ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll

Storlek: px
Starta visningen från sidan:

Download "ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll"

Transkript

1 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 KARL JONSSON Nycklord och innhåll x f, x sysm av diffrnialkvaionr Linjära sysm av diffrnialkvaionr x P x + g md allmän lösning x a c x + c x + x p. Ansasn x ξ r Karakärisiska kvaionn da λi 0 Gnralisrad gnvkor η Spår-drminan schma Skissa fasporrä Sadlpunk, dgnrad nod, spiral Sabili Fundamnalmaris X [x x ] Variaion av paramrar Kriiska punkr fx 0 0, för auonoma sysm x fx. Isolrad kriiska punkr. Inofficilla mål D är bra om du M kan idnifira följand allmänna sysm: x f, x, linjära sysm: x P x + g, linjära sysm md konsana kofficinr: x Ax + g, 3 homogna linjära sysm md konsana kofficinr: x Ax. 4 där P är n marisvärd funkion, x är n vkorn md n-komponnr, och A n konsan n n -maris och g inhomogni n vkor md n-komponnr. M v a allmänna sysm har liknand xisns och nydighssas som för nvariablfall. Om f sam f/ x, f/ x,..., f/ x n är koninurliga i n rkangl i da fall så bydr rkangl n flrdimnsionll rkangl i rumm R R n md koordinar, x och vi har IVP x f, x md x 0 x 0, så är vi garanrad unik lösning på da problm i n lin omgivningn av sarpunkn 0, x 0. M3 kan skriva om högr ordningns kvaionr,.x. y + 4 y + y ill sysm av diffrnialkvaionr md gnom ansasn x y, x y, c och ur da härlda sysm. M4 v a för linjära kvaionr kan vi skapa n fundamnalmaris md n linjär obrond lösningar ill sysm nlig Ψ [x... x n ] da är grkiskans psi Ψ. M5 v a dn allmänna lösningn ill d linjära sysm x P X + g kan skrivas x a c x + c x + x p. 5 där x p är någon lösning ill kvaionn, dvs n parikulärlösning, och x och x ugör n fundamnal lösningsmängd ill mosvarand homogna sysm x P x. Kan ävn skriva x a Ψc + x p där Ψ är n fundamnalmaris och c n godycklig vkor. M6 v a om Ψ är n fundamnalmaris så är ävn ΨB n fundamnalmaris, där B är n godycklig invrrbar maris. Om fundamnalmarisn är nhsmarisn för 0 så döpr vi dn ill Φ da är grkiskans sora phi Φ, dvs Φ 0 I. Insiuionn för mamaik, KTH, SE-00 44, Sockholm, Swdn addrss: karljo@kh.s. Da: 4 spmbr 08.

2 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 M7 v a homogna linjära sysm md konsana kofficinr x Ax ofa bhandlas md ansasn x r ξ, 6 där vi sökr r och dn konsana vkorn ξ 0. r blir då blir gnvärd och ξ mosvarand gnvkor ill marisn A. a b M8 v a n maris har gnvärdn nlig formln c d λ, a + d ± a + d ad bc spår ± d du jus skrv uanför i kvadra drminann 7 M9 v a i fall av vå olika rlla lösningar r och r så får vi vå obrond lösningar och därför fundamnalmarisn dirk. M0 om komplxa gnvärdn uppsår så räknar vi och ar sdan ral- och komplxdl för a få vå obrond lösningar. M v a om vi får fram n dubblro för gnvärd,.x. r 7, md mosvarand gnvkor ξ så sökr vi lösningar på formn yrligar n ansas x 7 ξ + η 7 8 där vi sökr dn gnralisrad gnvkorn η. Kommr a få kvaionn A 7Iη ξ. M uifrån gnvärdna ill A kan avgöra karakär och sabili av dn kriiska punkn 0. M3 snabb kan avgöra karakär och sabili av kriiska punkr ill A från rac-drminan schma. M4 v a för a ha isolrad kriiska punkr så anar vi a da 0. M5 kan använda variaion av paramrar för sysmfall för a få fram n parikulärlösning för inhomogna linjära kvaionr x Ax + g. Ansär x p Xv 9 där X är n fundamnalmaris associrad ill homogna kvaionn x Ax allså X AX som marisr. Drivrar och sär in i kvaionn och får gr så allså X v + Xv AXv + g 0 X v + Xv AXv + g v X g x p X ˆ 0 X sgs ds. 3 Obs! Da är försök a brya nd kursmåln i mindr och mr konkra biar. Måln ovan är in officilla för kursn, uan förslag ill hur man kan änka.

3 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Exmpl och uppgifr U Skriv om följand kvaionr ill sysm av diffrnialkvaionr Inför variablrna x u och x u. Då blir x x 0 cos 3x x 3 x I andra fall så blir d fyra variablr. x x x x u + 3u + u cos, 4 u 4 3u 0, 5 u + u + sin u 0. 6 x 0 + x cos x x x 3 x U Finn n fundamnalmaris Φ för följand sysm x Ax. Finn dn fundamnalmaris som uppfyllr Φ0 I. Skriv upp dn allmänna lösningn ill sysm. 3 a A n av varj 3 b A n av varj c A ± i 4 5 d A rn komplx ±3i 8 A vå posiiva rör f A dubblro g A dubblro h A 4± komplx 4 7 i A vå ngaiva 3 4 Undrförså här är a vi ska lösa sysm x Ax, få fram vå obrond lösningar och skapa n maris av dssa. Vi gör ansasn x r ξ. Insa i kvaionn får vi a vilk är kvivaln md a r r ξ A r ξ 9 rξ Aξ 0 och om vi in vill a ξ 0 vilk ndas had g noll-lösningn ill kvaionn x Ax så mås r vara gnvärd och ξ n gnvkor ill A. E sä a karakärisra da är a skriva om kvaionn som A riξ 0, dvs vi vil a ξ ska ligga i nollrumm ill marisn A ri. Om ξ ska vara nollskiljd så mås marisn A ri vara singulär, vilk är kvivaln md a da ri 0, dn karakärisiska kvaionn för r. Egnvärdn ill A för x-marisr allså fås fram ignom samband spår av A r ± spår av A /4 drminann av A, där spår av A är summan av diagonallmnn. Allså i vår fall, säg a vi ar fall c ovan r ± 5 ± i. 3

4 4 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 A d blir komplxa rör är ing a oroa sig övr. Nu ar vi rda på mosvarand gnvkorr, i fall md komplxa rör så bhövr vi ndas göra da för n av rörna, a.x. + i. För mosvarand gnvkorr så drar vi av gnvärd på diagonaln i marisn A och kollar på vilka vkorr som liggr i nollrumm av dnna maris. Allså braka + i i 0 samma sak som i 0 4 i 0. 5 Har vi räkna rä så mås rad vara n mulipl av rad. Md vilkn konsan? Jo konsann i. Dvs om vi ar i gångr försa radn och addrar ill andra radn så får vi i Ifrån da sr vi a n gnvkor bli c i kom ihåg rick by plas och sä minusckn på av lmnn. Allså har vi nu få fram a n lösning ill kvaionn x Ax är x r c +i i cos + i sin i cos + i sin sin + i cos Dnna lösning är komplx-värd. Vi sökr hls rll-värda funkionr. Vi kan få vå obrond lösningar gnom a a raldl rspkiv imaginärdl av uryck ovan: x cos sam imaginärdln gr x sin sin. 9 cos Dn allmänna lösningn ill kvaionn x Ax kan därför skrivas x b x + b x b cos + b sin sin cos för godyckliga konsanr b och b. Vi kan skriva da mha n fundamnalmaris där och Nora a x Xb 3 X cos sin sin cos b X0 b b 0 0 Vi sr ifrån mål M6 ovan så kommr ävn marisn Φ XX0 35 vara n fundamnalmaris för vår sysm, da blir allså Φ cos sin 0 sin cos sin cos 0 sin cos. 36

5 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Så då kan vi allså skriva a dn allmänna lösningn ill vår sysm är x Φb 37 för någon godycklig vkor b. I da fall så mås b x 0. U3 Visa a dn gnrlla lösningn ill x P x + g 38 kan skrivas som n summa av någon parikulärlösning x p illsammans md dn gnrlla lösningn ill ill dn mosvarand homogna kvaionn. a b U4 Lå A. Skriv upp gnrll uryck för gnvärdna ill A jämför md mål M8 c d ovan. Hur hängr da ihop md rac-drminan-schma? Gnom a skriva upp da ri 0 och förnkla så bord följand uryck dyka upp allså. r spår av A r a + d a + d ± ad bc 39 ± spår av A /4 drminann av A, 40 U5 Till sysm x Ax, avgör karakärn av dn kriiska punkn x 0 0 om 3 a A 4 b A 4 7 c A 5 d A 3 U6 Braka sysm x α x. 4 Vad blir gnvärdna för kofficinmarisn om α 0.5? Vad för yp av kriisk punk blir origo? Vad händr då α? Karakärn av dn kriiska punkn ändras i dssa vå fall. När skr dnna kvaliaiva förändring om vi anar a α är al mllan 0.5 och? U7 Bsäm gnvärdna ill följand kofficinmarisr som n funkion av α a x α α 0 5 x b x α För vilka värdn ändras karakärn av dn kriiska punkn? Ria fasporrä för värd på α som är någo sörr al. någo mindr än d kriiska värdna som årfanns innan. x

6 6 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 E sä a lösa da är a ckna uryck för gnvärdna. I fall a blir d r α ± α α + α ± i. Efrsom gnvärdna innhållr n imaginärdl så kommr lösningarna a inhålla cos och sin. Vilk innbär a d är spiralr. Sabilin av dssa spiralr kommr a bro på vad för ckn raldln har. Om α < 0 så får vi asympoisk sabila spiralr, dvs spiralr där lösningn i fasrumm konvrgrar mo dn saionära punkn x 0 0. Om α > 0 så får vi insabila spiralr. Och om α 0 så får vi sabila spiralr, nämlign spiralr som in nödvändigvis konvrgrar mo dn kriiska punkn x 0 0 mn in hllr växr obhindra då, dvs vi har sabili mn j asympoisk sabili. Dssa ypr av uppgifr kan man försöka visualisra i spår-drminanschma som dlads u undr övningn. T.x. för b här är spår α och drminann är 5. Marisr som uppfyllr da liggr på n linj i schma där drminann är 5. Dnna linj skär kurvan y x /4 på vå sälln, för x-värdna ± 0. Da blir allså brypunkrna för α. Om α > 0 så kommr marisn ha vå posiiva gnvärdn, vilk kommr a bidra ill lösningar som xplodrar då, insabila nodr. Om α < 0 så kommr vi få vå ngaiva gnvärdn ill marisn, alla lösningar kommr sålds a gå mo 0 då, asympoisk sabila nod. Om 0 < α < 0 så får vi komplxa rör md ngaiv raldl, asympoisk sabila spiralr. Om α 0. så får vi rn komplxa rör, sabila cnrum. Om 0 < α < 0 så får vi vå komplxa rör md posiiv raldl, insabila spiralr. Om α 0 så får vi n posiiv dubblro för gnvärdna, från da kan man dirk få fram a vi har n insabil punk. D kan uppså vå fall här, nämlign dgnrrad nodr när d in finns vå linjär obrond gnvkorr llr nodr när d finns vå obrond gnvkorr. U8 Lös IVP x 4 3 x, x0. 4 Ta rda på gnvärdn och gnvkorr ill A. Egnvärdn blir r ± i. Ta rda på n gnvkorr som ovan i xmpl ovan. Skriv upp mosvarand komplxa lösning och a ral och imaginärdl. Skriv upp n fundamnalmaris så a allmänna lösningn blir 3 Sä in villkor x0 x Xb. 43 för a bsämma b. Klar. U9 Skriv upp dn allmänna lösningn ill följand inhomogna sysm 3 a x 4 b x x + x c x 4 3 x + Vi sr a alla dssa uppgifr är inhomogna linjära sysm md konsana kofficinr. Vi börjar md a braka mosvarand linjära sysm x 3 x 44 och sökr lösningarna ill da. Egnvärdna blir λ ±. Vi ar rda på mosvarand gnvkorr vilka blir om λ, a 3 ξ, 45

7 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF och för λ så får vi ξ. 46 Dn allmänna lösningn ill dn homogna kvaionn kan sålds skrivas b + x 3 b, 47 för godyckliga b och b rlla al, llr omskriv så är da samma sak som 3 x b Xb. 48 b där X är fundamnalmarisn 3 X. 49 Vi v också a fundamnalmarisn uppfyllr X AX. 50 Frågan vi nu sällr oss är hur vi finnr n parikulärlösning x p dvs någon lösning som fakisk lösr dn kvaionn vi är inrssrad av ill kvaionn x 3 x + Ax + g 5 D visar sig a vi kan göra n ansas som kommr a lda oss ill uryck för x p. Vi ansär x p Xv 5 där v nu är n vkor som vi vill bsämma. Da är n ansas som vanlig som vi drivrar och sär in i kvaionn för a s vad vi får för informaion om v insa i kvaionn x Ax + g så får vi x p X v + Xv 53 X v + Xv AXv + g 54 omskrivning md likhn X AX gr oss vilk rducrar ill AXv + Xv AXv + g 55 Xv g 56 och frsom fundamnalmarisn är invrrbar för alla dss drminan är 0, Wronskidrminann för sysm så får vi a v X g. 57 Allså, om vi har X och g så kan vi räkna u v som gr oss x p Xv. I vår fall X dx allså v ingrra all md avsnd på kul för nu mås vi göra parill ingraion, så mllansg blir ˆ ˆ d + d +, 60 59

8 8 ÖVN 3 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 sam ˆ ˆ d d. 6 allså och sålds blir x p x p Xv Allså allmänna lösningn blir allså 3 x där b och b är godyckliga konsanr. v b b , 65

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00 Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.

Läs mer

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a)

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a) Drivaans iniion DERIVATANS DEFINITION Dfiniion Lå y f vara n givn funkion som är inirad i punkn a f a f Om gränsvärd israr som rll al sägr vi a funkionn är drivrbar i punkn a Gränsvärd kallas drivaan av

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k) Armn Hallovc: EXTRA ÖVNINGAR Tllämpnngar av dffrnalkvaonr TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följand uryck används ofa olka problm som ldr ll dffrnalkvaonr: Tx A är proporonll mo B A är omvän proporonll

Läs mer

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25 SF676, am 5 aug 7 Isiuio för mamaik, KH SF676, Diffrialkvaior md illämpigar am isdag 5 aug 7 Skrivid: 8:-: Eamiaor: Krisia Bjrklöv För godkä (bg E krävs r godkäda modulrr frå dl I Varj moduluppgif bsår

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (

Läs mer

Räkneövning i Termodynamik och statistisk fysik

Räkneövning i Termodynamik och statistisk fysik Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1 ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till

Läs mer

Öppenhet påp. olika marknader. Öppenhet för f r handel och kapitalrörelser. Handelsbalansunderskott. relser

Öppenhet påp. olika marknader. Öppenhet för f r handel och kapitalrörelser. Handelsbalansunderskott. relser Blanchard kapil 18-19 19 Dn öppna konomin Vad innbär öppnh? Vad bsämmr val mllan uländska och inhmska illgångar och varor? Vad bydr växlkursv xlkurs- och frfrågf gförändringar för f r BNP och handlsbalans?

Läs mer

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1). Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn

Läs mer

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1 Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +

Läs mer

Vad är reglerteknik? Reglerteknik AK F1. Vad är ett dynamiskt system? Principer för reglering. Vad är återkoppling? Alternativ: Framkoppling

Vad är reglerteknik? Reglerteknik AK F1. Vad är ett dynamiskt system? Principer för reglering. Vad är återkoppling? Alternativ: Framkoppling Rglrknik AK F Vad är rglrknik? Vad är rglrknik? ID-rglaorn Rglrknik handlar om rglring av dynamiska sysm A få dynamiska sysm a ppföra sig som önska / 4 2 / 4 Vad är dynamisk sysm? rincipr för rglring Dynamiska

Läs mer

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2 Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

Differentialekvationssystem

Differentialekvationssystem 3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

System med variabel massa

System med variabel massa Sysm m varabl massa Rörlsmängn hos kropp m är: p m mv Anag nu a kroppns massa änras gnom a v llför massor m pr snh, som har hasghn v k. Rörlsmängsföränrngn pr snh hos kroppn blr: pm m( vk v är ( v k v

Läs mer

Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.

Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI

Läs mer

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt: Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1 LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

Lösningar till Matematisk analys IV,

Lösningar till Matematisk analys IV, Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

där a och b är koefficienter som är större än noll. Här betecknar i t

där a och b är koefficienter som är större än noll. Här betecknar i t REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära

Läs mer

Bengt Assarsson. Hemsida. www.bassarsson.com. Litteratur m m

Bengt Assarsson. Hemsida. www.bassarsson.com. Litteratur m m Bng Assarsson Forskning Makro, konomri Skar, EMU, frfrågsysm Finansdparmn Svrigs Riksbank Sora konomriska modllr Svnsk modll BASMOD Modll för världskonomin Modll för kors prognosr Inflaion/rlaiva prisr

Läs mer

Ekosteg. En simulering om energi och klimat

Ekosteg. En simulering om energi och klimat Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr

Läs mer

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk

Läs mer

INTRODUKTION. Akut? RING: 031-51 20 12

INTRODUKTION. Akut? RING: 031-51 20 12 INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och

Läs mer

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U. MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:

Läs mer

ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.

ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n. ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och

Läs mer

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen: Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs

Läs mer

Föreläsning 10 Kärnfysiken: del 2

Föreläsning 10 Kärnfysiken: del 2 Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt

Läs mer

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn

Läs mer

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2 Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017 Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot

Läs mer

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12 KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn

Läs mer

Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!

Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till! Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight

Läs mer

Kvalitativ analys av differentialekvationer

Kvalitativ analys av differentialekvationer Analys 360 En webbaserad analyskurs Grundbok Kvaliaiv analys av differenialekvaioner Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Kvaliaiv analys av differenialekvaioner 1 (10) Inrodukion De

Läs mer

ANALYS AV DITT BETEENDE - DIREKTIV

ANALYS AV DITT BETEENDE - DIREKTIV Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).

Läs mer

ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand

ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand Icbrakrs 2 / 10 Götborgs Rgionn och GR Utbildning GR är n samarbtsorganisation för 13 kommunr i Västsvrig tillsammans har mdlmskommunrna 900 000 invånar. Förbundts uppgift är att vrka för samarbt övr kommungränsrna

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2

Läs mer

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret. Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa

Läs mer

Tryckkärl (ej eldberörda) Unfired pressure vessels

Tryckkärl (ej eldberörda) Unfired pressure vessels SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission

Läs mer

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4. TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar

Läs mer

IF96001 är kompatibel med Nemo 96 HD HD+ HDLe. Läs informationen nedan och spara din dyrbara tid!

IF96001 är kompatibel med Nemo 96 HD HD+ HDLe. Läs informationen nedan och spara din dyrbara tid! RS8 Modbus ugångsmodul IF9600 Manual IF9600 är kompaibl md mo 96 HD HD+ HDL E-nr 6 6 Läs informaionn ndan och spara din dyrbara id! Via lfon-suppor har vi förså a vikiga momn mllanå försummas i samband

Läs mer

re (potensform eller exponentialform)

re (potensform eller exponentialform) Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid: Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning

Läs mer

Föreläsning 19: Fria svängningar I

Föreläsning 19: Fria svängningar I 1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:

Läs mer

Demodulering av digitalt modulerade signaler

Demodulering av digitalt modulerade signaler Kompleeringsmaeriel ill TSEI67 Telekommunikaion Demodulering av digial modulerade signaler Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping Februari 27 No: Denna uppsas

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

Lektionsuppgifter i regressionsanalys

Lektionsuppgifter i regressionsanalys LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN Lktionsuppgiftr i rgrssionsanalys A A ENKEL LINJÄR REGRESSION Från n undrsökning av vilka faktorr som påvrkar prist på villor i n sydsvnsk ort insamlads n dl

Läs mer

Algebra och geometri 5B Matlablaboration

Algebra och geometri 5B Matlablaboration Mariana Dalarsson, ME & Johan Svnonius, IT Algra och gomtri 5B46 - Matlalaoration 6-- Kurs: 5B46 Handldar: Karim Daho Uppgift Enligt uppgiftn gällr följand vationr: p ( x) + x a + ax + a x a (.) 7 f (

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00 TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg

Läs mer

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917 BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

1 Elektromagnetisk induktion

1 Elektromagnetisk induktion 1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.

Läs mer

11. Egenvärden och egenvektorer

11. Egenvärden och egenvektorer 11 Egnvärdn och gnvktorr 82 Egnvktor och gnvärd: dfinition 83 Egnvktorr och gnvärdn för projktionr, spglingar och rotationr i 2 och 3 dimnsionr 84 Karaktäristiskt polynom, karaktäristisk kvation och gnvärdn

Läs mer

Laboration 1a: En Trie-modul

Laboration 1a: En Trie-modul Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och

Läs mer

om de är minst 8 år gamla

om de är minst 8 år gamla VIKTIGA SÄKERHETSINSTRUKTIONER LÄS NOGGRANT OCH SPARA FÖR FRAMTIDA REFERENS VÄRM INTE UPP OCH ANVÄND INTE BRANDFARLIGA MATERIAL i llr nära ugnn. Ångor kan skapa n risk för brand llr xplosion. ANVÄND INTE

Läs mer

NYTT STUDENT. från Växjöbostäder. Nu öppnar vi portarna på Vallen, kom och titta, sidan 3. Så här håller du värmen, sidan 4.

NYTT STUDENT. från Växjöbostäder. Nu öppnar vi portarna på Vallen, kom och titta, sidan 3. Så här håller du värmen, sidan 4. STUDENT DECEMBER 2014 NYTT från Växjöbostädr p p a n d m t l k n d i Boka tvätt ttar ä r b s u p m a C å ig p Områdsansvar Nu öppnar vi portarna på Valln, kom och titta, sidan 3. Så här hållr du värmn,

Läs mer

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2 Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,

Läs mer

INFORMATIONSFOLDER FRÅN HUMANUS. Nya. Arbetslivsinriktat rehabiliteringsstöd Outplacement

INFORMATIONSFOLDER FRÅN HUMANUS. Nya. Arbetslivsinriktat rehabiliteringsstöd Outplacement INFORMATIONSFOLDER FRÅN HUMANUS Nya r t h g i l j ö m t v i l s t b r ia Arbtslivsinriktat rhabilitringsstöd Outplacmnt & WWW.HUMANUS.SE Rhabilitringsplan 3 vckor Nulägsanalys, kartläggning och slutrdovisning

Läs mer

INFORMATIONSFOLDER FRÅN HUMANUS. Nya. Arbetslivsinriktat rehabiliteringsstöd Outplacement

INFORMATIONSFOLDER FRÅN HUMANUS. Nya. Arbetslivsinriktat rehabiliteringsstöd Outplacement INFORMATIONSFOLDER FRÅN HUMANUS Nya r t h g i l j ö m t v i l s t b r ia Arbtslivsinriktat rhabilitringsstöd Outplacmnt & WWW.HUMANUS.SE Rhabilitringsplan 3 vckor Nulägsanalys, kartläggning och slutrdovisning

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

Laboration D158. Sekvenskretsar. Namn: Datum: Kurs:

Laboration D158. Sekvenskretsar. Namn: Datum: Kurs: UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Lars Wållberg/Håkan Joëlson 2001-02-28 v 3.1 ELEKTRONIK Digialeknik Laboraion D158 Sekvenskresar Namn: Daum: Eposadr: Kurs: Sudieprogram: Innehåll

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

8.4 De i kärnan ingående partiklarnas massa är

8.4 De i kärnan ingående partiklarnas massa är LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan

Läs mer

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer