAL OCH RÄKNING HELTAL

TAL OCH RÄKNING HELTAL 1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning

Läs mer

Matematik klass 3 lärarhandledning

Matematik klass 3 lärarhandledning Matematik klass 3 lärarhandledning Aritmetik höstterminen åk 3 Sidan 3-10 Aritmetik vårterminen åk 3 sidan 11-19 Problemlösning nummer 3 sidan 20-24 Laborativt materiel Sidan 25 Litteratur sidan 26 Anneli

Läs mer

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =

Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller = n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental

Läs mer

Matematik klass 2 Facit

Matematik klass 2 Facit Matematik klass 2 Facit Höstterminen s. 2-5 Vårterminen s. 6-11 Extrabok 2A s. 12-14 Extrabok 2B s. 15-19 Anneli Weiland Matematik åk 2 FACIT 1 s.2 mönster: HEJ s.4 negativa och positiva tal -2 0 1 1 2

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

Blandade uppgifter om tal

Blandade uppgifter om tal Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

3-3 Skriftliga räknemetoder

3-3 Skriftliga räknemetoder Namn: 3-3 Skriftliga räknemetoder Inledning Skriftliga räknemetoder vad är det? undrar du kanske. Och varför behöver jag kunna det? Att det står i läroplanen är ju ett klent svar. Det finns miniräknare,

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

Matematik klass 2. lärarhandledning

Matematik klass 2. lärarhandledning Matematik klass 2 lärarhandledning Aritmetik höstterminen åk 2 sidan 2-14 Aritmetik vårterminen åk 2 sidan 15-30 Problemlösning nummer 2 sidan 31-37 Laborativt materiel sidan 38 Litteratur sidan 39 Anneli

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5

Läs mer

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland Matematik F-3 Nytt annorlunda läromedel för lågstadiet 1 Varför ny matematik? Jag har saknat en tydlig bok som fokuserar på matematik Bort med glättiga bilder, matematik är vackert utan bilder Två grundläggande

Läs mer

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d)

Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d) Arbetsblad 1:1 Egyptiska och romerska talsystemet Skriv med vanliga siffror 1 a) b) c) d) 2 a) b) c) d) Skriv med egyptiska talsymboler 3 a) 8 b) 42 c) 189 d) 2 431 4 a) 111 111 b) 43 245 c) 402 000 d)

Läs mer

Steg-Vis. Innehållsförteckning

Steg-Vis. Innehållsförteckning Innehållsförteckning SIDAN Förord 6 Inledning 7 Målgrupp och arbetssätt 8 Dåligt minne? 9 Nyckelfakta 10 Råd till pedagog 11 Tre matematiska lagar 12 10-komplement 14 Från subtraktion till addition 15

Läs mer

Kopieringunderlag. i matematik

Kopieringunderlag. i matematik Kopieringunderlag i matematik Åk 1 Åk 2 Åk 3 Matematik åk 1-3 Anneli Weiland Kopieringsunderlag s. 1 Positiva tal eller negativa tal? 0-2= -2 2-2= 6-5= 8-7= 2-0=2 9-2= 1-8= 4-6= 7-5= 5-8= 8-10= 2-7= 4-5=

Läs mer

2-1: Taltyper och tallinjen Namn:.

2-1: Taltyper och tallinjen Namn:. 2-1: Taltyper och tallinjen Namn:. Inledning I det här kapitlet skall du studera vad tal är för någonting och hur tal kan organiseras och sorteras efter storleksordning. Vad skall detta vara nödvändigt

Läs mer

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden. Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

Maria Österlund. Inför festen. Mattecirkeln Addition 2

Maria Österlund. Inför festen. Mattecirkeln Addition 2 Maria Österlund Inför festen Mattecirkeln Addition 2 NAMN: Vilka är talen? Lasse och Lotta ska ha fest. När de skrivit upp alla kompisar de vill bjuda blev det 22 st, 4 fler pojkar än flickor. Hur många

Läs mer

PP i matematik år 2. Taluppfattning och tals användning.

PP i matematik år 2. Taluppfattning och tals användning. PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,

Läs mer

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt. Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex

Läs mer

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. 7, Bonnier Utbildning och författarna

Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. 7, Bonnier Utbildning och författarna Arbetsblad 1:1 Hela tal på tallinjen 1 Skriv rätt tal på linjen. 55 0 50 100 2 0 10 20 3 0 100 200 300 100 200 5 1 000 2 000 6 50 000 60 000 7 100 000 200 000 Arbetsblad 1:2 Positionssystemet 1 Skriv talen

Läs mer

Matematik Formula, kap 2 Längd och räknesätt

Matematik Formula, kap 2 Längd och räknesätt Matematik Formula, kap 2 Längd och räknesätt Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du

Läs mer

Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n)

Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n) Uppsala Universitet Matematiska institutionen Isac Hedén Algebra I, 5 hp Sammanfattning av föreläsning 9. Kongruenser Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att

Läs mer

Matematik klass 1. höst-terminen

Matematik klass 1. höst-terminen Matematik klass 1 höst-terminen rita din matematik-bild Skriv ditt namn i rutan Anneli Weiland Matematik åk 1 HT 1 Rita rätt antal bollar 1 2 3 4 5 Rita rätt antal fiskar I II III IIII V skriv romersk

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4

Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4 Kapitel 1 6A-boken inleds med ett kapitel om decimaltal. Kapitlet börjar med en repetition av tiondelar och hundradelar. Sedan följer en introduktion av tusendelar med utgångspunkt i hur vikt anges på

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in det minsta talet i varje ruta. Ringa in det största talet i varje ruta. Måla rutor så att det stämmer åt båda håll. Exempel: Skriv talraden.,,, Skriv

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?

2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem? 2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Multiplikation genom århundraden

Multiplikation genom århundraden Multiplikation genom århundraden För många elever i skolan kan multiplikation upplevas som något oöverstigligt. Addition och subtraktion kan de förstå sig på men inte multiplikation. Utan förståelse för

Läs mer

Innehållsförteckning kopieringsunderlag kapitel 1

Innehållsförteckning kopieringsunderlag kapitel 1 Innehållsförteckning kopieringsunderlag kapitel 1 Sifferträning... 1-5 Sifferstöd...6 Antal och siffror... 7-13 Min talbok... 14-19 Kulramsbilder 1-10... 20-21 Tärningsbilderna...22 Talblock...23 Tiostaplar...

Läs mer

1Mer om tal. Mål. Grunddel K 1

1Mer om tal. Mål. Grunddel K 1 Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna

Läs mer

Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,

Läs mer

Avrundning till heltal

Avrundning till heltal arbetsblad 9:1 Avrundning till heltal Avrunda till närmaste heltal. > > 6,2 6,6 7,1 6 7 7 6,0 6,5 7,0 7,5 8,0 > > 34,3 34 35,8 36 35,5 36 34,0 34,5 35,0 35,5 36,0 > > Avrunda till närmaste heltal. 8,1

Läs mer

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9 Matematik Extrauppgifter för skolår 7-9 Pärm med kopieringsunderlag. Fri kopieringsrätt inom utbildningsenheten! Författare: Mikael Sandell Copyright 00 Sandell

Läs mer

3-5 Miniräknaren Namn:

3-5 Miniräknaren Namn: 3-5 Miniräknaren Namn: Inledning Varför skall jag behöva jobba med en massa bråk, multiplikationstabeller och annat när det finns miniräknare som kan göra hela jobbet. Visst kan miniräknare göra mycket,

Läs mer

Volym liter och deciliter

Volym liter och deciliter Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

tjugofyra tvåhundratrettioåtta Skriv talet som kommer efter. Skriv talet som kommer före. Fortsätt att skriva talen som kommer efter.

tjugofyra tvåhundratrettioåtta Skriv talet som kommer efter. Skriv talet som kommer före. Fortsätt att skriva talen som kommer efter. läsa, skriva och storleksordna tal antal Skriv talet som kommer efter. 6 7 79 80 699 700 869 870 Skriv talet som kommer före. 26 27 49 50 899 900 59 540 Fortsätt att skriva talen som kommer efter. 296

Läs mer

MatteSafari Kikaren 3B Facit

MatteSafari Kikaren 3B Facit MatteSafari 3B Facit Tal Till sidorna i MatteSafari 3B Varje rad med vagnar är lastad med. Skriv talen som fattas. 3 (Elevens egna förslag.) Hur mycket fattas till? Skriv tal så att svaret stämmer. + +

Läs mer

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <

Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > < Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 7 Huvudräkning, multiplikation och division... 9 Huvudräkning,

Läs mer

Del B, C och D samt gruppuppgifter

Del B, C och D samt gruppuppgifter Del A: Du och matematiken Information om Del A Beskrivning: I Del A ska eleverna bedöma hur säkra de känner sig i vissa situationer då de ska använda matematik. Det är en fördel att börja med Del A innan

Läs mer

Addition och subtraktion av bråk Multiplikation och division av bråk med heltal Multiplikation av bråk med bråk Division av bråk

Addition och subtraktion av bråk Multiplikation och division av bråk med heltal Multiplikation av bråk med bråk Division av bråk Innehåll Vårt talsystem... 4 Heltal till och med en miljon... 4 Decimaltal... 5 Heltal upp till en miljard... 6 Heltal upp till en kvadriljon... 6 Räknesätten... 7 Addition och subtraktion... 7 Addition

Läs mer

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många? 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs A som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Talraden Skriv färdigt talraden. 195 196 197 393 394 395 397 597 598 600 996 997 999 Addition 199 + 1 = 299 + 1 = 999 + 1 = 199 + 3 = 298 + 3 = 998 + 2 = 599 + 3 = 598 + 4 = 999

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period.

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period. 2 Resultat Innehållsförteckning Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period Screeningmoment Talserier Jämnt - udda Tal och obekanta

Läs mer

Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium Känguru 2013 Junior sida 1 / 8 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala

Läs mer

Specifikation av spelen i Rutiga Familjen

Specifikation av spelen i Rutiga Familjen Specifikation av spelen i Rutiga Familjen Allmänt... 2 Gäller allmänt för alla spel... 2 Belyses för varje spel... 2 Spelen... 3 FLIKEN Hitta Paret Plus & Minus... 3 Hitta Paret upp till 10... 3 Hitta

Läs mer

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för

Läs mer

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10

Läs mer

MatteSafari Kikaren 2A Facit

MatteSafari Kikaren 2A Facit MatteSafari A Facit 1 Tal Kom ihåg enheterna! Matilda ger 30 bananer till Fredrik och 8 bananer till Elise. Hur många bananer ger Matilda bort? Till sidorna 6 10 i MatteSafari A 30 + 8 = 38 38 bananer

Läs mer

8 Tal. Elevbok Safaridelen sidan 4 Diagnos sidan 18 Förstoringsglaset sidan 20 Kikaren sidan 25 Enheter - längd sidan 30

8 Tal. Elevbok Safaridelen sidan 4 Diagnos sidan 18 Förstoringsglaset sidan 20 Kikaren sidan 25 Enheter - längd sidan 30 6 Tal Kapitlet tar upp tal upp till och med 000 och inleds med övningar som syftar till att ge eleverna en god uppfattning av talet 000. Eleverna får sedan arbeta vidare med positionssystemet där nu även

Läs mer

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: MÅL Att välja räknesätt vid problemlösning. Milton är 0 år. Hans pappa är 45 år. Hur mycket äldre är hans pappa? Svar: Lena köper en bok som kostar 85 kronor och en penna för 24

Läs mer

mattetankar Reflektion kring de olika svaren

mattetankar Reflektion kring de olika svaren Reflektion kring de olika svaren Taluppfattning och tals användning 15 Skriv trehundrasju Reflektion: 31007 tyder på att eleven tolkar talet som 3, 100, 7 3007 tyder på att eleven tolkar talet som 300,

Läs mer

FACIT. Version 2015-02-25

FACIT. Version 2015-02-25 FACIT Version -- Version -- Tankenöt Vilka bilder är likadana som bilden i rutan? Siv. Tankenöt Hur många djur gömmer sig bakom draperiet? Ringa in. Sally Charlie Isa Kurre KOPIERING FÖRBJUDEN STUDENTLITTERATUR

Läs mer

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod Taluppfattning Kapitlets innehåll I kapitel möter eleverna decimaltal för första gången. Det första avsnittet handlar om vårt talsystem och att de hela tal eleverna tidigare jobbat med går att dela in

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer

Läxa nummer 1 klass 3

Läxa nummer 1 klass 3 Läxa nummer 1 klass 3 Skriv ditt namn i triangeln som ett konstverk! Det här är din läxbok för klass 3. Du kommer att få en läxa i veckan. Där det står X skriver du vilket tal X är under eller över X:et.

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in et minsta talet i varje ruta. Ringa in et största talet i varje ruta. Vilken siffra visar halva figuren? Skriv talraen. Prima kapitel, talen,,,, och,

Läs mer

Ordlista 1A:1. siffra. tal. antal. räkneord. Dessa tio ord ska du träna. Öva orden

Ordlista 1A:1. siffra. tal. antal. räkneord. Dessa tio ord ska du träna. Öva orden Ordlista 1A:1 Öva orden Dessa tio ord ska du träna siffra En siffra är ett tecken. Dessa är siffrorna: 0, 1, 2, 3, 4, 5, 6, 7, 8 och 9 tal antal räkneord Ett tal skrivs med en eller flera siffror. Talet

Läs mer

Förberedelser: Sätt upp konerna i stigande ordningsföljd (första inlärningen) eller i blandad ordningsföljd (för de elever som kommit längre).

Förberedelser: Sätt upp konerna i stigande ordningsföljd (första inlärningen) eller i blandad ordningsföljd (för de elever som kommit längre). Räkna till 10 Mål: Eleverna skall kunna räkna till 10, i stigande och sjunkande ordningsföljd. Antal elever: minst 10 elever. Koner med talen 1 till 10.( använd konöverdrag och skriv 10 på en lapp på 0-käglan)

Läs mer

Maria Österlund. Klassresan. Mattecirkeln Subtraktion 2

Maria Österlund. Klassresan. Mattecirkeln Subtraktion 2 Maria Österlund Klassresan Mattecirkeln Subtraktion 2 MatteCirkel Subtraktion 2 04 02 18 21.45 Sida 2 KLASSRESAN MATTECIRKELN SUBTRAKTION 2 NAMN: Ett annat förslag är att cykla på Gotland. Klass 5B planerar

Läs mer