Facit till Arbetsblad

Storlek: px
Starta visningen från sidan:

Download "Facit till Arbetsblad"

Transkript

1 Facit till Arbetsblad På denna och nästa sida hittar du facit till Arbetsblad :8 och :9 samt diagram till :8 uppgift och. Facit till övriga Arbetsblad finns på efterföljande sidor markerade direkt i Arbetsbladen. ARBETSBLAD :8 Arbetsbladet är ett svårt arbetsblad, även för Röd kurs. ommentarer: π =, har använts vid faciträkning. I uppgift har alltid bottenarean medtagits vid beräkning av begränsningsarean. I uppgift måste man använda Pthagoras sats för att räkna ut höjden i pramiddelens sidotrianglar och i uppgift och 7 för att räkna ut konens sida s. I uppgift 7 utgår vi ifrån att vasen är gjord av kompakt glas och att volmen därför är volmen av glasmassan. I uppgift är, m glasiglons diameter. V = 8 dm A = dm V = 08 m A = m V = dm A = dm V = m A = 9 m V =, m A = 7, m V = 70 cm A = 7 cm 7 V =, dm A = 7, dm ARBETSBLAD :9 a) = 8 b) = c) = d) = a) = b) = 9 c) = d) = 0, a) = b) = c) = d) = a) = 0 b) = 8 c) = d) =, a) = b) = c) = d) = 0,7 a) = 80 b) = 80 c) = d) = 7 a) = b) = c) =, 8 a) = 0 b) = c) = 7 9 a) + = 9 = b) + 7 = 8 = 9 c) = = d) ( + ) = = 8 0 a) p = b) p = c) p = ARBETSBLAD :8 a) = = b) = = = 0 = 0 = = c) a) = = = 0 = b) = = c) = = = = Facit till Arbetsblad

2 Arbetsblad : Negativa tal Skriv rätt tal på linjen , 0, 0, 0, 0, 0 0, Addera med ett positivt tal. Värdet ökar. ( ) 0 a) ( ) + = b) ( 9) + 9 = c) ( ) + 8 = ( ) 9 a) ( ) + = b) ( 8) + = c) ( ) + = Addera med ett negativt tal. Värdet minskar. 7 0 ( ) a) 9 + ( ) = b) 9 + ( 9) = c) 9 + ( ) = ( 0) ( ) ( ) 7 a) ( 7) + ( ) = b) ( 8) + ( 7) = c) ( ) + ( 0) = Subtrahera med ett positivt tal. Värdet minskar. 8 a) 7 = b) 9 9 = c) 0 = 9 a) ( ) 8 = b) ( ) = c) 0 = Subtrahera med ett negativt tal. Värdet ökar. 0 a) ( ) = b) 9 ( 9) = c) ( 0) = a) 0 ( ) = b) ( 7) ( ) = c) ( ) ( ) = Räkna ut 0 ( ) ( ) ( ) ( ) 8 ( ) 0 7 ( ) 0 a) + ( 7) = b) ( ) + 8 = c) 7 ( ) = ( 7) ( ) a) ( ) = b) ( ) + ( ) = c) ( 8) ( 9) = Mer om tal

3 Arbetsblad : Delbarhet Ringa in de tal som är delbara med med med med med och med och Dela upp i primfaktorer =... = = = =.. 89 = = = =... Mer om tal 7

4 Arbetsblad : lippa och visa Pthagoras sats c b A B a b a Triangeln är rätvinklig Skriv ett uttrck för den lilla kvadratens area. b a Skriv ett uttrck för den stora kvadratens area. C D E Vad bör du kalla längden av en av de streckade linjerna i figuren längst ned på sidan? Jämför med triangeln. lipp isär kvadraterna efter den streckade linjen. Pussla ihop bitarna så att figuren blir en kvadrat. a +b Skriv ett uttrck för figurens area. Den na kvadraten har sidan = c och arean alltså = c, och är också den sammanlagda arean a + b, alltså a + b = c Förklara hur du har visat Pthagoras sats genom detta. c b a 8 Mer om tal

5 Arbetsblad : Räkna med Pthagoras sats Räkna i ditt räknehäfte a c Pthagoras sats: a + b = c b Vilken eller vilka trianglar är rätvinkliga? A B C m 9 m 0 m m m m? Nej? Ja? Nej m 9 m m Räkna ut längden av den långa sidan. a) b) m c) 0 m 9, m 7,7 m m m, m m m Räkna ut längden av hpotenusan. Hur långa är stegarna?,9 m m m orta stegen =, m Långa stegen = 9, m Hur mcket kortare blir det att gena över gräsmattan jämfört med att ta vägen? m kortare Mer om tal 9

6 Arbetsblad : Stora tal i grundpotensform Skriv talen på vanligt sätt a) 0 = a) 0 = b), 0 = b), 0 = c), 0 = c), 0 = a) 0 = a) 8 0 = b), 0 = b) 8, 0 = c),8 0 = c) 8, 0 = Skriv talen i grundpotensform a) = b) = c) = 7,. 0,. 0,. 0 a) 7 00 = b) 000 = c) 000 = a) 8 tusen = b) miljoner = c) miljarder = Räkna ut och svara i grundpotensform a) 0 0 = b) 0 0 = 0 7 a) 9 0 = b) 8 = a) 0 0 = b) 0 0 =. 0 7, a), 0 0 = b) 0 7, 0 =, 0 0 a) 9, 0 = b) = Mer om tal

7 Arbetsblad :7 Små tal i grundpotensform Skriv på vanligt sätt 0, 0,00 a) 0 = a) 0 = 0, 0,00 b), 0 = b), 0 = 0, 0,00 c), 0 = c), 0 = 0,0 0,0008 a) 0 = a) 8 0 = 0,0 0,0008 b), 0 = b) 8, 0 = 0,07 0,0008 c),7 0 = c) 8, 0 = Skriv i grundpotensform a) 0, = b) 0, = c) 0,0 =,. 0,. 0,. 0 a) 0, = b) 0, = c) 0,0 =,0. 0, a) 0,0 = b) 0, = c) 0,000 = a) tusendelar = b) miljondelar = c) 8 miljarddelar = Räkna ut och svara i tiopotensform. 0 = a) 0 0 = b) 0 0 = c) 0 0 = 0 0 a) 0 = b) 0 = c) = Räkna ut. Svara i grundpotensform. 8. 0, a) 0 0 = b) 0 7, 0 = c) 0 0 = 8 0 a) 0 0 = b) 8 = c) = , =. 0 a), 0 0, 0 = b) = 0 Mer om tal

8 Arbetsblad :8 Prefi Dra streck mellan de uttrck som betder samma sak. Stora tal W = Watt, enhet för effekt Små tal GW 0 9 W nm 0 m MW 0 W mm 0 m kw 0 W cm 0 m 00 kw 0 W µm 0 9 m miljarder Watt Megawatt dm 0 m miljoner Watt Gigawatt 0,00 m mikrometer Skriv det prefi som saknas Hz = Hertz, enhet för frekvens M k G 0 Hz = Hz 0 Hz = Hz Hz = 8 Hz M k G 0 8 Hz = 00 Hz 0 Hz = 0, Hz Hz = 80 Hz m µ n 0 m = m 7 0 m = 7 m 0 9 m = m c µ n 0 m = m 7 0 m = 700 m 0 0 m = 0, m Skriv i grundpotensform MHz = Hz khz = Hz 7 GHz = Hz MHz = Hz 0 khz = Hz 0,7 GHz = Hz mm = m 8 nm = m µm = m mm = m 800 nm = m 0, µm = m Mer om tal

9 Arbetsblad :9 Räkna med kvadratrötter Räkna ut, svara med decimalers noggrannhet.,,, a) + = b) + 7 = c) 0 =,8 9,7, 0 a) = b) 7 = c) = Räkna ut, svara eakt 8 = 8 = 0 a) = b) 7 = c) 0 = 9 7 a) = b) = c) = =, ( ) 8 a) = b) = c) = 8 = Vilket tal står för? a) = b) = 9c) 7 = 00 = = = 7 a) + = 8 b) = 0 c) = 9 = = = a) = b) = c) = 7 00 = = = Förenkla uttrcken 9 a) 0 = b) = c) = ab a ab = ab ab 0 a a) = b) = c) b = ab ab ab a) = b) = c) = = b = = a b Mer om tal

10 Arbetsblad : Vika kuber a) Figuren ska vikas till en kub. b) Vilken av figurerna kan vikas till Vilken av kuberna blir det? den här kuben? lipp ut figurerna. Vik efter kanterna. Vilka av figurerna kan du vika till en kub? A B C D E D, E 0 Geometri

11 Arbetsblad : Repetition av area Sidan 8 Räkna ut arean av figurerna. Använd π. (cm) (cm), 9 cm 0 cm Arean: Arean: (cm), (cm), cm cm Arean: Arean: (m) (m) m m Arean: Area: Area: 7 8 (dm) (m),, dm 7, m Area: 9 0 (m) (dm) 0 7, m, dm Area: Area: Geometri

12 Arbetsblad : roppars namn och volm Sätt namn på kropparna och räkna ut volmen. ub Namn: dm Volm: h B h = dm B = dm Rätblock Namn: h =, dm 0 dm Volm: h B B = dm Prisma Namn: 0 cm Volm: h B h = cm B = cm Clinder Namn: 0 cm Volm: h B h = cm B = 0 cm on Namn: m Volm: B h h = m B = m Pramid Namn: 0 dm Volm: B h h = 9 dm B = 0 dm Geometri

13 Arbetsblad : roppars volm (m), (m) 7 m 0 m Volm: Volm: (dm) (dm) 7 dm 0 dm Volm: Volm: (cm) (cm) cm cm Volm: Volm: 7 (cm) 8 (cm) 0 9 cm 0 cm Volm: Volm: Geometri

14 Arbetsblad : Enhetsomvandlingar volm A Skriv som liter 0, liter 0, liter 0, liter Skriv som deciliter 0 dl, dl, dl Skriv som liter 0, 0,08 0,009 dl = liter 8 cl = liter 9 ml = liter 0, 0, 0,0, dl = liter cl = liter 0 ml = liter,8, 0, 8 dl = liter 0 cl = liter ml = liter Skriv som centiliter liter = cl dl = cl 0 ml = cl , liter = cl 8 dl = cl 0 ml = cl 0, 0,0 liter = cl 0, dl = cl ml = cl Skriv som milliliter liter = ml 8 dl = ml cl = ml , liter = ml 0, dl = ml cl = ml 0 0,0 liter = ml 0, dl = ml 0, cl = ml Geometri

15 Arbetsblad :7 Enhetsbten volm B Skriv som kubikdecimeter. 000 cm = dm 000 cm = dm 0, 00 cm = dm 0,7 0,7 liter = dm,, liter = dm,, liter = dm dm = liter V = dm dm dm = dm V = 0 cm 0 cm 0 cm = 000 cm dm 0 cm dm 0 cm dm 0 cm Skriv som kubikcentimeter. dm = cm liter = cm, dm = cm, liter = cm 0, dm = cm 0, liter = cm Skriv som kubikcentimeter ml = cm 8 liter = cm 00 ml = cm, liter = cm 00 ml = cm 0, liter = cm m = 000 dm = 000 liter Skriv som kubikdecimeter. m = dm, m = dm 0, m = dm,7 m = dm Skriv som kubikmeter , dm = m 0 liter = m 0, 0,0 0 dm = m liter = m Geometri

16 Arbetsblad :9 Gradera och avläs A a) Gradera mätglaset och bägaren. Markera var 0:e milliliter. Använd π,. Bilderna är i skala :. ml ml b) Hur mcket vatten är det i mätglaset? c) Hur mcket vatten är det i bägaren? B Hur mcket olja finns det i tanken? 0 0,8 m Geometri 7

17 Arbetsblad : Bråkform decimalform procentform Fll i tabellen Bild Bråkform Decimalform Procentform 0, 0% 0, % 0, 0% 0 0, 0 % 8 0,, % 0,7 7% Fll i tabellen Uttrck Bråkform Decimalform Procentform en av fem var tionde två av fra var tredje sju av hundra en av tjugo , 0 % 0, 0 % 0, 0 % 0, % 0,07 7 % 0,0 % Procent

18 Arbetsblad : Procentform Decimalform Förändringsfaktor Skriv i decimalform 0,0 0,9 0, % = 9 % =, % = 0,,0, % = 0 % = % = 0,0,, % = 0 % = 00 % = Skriv som procent % 7 % 0 % 0,0 = 0,7 =,0 = 0 % 0 % 0 % 0, =, =, = 00 % 0, %, % = 0,00 = 0, = Vilken blir förändringsfaktorn om priset ökar med,0,7 % 7 % 00 %,0,9, % 9 % 00 %,,0, % 0 % 0 % Vilken blir förändringsfaktorn om priset minskar med 0,9 0,9 0, %, % 0 % 0,7 0, 0,0 % 0 % 9 % Vad har hänt med priset om förändringsfaktorn är minskat a) 0,8 Priset har med % ökat b),0 Priset har med % minskat, c) 0,9 Priset har med % ökat 0 d), Priset har med % Procent

19 Arbetsblad : Na värdet direkt Fll i tabellen Pris (kr) Rabatt i Du får betala i procent Ntt pris direkt procent 0 kr % 00 % % = 8 % 0,8. 0 kr = 97,0 kr 800 kr % 00 kr 0 % 970 kr 78 % 00 % % = % 0,. 800 kr = 0 kr 0 % 0,. 00 kr = 80 kr % 0,. 970 kr =,0 kr Fll i tabellen Pris (kr) Höjning i Du får betala i procent Ntt pris direkt procent 00 kr % 00 % + % = 0 %,0. 00 kr = kr 00 kr % 0 kr 0 % 0 kr % 00 kr 90 % 80 kr 0 % 00 % + % = %,. 00 kr = 87 kr 0 %,. 0 kr = 0 kr %,. 0 kr = kr 90 %,9. 00 kr = 70 kr 0 %,. 80 kr = 7 kr Ael köper en jacka som kostar 0 kr. Han får % rabatt. 88 % a) Hur många procent får Ael betala? 89 kr b) Hur mcket fick Ael betala för jackan? Värdet på Eriks lägenhet som han köpt för 000 kr ökade i värde med 7 %. Hur mcket är den värd nu? 70 kr Procent

20 Arbetsblad : Aktiespelet Till spelet behövs en tärning, papper, penna och räknare. Antalet deltagare: Två eller flera. Birgitta Rdbeck/Megapi Varje spelare har från början en aktie värd 00 kr. Värdet på aktien kan öka eller minska, precis som i verkligheten. Men här skall tärningen och ditt eget chanstagande få avgöra aktiens värdeutveckling. Det tal som tärningen visar avgör den procentuella förändringen. Om talet är jämt innebär det en höjning, om talet är udda blir det en sänkning. Om du inte är nöjd med det första utfallet får du en andra chans. Den kan dock bli sämre och då måste den gälla. Spelare A kastar tärningen. Den visar. Aktiens värde ökar med % och det na värdet blir,0 00 kr = 0 kr. Spelare B kastar tärningen. Den visar. Värdet på B:s aktie skulle alltså öka med %. B är inte nöjd och utnttjar sin andra chans. Då visar tärningen. B måste välja detta och hans aktie minskar i värde med %. Det na värdet blir 0,9 00 = 9 kr. Spelare A kastar på ntt. Tärningen visar nu, värdet på A:s aktie minskar med %. Det na värdet blir 0,97 0 kr = 00,88 kr. Sedan blir det B:s tur att kasta. För efterhand in de na värdena i en tabell. Avrunda hela tiden till decimaler. Spela t.e. 0 omgångar. Spelet blir mer intressant om man använder en tiosidig eller tjugosidig tärning. Om- Aktieägare A Aktieägare B gång Utgångs- Ntt Utgångs- Ntt värde kr värde värde kr värde 00,00,0 00 = 0,00 00,00 0,9 00 = 9,00 0,00 0,97 0 = 00,88 9,00 00, Procent

21 Arbetsblad : Räkna ut det hela, 00 % Hur mcket är det hela, om Se s 8 i Matte Direkt år 9 0 % är 0 % är % är 0 % är 0 kr 0 kr 00 kr kr kr kr kr kr kr 9 kr 8 kr,0 kr, kr, kr, kr, kr 000 kr 000 kr 000 kr 000 kr 00 kr 00 kr 00 kr 00 kr Hur mcket är det hela om % är Se s 80 i Matte Direkt år 9 00 kr 00 kr 000 kr kr 0 kr 0 kr Hur mcket är det hela om % är 00 kr 000 kr 0 kr 0 kr 0 kr, kr 0 % av eleverna i en skola hade valt franska. Hur många elever fanns det på skolan om 90 elever läste franska? Maria tjänade 8 kr när hon köpte en klänning på rea. Ordinarie pris var sänkt med %. 00 kr kr a) Vad kostade klänningen före rean? b) Hur mcket fick Maria betala? 8 personer, eller %, av dem som anmält sig till en orienteringstävling kom inte till start. Hur många var anmälda? 7 Resultatet av undersökning om vilken melodi som är bästa visas i rutan. 0 röstade på melodin FRAMÅT. 00 st 0 st a) Hur många deltog i undersökningen? b) Hur många röstade på SOLOCHVÅR? FRAMÅT SOL OCH VÅR STADSVISAN 0 st 00 st Procent

22 Arbetsblad : Hur många procent? Räkna med huvudräkning Hur många procent av figuren är skuggad? 0 % 7 % % 7 % 0 % %, % 0 % Hur många procent är 0 % 0 % 0 % av av 0 av 0 % 0 % 0 % av 0 av av 0 0 % 0 % 0 % av 0 av 7 7 av Hur många procent är % a) minuter jämfört med 0 minuter? 0 % b) 0 kg jämfört med 0 kg? 7 % c) kr jämfört med 00 kr? 0 % d) 00 kr jämfört med 00 kr? 0 % e) 8 minuter jämfört med timme? Procent 7

23 Arbetsblad :7 Höjning och sänkning Hur stor är ökningen i procent? Fll i tabellen. Gammalt pris Ntt pris Ökning i kronor Ökning i procent 00 kr kr kr 00 kr = kr = 0, = % 00 0 kr 78 kr 00 kr 0 kr 00 kr 00 kr 00 kr 00 kr 00 kr 00 kr kr = 0, = % 0 kr = 0, = % kr = 0, = 0 % kr = = 00 % kr =, = 0 % Hur stor är sänkningen i procent? Fll i tabellen. Gammalt pris Ntt pris Sänkning i kronor Sänkning i procent 00 kr 8 kr 00 kr 88 kr 0 kr 0 kr 0 kr 90 kr kr 0 kr kr 8 kr kr = 0, = % kr = 0,0 = % 00 kr = 0, = 0 % 0 kr = 0, = 0 % kr = 0, = 0 % kr = 0, = % Ringa in rätt alternativ. Hur stor är ökningen? a) 800 kr ökar till 000 kr 0 % 0 % % b) 8 kg ökar till kg 8 % % % c) 00 kr ökar till 0 kr % 0 % % d) 0 kg ökat till 0 kg 90 % 0 % 0 % e) st ökar till 0 st 00 % 00 % 00 % 8 Procent

24 Arbetsblad :8 Procentenheter procent promille Fll i tabellen Värdet ändras Ändring i Ändring i från till procentenheter procent % 0 % 0 % %, % %, %,% % % % % 8 % 9 % 00 % 0 %, 00 % 00 % % 9 7 % 9 % Valdeltagandet var ett år 8 %. Året därpå ökade det till 7 %. a) Med hur många procentenheter ökade valdeltagandet?,9 % b) Med hur många procent ökade valdeltagandet? Ett företag sålde ett år 7 % av sin produktion till utlandet. Året därpå sjönk utlandsförsäljningen till 7 % av produktionen.,9 % Med hur många procent sjönk utlandsförsäljningen? Skriv som promille 0 00 a) 0,00 = b) 0,0 = c) 0, = promille = tusendel = = 0, Hur mcket är a) av 00 kg b) av miljon a) 0, av b), av Hur många promille är kg a) % b) 0, % c),8 % 00 0,8 0,0 8 a ) 0 % b) 0,08 % c) 0,00 % Procent 9

25 Arbetsblad :9 Räkna procent med ekvationer Räkna i ditt räknehäfte Amanda tjänar % mer i år än förra året. Nu tjänar hon 07 kr/vecka. Hur mcket tjänade hon förra året? Anta att Amanda tjänade kr förra året. Värdet av Lisens aktier minskade 7 % från sitt högsta värde. Nu är det bara värt 0 kr. Hur mcket var Lisens aktier värda när de hade sitt högsta värde? Hamid köpte en begagnad båt som han rustade upp. Han sålde den sedan för 700 kr. Hamid räknade ut att båtens värde ökat % på affären. Vad köpte Hamid båten för? Bab Joanna vägde på sin ettårsdag 7 00 g. Hon hade ökat sin vikt från födelsen med %. Hur mcket vägde Joanna vid födelsen? Albin fick två år i rad lönehöjning, först med % och sedan med,8 %. Efter båda ökningarna tjänade Albin kr. Vilken lön hade Albin två år tidigare? Peso AB lckades öka sin försäljning år 000 med %. Året därpå, 00, minskade försäljningen med 8 %. År 00 sålde företaget för,8 miljoner kr. Hur mcket sålde företaget för året före höjningen, dvs. år 999? 7 Samuel såg värdet på sin insats i en aktiefond minska första året med % och andra året med 8 %. Efter de två åren var värdet på hans aktiefond bara värt 8 80 kr. Hur mcket hade Samuel satt in på aktiefonden? 8 Familjen Björk åker på skidsemester. De köper liftkort för kr. De båda vuna betalar fullt pris. Anna år betalar 0 % och Jonas får betala % av vuenpriset. Hur mcket kostade liftkorten för de olika familjemedlemmarna?. kr. 8 kr. 08 kr. 00 g kr.,7 miljoner kr kr 8. Vuen 80 kr, Anna 0 kr, Jonas kr 0 Procent

26 Arbetsblad : Funktionsmaskiner I Vilket värde kommer ur funktionen? a) b) 9 + c) d) 7 8 Vilket är funktionsvärdet om är 8 och funktionsmaskinen visar a) b) c) d) 0 0 Vilket tal har man stoppat in i funktionsmaskinen? a) b) c) 7 8 Vilken är funktionen? a) 8 b) c) 8 d) 8. 8 Funktioner och algebra

27 Arbetsblad : Funktionsmaskiner II Talet stoppas in i den första funktionsmaskinen. Vilket värde får man ut ur den andra funktionsmaskinen? Som du ser blir det. + 8 Vilket värde kommer ur den andra funktionsmaskinen? 7 Vilket värde kommer ur den andra funktionsmaskinen? Vilket värde kommer ur den tredje funktionsmaskinen? + Nu finns det fra funktionsmaskiner. Stoppa in värdet i maskinerna i ordning A B C D. Vilket värde kommer ur den sista funktionsmaskinen om man stoppar in a) = 0 b) = A B C D + Ändra ordningen på maskinerna och tag dem bakifrån, alltså D C B A. Vilket värde kommer då ur den sista funktionsmaskinen om 8 0 a) = 0 b) = Funktioner och algebra

28 Arbetsblad : Funktionsmaskiner III Vilket värde kommer ur den sista funktionsmaskinen om man stoppar in 0 8 a) = b) = ( + ) a) = b) = 0 + ( + ) + Bilden nedanför visar fra funktionsmaskiner A, B, C och D Stoppa i tur och ordning in talen, 0, och 0 och räkna ut vilka värden som kommer ur den sista funktionsmaskinen. Hur skiljer sig dessa från de värden du stoppade in?,,, Värdet har ökat med A B C D + Vilken ordning på funktionsmaskinerna ska man ha för att det värde som kommer ur den sista maskinen blir a) mindre än det -värde som stoppas in i den första maskinen D C B A B D C A, B D A C D B C A, D B A C b) vara lika stort som det -värde som stoppas in Vad ska det stå i maskinen? a) b) Funktioner och algebra

29 Arbetsblad : Hitta linjen ombinera rätt formel med linjen A B C D A B C D = = + = + = + D C B A = = + = + = D B A C A B A C B D C D = + = B C A D = + = = + B = = C = = D = + A Funktioner och algebra 7

30 Arbetsblad : Sträckor Hur lång är den totala längden av sträckorna? + a) b) Hur stor är skillnaden i längd mellan de två sträckorna? + a) + + b) + Skriv ett uttrck för figurens omkrets a) b) c) d) Hur lång är sträckan? a) b) + c) + = + + = 8 Funktioner och algebra

31 Arbetsblad : Areor Skriv ett uttrck för figurens area. Svara utan parentes. a) b) + + ( + ) = + ( + ) = + 0 a) b) + ( + ) = + ( ) = ( ) = Hur lång är den saknade sidan? a) b) A = + A = 0 + c) d) A = A = 0 Funktioner och algebra 9

32 Arbetsblad :7 Ekvationer Räkna i ditt räknehäfte Lös ekvationerna = = 7 a) + + = 8 b) = 8 = = a) = 8 + b) = = 8 = a) = 0 b) 7 + = = = a) + ( + ) = b) ( ) = = = a) ( ) + 7 = b) ( ) ( ) = 7 = 9 = a) ( + ) (7 + ) = b) 9 = ( ) 7 a) + 9 = b) + = + 8 a) + = b) + = 0 9 a) + = 9 + b) + 7 = = 7 = = = = = = 9 = 0 a) ( + 8) = ( ) b) ( + ) = ( 7) = = a) ( +) = ( 7) b) = ( ) = = a) ( ) = ( ) b) ( + ) = 8 ( + ) 0 Funktioner och algebra

33 Arbetsblad :8 Räta linjer och räta vinklar Rita linjerna i koordinatsstemet A = + B = C = + D = Vilken är skärningspunkten mellan linjerna (, 0) (, 0) (0, ) (, ) a) A och B b) C och D c) A och C d) B och D C B A D Hur stor är vinkeln mellan linjerna 90 a) A och B 90 b) C och D Multiplicera k-värdet för linjerna A och B med varandra. Vilket värde får du? Gör likadant för linjerna C och D. Jämför med uppgift. Funktioner och algebra

34 Arbetsblad :9 Samband ur samband V B = h a) Lös ut B ur sambandet h V = Bh h = b) Lös ut h ur sambandet V B B B = a) Lös ut B ur sambandet V h h = V B b) Lös ut h ur sambandet B h V = Bh r = O π Lös ut r ur sambandet r O = πr h = A (a + b) a) Lös ut h ur sambandet a a = A bh h b) Lös ut a ur sambandet h b A = h(a + b) r = A π Lös ut r ur sambandet r A = πr a = c b Lös ut a ur sambandet a b c c = a + b Funktioner och algebra

35 Arbetsblad : Sidan 7 Tal och tallinjer Skriv rätt tal på tallinjen 0, 0,, a) 0 0, 0, 0,,0 b) 0 0, 0, 0,9,8 c) 0 Ordna talen i storleksordning med det minsta först 0, 0,0 0, 0,0 0, 0,0 0, 0,0 0, 0, Vilka tal kommer sen?,,, 0,9,,, 0, 0, 0,7 0,9,,,8 0 0, 0,,,,,,8 Vad ska stå på linjen? 0,00 a), = 0, c) 0, = 0, 0, 0,, =,0 0, = 0,0 0,0 0,0, =, 0, = 0,0 0,0 0,008 b), =, d),78 =,7 0, 0,08, =,,78 =,,,0, =,,78 =, 70 Genrepet

36 Arbetsblad : Sidan 7 Multiplikation och division med små tal Räkna ut,, 0, 0, = 0,, = 0, = 0, 0, 0,0 0,0 = 0,0, = 0,0 = 0,0 0,0 0,00 0,00 = 0,00, = 0,00 =,7, 0, 7, = 0,0 00 = 0,00 00 =, 0,7 0,7 0, = 0,0,7 = 0, = 0,7 0,0 0,0 0, 07 = 0,0, = 0,00 0 = Räkna ut, 0, = = = 0, 0, 0, 0,0 0,00 0 0, 0, = = = 0,0 0, , 0, = = = 0,00 0, Räkna ut,, = = = 0, 0, 0,0 0, 0, 0 0,, = = = 0, 0,0 0 0,, = = = 0, 0, 9 0 Ringa in den beräkning som ger det största talet och gör en ruta kring den beräkning som ger det minsta talet. a) 0, 0,0 0, 0,0 0 0 b) 0,97 0 0,9 0 0,97 0,9 c) 0,0 0,08 0,0 0,08 Genrepet 7

37 Arbetsblad : ilopris Eempel ilopriset för äpplen är kr/kg. Det betder att kilo äpplen kostar kr. gram kostar 0, kr = Skriv vikten i kilo och multiplicera med kilopriset. Hur mcket kostar 9 kr 8 kr,80 kr a) kg b) kg c) hg 8 kr kr,80 kr kg, kg 7 hg,0 kr,0 kr kr 0, kg 0, kg 00 g,0 kr kr 8,0 kr, kg 0, kg 0 g Räkna ut kilopriset om 8 kr 80 kr 7 kr a) kg kostar kr b) hg kostar kr c) 00 g kostar kr 7 kr 70 kr 0 kr kg kostar kr hg kostar kr 700 g kostar kr kr 00 kr 00 kr 0, kg kostar kr, hg kostar 0 kr 0 g kostar 0 kr Ringa in det bästa svaret. Ungefär hur mcket får du för 0 kr om kilopriset är kr 0, kg 0,7 kg 0, kg 0 kr om kilopriset är 0 kr 0, kg 0, kg, kg 0 kr om kilopriset är kr 0, kg, kg 0, kg kr om kilopriset är kr 0,9 kg drgt kg knappt kg 8 kr om kilopriset är kr 0,7 kg drgt, kg knappt, kg 7 Genrepet

38 Arbetsblad : Sidan 7 Blandade räknesätt Räkna ut + 8 = = = = + 0 = = = = 8 8 = = 7 = = = = 9 8 = = = + = = 8 = + + = = = = Räkna ut ( + 7) = = (9 ) 8 = = ( 8) = = ( + ) = = (8 ) = = 0(7 ) = = Räkna ut 7, + =, +, = 8,, + 8 =, + 7 0, = +, =,,, = 0, 0, 8 + 0, = 0, 0, = 7,,8 =,7,8 0, = 0,78 0, 9 0, =, 0,, 0, = 0,, =,, =, 0,(7 0,8) = 0,(, 0,8) = Genrepet 7

39 Arbetsblad : Sidan 78 Tiopotenser och grundpotensform Skriv i tiopotensform = = en miljon = = = en miljard = Skriv på vanligt sätt = 0 =, 0 = = 8 0 =,7 0 = Skriv i grundpotensform. 0,. 0, = 000 = 0 = 7. 0,7. 0, = = 7 0 = Skriv först på vanligt sätt, sedan i grundpotensform , miljoner = = 8 000,8. 0 femtioåtta tusen = = ,. 0 en och en halv miljon = = Räkna ut, svara i tiopotensform eller grundpotensform. 0 0 = = 0 0 = = = = 0 7 0,. 0 0, = 0 0 = =. 0 = 0 7 Genrepet

40 Arbetsblad : Sidan 77 Negativa tal Temperaturen är +8 C. Vad blir den om den C C C a) stiger grader b) sjunker grader c) sjunker grader Temperaturen är C. Vad blir den om den C C 0 C a) stiger grader b) sjunker 9 grader c) stiger grader Vilken är temperaturskillnaden mellan C och C? ( ) = + = C ( )= Hur stor är temperaturskillnaden mellan a) + C och +8 C b) +8 C och C c) 8 C och C Räkna ut ( ) a) 7 9 = b) + ( ) = c) + ( 8) = ( ) ( ) ( ) a) ( 8) + ( ) = b) ( ) + ( ) = c) ( 9) + ( 7) = 0 ( 9) a) ( ) = b) ( 8) ( ) = c) ( 7) ( 8) = 7 Vilket tal ska stå i stället för? a) + ( ) = 7 b) ( 8) + = c) + ( ) = ( ) ( ) = = = 8 Skriv negativa tal i parenteserna så att likheten stämmer. T.e. a) ( ) + ( ) = ( ) b) ( ) + ( ) = ( ) c) ( ) 0 ( ) = Genrepet 7

41 Arbetsblad :7 Sidan 80 Jämföra bråk Skriv två bråk till varje figur. 8 = = = = 0 Fll i det som saknas. = = 8 = = 8 0 = = = = Ringa in de bråk som är mindre än. Gör en ruta kring de bråk som är större än Ordna bråken i storleksordning. Börja med det minsta Vilka av följande summor är större än? Ringa in dem Genrepet

42 Arbetsblad :8 Sidan 80 Förkorta och förlänga bråk Förkorta med Förkorta med Förkorta med, eller 0 = = = = = = 0 8 = = = 0 Förkorta bråken så långt som möjligt. (Skriv med så liten nämnare som möjligt.) 0 = = = = 0 = = 7 = = 0 0 Förläng med Förläng med Förläng så att nämnaren blir = = = = = = 8 7 = = = 9 Förläng bråken så att nämnaren blir a) = b) = c) = a) = b) = c) = a) = b) = c) = Genrepet 77

43 Arbetsblad :9 Sidan 80 Räkna med bråk och decimaltal 0 0 Skriv i decimalform. 0 = = = = , 0,, = = = = 0, 0,7 0,0 0, Skriv i decimalform och räkna ut. 7 a) + = b) + = 0 0 0, + 0, = 0,7 0, + 0,7 =, 0,7 + 0, = 0,9 0, + 0, = 0, a) + 0, = b) 0, + =, + 0, =,9, 0,7 = 0, a), = b), = 0 7 a) 0,9 = b) = 0, 0,9 = 0, 0,8 0,7 = 0, Förläng först till nämnaren 00. Skriv sedan i decimalform. 0, 70 0,7 7 a) = = b) = = ,, 9 a) = = b) = = , 8 0,8 a) = = b) = = Skriv bråken i decimalform och räkna ut a) + + 0, = b) + + = 0 0 0, + 0, + 0, = 0,7 9 8 a) + = b), = 0 0, 0,9 + 0, = 0,8, + 0,7 + 0, =,, 0,9 0,8 = 0, 78 Genrepet

44 Arbetsblad :0 Sidan 8 Procent räkna ut delen Hur många procent av figuren är skuggad? 8 % % 0 % 7 % Gör färdigt tabellerna Procentform Bråkform Decimalform Bråkform Decimalform Procentform % ,0 0,0 % % 0, 0,0 % % 0, ,7 7 % 0 % 0 00, 0, 0 %, % 0,0 000 ( 00 ) 0, % Räkna ut 0 00 a) 0 % av 00 = b) 0 % av 00 = c) % av 700 = 0 % av 00 = % av 00 = % av 700 =, 0 0,, % av 00 = 7 % av 00 =, % av 700 = 0,7 7 8 a) % av = b) % av 00 = c) % av 00 = 7,, 80 0 % av =, % av 00 = 0 % av 00 = 7,8,8 00 % av =, % av 0 = % av 0 = Genrepet 79

45 Arbetsblad : Sidan 8 Hur många procent Hur många procent är 0 % 0 % % a) av 0 b) av c) av 0 90 % % 0 % 9 av 0 av av 0 0 % 7 % 0 % av av 0 av 0 Välj bland svaren. Ungefär hur många procent är 0 % % a) av c) 9 av 8 0 % 7 % b) av d) 0 av 0 0 % % % 7 % 0 % Hur många procent har priset ökat om det ändrats från 0 % 00 % 0 % a) 00 kr till 0 kr b) 90 kr till 80 kr c) 8 kr till kr 0 % % 0 % a) 0 kr till 0 kr b) kr till 0 kr c) 00 kr till 80 kr Hur många procent har priset minskat om det ändrats från 0 % % % a) 0 till 0 kr b) 0 kr till 90 kr c) 00 kr till 98 kr Under en fotbollssäsong gjorde Carina mål. Laget gjorde tillsammans 9 mål. Hur många procent av målen gjorde Carina?, % Adobe Image Librar 80 Genrepet

46 Arbetsblad : Sidan 8 Räkna ut det hela För att få det hela ska du multiplicera med 0 % = 0 % = % = % = Hur mcket är det hela, 00 %, om 0 kr 0 kr 0 kr 0 % är a) 0 kr b) kr c) 0 kr 0 kr 80 kr 9 00 kr 0 % är a) kr b) 8 kr c) 90 kr kr 80 kr 0 kr 0 % är a) kr b) kr c) 0 kr 80 kr 00 kr 0 kr % är a) 0 kr b) 00 kr c) 80 kr 9 % % 00 % Dividera med 9 Multiplicera med 00 kr 9 = 7 kr 00 7 = 700 kr Hur mcket är det hela, 00 %, om 00 st 00 st 000 st % är a) 0 st b) st c) 00 st 00 st st 000 st % är a) st b) 0 st c) 0 st 00 st 800 st 000 st 7 8 % är a) st b) st c) 80 st 00 st 000 st 000 st 8 % är a) st b) 00 st c) 0 st 9 Ringa in det bästa svaret. Hur mcket är 00 % om 8 % är kr 0 kr 0 kr 00 kr % är kr 80 kr 0 kr 0 kr % är 0 kr 0 kr 800 kr 00 kr % är 90 kr 0 kr 0 kr 0 kr Genrepet 8

47 Arbetsblad : Sidan 8 Räkna med procent a) Hur många kronors rabatt får man på ett par bor som kostar 00 kr? 90 kr 0 kr b) Vad får man betala för borna? Rea 0 % Du lånar 000 kr till, % ränta. Ungefär hur stor är årsräntan? Ringa in bäst svar Stolpdiagrammet visar försäljningen hos ett företag. a) Hur många procent ökade försäljningen från 000 till 00? 80 % b) Hur många procent minskade försäljningen från 00 till 00? % kr I en klass var det flickor och 0 pojkar. Hur många procent av eleverna var flickor? 0 % år På rea köpte alle ett par jeans med 0 % rabatt. alle tjänade 0 kr. Vad kostade borna före rean? 00 kr Sara betalade 0 kr i årsränta på ett lån med räntan 9 %. Hur mcket hade Sara lånat? 000 kr 7 I en undersökning var det 00 personer som svarade. Det var bara 7 % av de tillfrågade. Hur många hade man frågat? 00 st 8 En undersökning redovisas i stapeln här bredvid. 0 svarade att de gillar schäfrar. a) Hur många ingick i undersökningen? 00 st gillar schäfrar gillar taar gillar inte hundar b) Hur många gillar taar? 0 st 8 Genrepet

48 Arbetsblad : Sidan 8 Vinklar, omkrets area Hur stor är vinkeln och? a) b) c) 8 = = = a) b) c) = = = = Räkna ut figurens omkrets och area. a) (cm) b) (cm) c) (cm),,,,,7,,,9,9 7, cm 9 cm 8, cm O = O = O =, cm,77 cm,9 cm (,) (,8) (,) A = A = A = Robert har 0 staketsektioner till sin fårhage. Varje sektion är, m lång. Vilket är det största rektangelformade område han kan få till sina får om ena sidan inte får vara längre än m? Han får inte dela på staketsektionerna.,8 m 9, m = m Genrepet 8

49 Arbetsblad : Cirklar och sammansatta figurer Sidan 8 Använd π. Räkna ut cirkelns omkrets och area. a) (cm) b) (cm) c) (cm) 0 8, 0 cm 8 cm 7 cm O = O = O = 7 cm 9 cm cm A = A = A = Räkna ut figurens omkrets och area. (cm) a) (cm) b) c) (cm) 8, 0 cm,7 cm, cm O = O = O = cm 7,8 cm 8, cm A = A = A = Räkna ut figurens omkrets och area. a) (m) b) (dm) c) (cm) 7 m m 8 m O = O = O = 0 m 0 m m A = A = A = 8 Genrepet

50 Arbetsblad : Sidan 8 Volmer (m) Räkna ut volmen av askarna. (dm) a) (cm) b) c) cm cm 0 cm V = V = V = Hur hög är lådan? a) (dm) b) (cm) 9 V = 0 dm V = 80 cm 0 dm cm h = h = Räkna ut volmen. Svara i liter. π, a) (dm) b) (cm) c) (cm) 0 0 B = 8 dm 8 80 liter liter, liter V V V Genrepet 8

51 Arbetsblad :7 längd Sidan 8 Geometriska enheter area volm Enhetsbten längdenheter Skriv som meter, 7 a) 0 dm = m b) 0 cm = m c) mm = m, 0, 0,7 dm = m cm = m 700 mm = m 0, 0,0 0,07, dm = m, cm = m 70 mm = m 0,0 0,00 0,007 0, dm = m 0, cm = m 7 mm = m a) m = mm b) 0,8 cm = mm c) 0, dm = mm 0 0 a), m = dm b) 0, m = cm c) dm = cm 0 7, a) mil = km b) 0,7 mil = km c) km = mil, 0, a) 000 m = km b) 00 m = km c) 0 m = km Enhetsbten areaenheter a) m = dm b), m = dm c) 0,7 m = dm a) dm = cm b) 0,8 dm = cm c) 0,08 dm = cm 8, 0,7 a) 00 cm = dm b) 80 cm = dm c) 7 cm = dm, 0, 0,07 a) 0 dm = m b) dm = m c) 7 dm = m Enhetsbten volmenheter Skriv som dm a) m = dm b), m = dm c) 0,7 m = dm a) cm = dm b) 0 cm = dm c) cm = dm Skriv som liter a) 9 dm = liter b) m = liter c) 0, m = liter Skriv som ml , 0, a) cm = ml b) liter = ml c) dm = ml 8 Genrepet

3Procent. Mål. Grunddel K 3

3Procent. Mål. Grunddel K 3 Procent Mål När eleverna har studerat det här kapitlet ska de kunna: förstå och utföra de tre olika typerna av procentberäkningar räkna ut delen räkna ut hur många procent något är räkna ut det hela använda

Läs mer

5Genrepet. Mål. Arbetssätt K 5

5Genrepet. Mål. Arbetssätt K 5 Genrepet Mål I det här kapitlet får eleverna möjlighet att repetera och reparera grunderna i grundskolans matematik. apitlet är indelat i se avsnitt: Tal Bråk och procent Geometri Algebra Statistik och

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500 Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

delbart med fler tal än sig själv och 1. b) Ett primtal är endast delbart med sig själv och 1. REPETITIONSUPPGIFTER 2 1 a) B b) D och E c) A och C

delbart med fler tal än sig själv och 1. b) Ett primtal är endast delbart med sig själv och 1. REPETITIONSUPPGIFTER 2 1 a) B b) D och E c) A och C epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2 Kapitel 2.1 2101, 2102, 2103, 2104 Exempel som löses i boken. 2105 Hela cirkeln är 100 %. Den ofärgade delen är 100 % - 45 % = 55 % 2106 a) Antalet färgade rutor 3 = b) 3 = 0, 6 c) 0,6 = 60 % Totala antalet

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5

Läs mer

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet?

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? 2 1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? (1) Tiotalssiffran är dubbelt så stor som tusentalssiffran. (2) Hundratalssiffran är hälften så stor

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Procent anger hundradelar och kan användas när man vill jämföra andelar.

Procent anger hundradelar och kan användas när man vill jämföra andelar. Repetition kapitel 2 2.1 Andelen, delen och det hela Viktiga begrepp Procent Hundradel, 1 procent skrivs 1 % Andel Promille Tusendel, 1 promille skrivs 1 ppm Miljondel (parts per million), skrivs 1 ppm

Läs mer

Utvärdering av dina matematiska förmågor - Procent

Utvärdering av dina matematiska förmågor - Procent Utvärdering av dina matematiska förmågor - Procent Göra beräknar med promille och ppm 1. En person med 4,8 liter blod i kroppen har en alkoholhalt i blodet som är 0,25 promille. Hur många centiliter alkohol

Läs mer

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden = Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

1 G. Förlänga och förkorta. z-2. a b. a± b c- 12. a bl c. 9 Vilket tal har bråket förkortats med?

1 G. Förlänga och förkorta. z-2. a b. a± b c- 12. a bl c. 9 Vilket tal har bråket förkortats med? 7? 9!? 2 Brilk OCkpfOC Förlänga och förkorta G 2/3 av rektangeln är hia. 8/2 av rektangeln är röd. Lika stora delar av rektanglarna är färgade vilket betyder att 2/3 = 8/2. 2 2 8 Vi har förlängt 2/3 med.

Läs mer

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform

ARBETSBLAD 1. 2 Procent. 1. Hur stor del är färgad? Bråkform Decimalform Procentform ARBETSBLAD 1 Procent i olika form 1. Hur stor del är färgad? Bråkform Decimalform Procentform a) b) c) d) 2. Skriv i procentform. a) 0,06 b) 0,19 c) 0,024 d) 0,801 e) 1,07 f) 0,003 3. Skriv i decimalform.

Läs mer

Sammanfattning: Matematik 1b

Sammanfattning: Matematik 1b Sammanfattning: Matematik 1b Ma1c kräver kompletterande delar om vektorer samt trigonometri 1. Kapitel 1: Aritmetik Centrala delar i kapitlet: - Räkneordning - Tal i bråkform och decimalform - Tal i potensform

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Matematik 3000 kurs A

Matematik 3000 kurs A Studieanvisning till läroboken Matematik 3000 kurs A Innehåll Kursöversikt...4 Vad skall du kunna efter Matematik kurs A?...5 Så här jobbar du med boken...6 Studieenhet Arbeta med tal...7 Studieenhet Procent...12

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

lena Alfredsson Kajsa Bråting Patrik erixon hans heikne Matematik Kurs 2b Grön lärobok natur & Kultur

lena Alfredsson Kajsa Bråting Patrik erixon hans heikne Matematik Kurs 2b Grön lärobok natur & Kultur lena Alfredsson Kajsa Bråting Patrik erion hans heikne Matematik 5000 Kurs 2b Grön lärobok natur & Kultur NATUR & KULTUR Bo 27 323, 02 54 Stockholm Kundtjänst: Tel 08-453 85 00, order@nok.se Redaktion:

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Högskoleverket. Delprov NOG 2002-10-26

Högskoleverket. Delprov NOG 2002-10-26 Högskoleverket Delprov NOG 2002-10-26 1. Det ordinarie priset på en skjorta, som såldes på rea, var 600 kr. Inför slutrean sänktes priset till halva ursprungliga reapriset. Vad var det ursprungliga reapriset

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

3-7 Procentuella förändringar

3-7 Procentuella förändringar Namn: 3-7 Procentuella förändringar Inledning Du har arbetat mycket med procent, rabatter och påslag. Nu skall du lära dig konsten att beräkna procentuella förändringar. Som alltid gäller att du måste

Läs mer

Geometri. Kapitel 8 Geometri. Borggården sidan 66 Diagnos sidan 79 Rustkammaren sidan 80 Tornet sidan 84 Sammanfattning sidan 89 Utmaningen sidan 90

Geometri. Kapitel 8 Geometri. Borggården sidan 66 Diagnos sidan 79 Rustkammaren sidan 80 Tornet sidan 84 Sammanfattning sidan 89 Utmaningen sidan 90 Geometri Kapitel 8 Geometri I detta kapitel möter eleverna vinkelbegreppet och får öva på att avgöra om en vinkel är rät, spetsig eller trubbig. De får också öva på att namnge olika månghörningar och be

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 % = 00 0 % = 0 20 % = 5 25 % = 4 50 % = 2 % = 0,0 0 % = 0,0 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 -----------------------------------------------------------------------------------------------------------------

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

0,799 0,801 0,8 0,719 0,78. c) 005, du betalar 2 495 kr kontant när du hämtar den och resten enligt erbjudandet i annonsen?

0,799 0,801 0,8 0,719 0,78. c) 005, du betalar 2 495 kr kontant när du hämtar den och resten enligt erbjudandet i annonsen? .... Laxor Laxor Läxa 1 Efter avsnitt 1.2 1 Beräkna med huvudräkning a) 106 9 b) 998 + 15 c) 100 100 d) 10 0,1 e) 1 200 / 6 f) 8,7 + 3,3 95 kr 2 Hanna köper sex stolar. Hur mycket får hon tillbaka när

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik 1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik Beskriver några projekt, laborationer och alternativa arbetsformer som gett goda resultat. Diskussion om tillvägagångssätt

Läs mer

Innehållsförteckning PEDAGOGISKA TANKAR 1. A LÄGENHET Story: Din familj flyttar in. B FRITIDSHUS Story: Du är 25 år och investerar i ett fritidshus

Innehållsförteckning PEDAGOGISKA TANKAR 1. A LÄGENHET Story: Din familj flyttar in. B FRITIDSHUS Story: Du är 25 år och investerar i ett fritidshus Innehållsförteckning PEDAGOGISKA TANKAR 1 A LÄGENHET Story: Din familj flyttar in Vikning - ritning 2 Tabell - stapeldiagram 3 Mäklaren - Att hyra 4 Problem 1: Mått 5 Problem 2: Renovera 6 Problem 3: Öppna

Läs mer

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0)

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0) DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Vilket tal pekar pilen på? 30 31 32 33 34 Svar: (1/0/0) 2. Du åker buss kvart i sju från Motala busstation. Hur dags beräknas du vara

Läs mer

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 4 2009-10-24 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter Känna till de vanligaste talmängderna och de Veta hur talmängderna betecknas Ha kunskap om hur de olika talmängderna är 1101, 1106, 1107,

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008.

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

Lästal från förr i tiden

Lästal från förr i tiden Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt

Läs mer

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6

868-797= 737-688= 558-475= 5 675-5 598= +3 +3 6. 1 927-697 8. 967-498. Silverspiran Grundbok B FACIT, KAPITEL 6 Subtrahera. Räkna framåt på tallinjen. 90 00 0 0 0 8-99= 9 0 0 0 0 0-8= Subtrahera. -9= - 099= - 96= - 99= 9 6 9 6 868-797= 77-688= 8-7= 67-98= 7 9 8 77 6-87= 0-= 76-97= -89= 78 79 6 Subtrahera. Öka termerna

Läs mer

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder.

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. . G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. Området består av följande tre (fyra) delområden: MGF Förberedande mätning och geometri

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Ecolier, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt

Läs mer

Uttryck med alla räknesätt

Uttryck med alla räknesätt Här får du lära dig att beräkna uttryck med flera räknesätt och parenteser om negativa tal multiplikation och division av decimaltal att göra beräkningar med vikt och volym 'MEM "MU Kulramen, eller abakusen

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2009-03-28 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGg Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-10-23 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

KARTLÄGGNING I MATEMATIK

KARTLÄGGNING I MATEMATIK KARTLÄGGNING I MATEMATIK Datum Namn Födelseår Uppväxt i (land) Modersmål Antal månader i Sverige Förord För personal som arbetar i grundskolan är behovet av att kunna kartlägga nyanlända elevers ämneskunskaper

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10 JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är

Läs mer

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.

En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje. En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer