Lektionsuppgifter i regressionsanalys
|
|
- Kristina Larsson
- för 5 år sedan
- Visningar:
Transkript
1 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN Lktionsuppgiftr i rgrssionsanalys A A ENKEL LINJÄR REGRESSION Från n undrsökning av vilka faktorr som påvrkar prist på villor i n sydsvnsk ort insamlads n dl data som rdovisas ndan tillsammans md några summor. Hus Pris, y ( kr) Boyta, x ( kvm) r 3 3,4 7, , 4 4???, , ??? , 9 3 -,89 4,43 4 -,68 3 -, , ,64 9 -,46 Summa: 7, y = 38 x = 3 xy = a) Bstäm dn linjära rgrssionn av huspris på boyta. Tolka riktningskofficntns numriska värd i ord på tt bgripligt sätt. b) Ställ upp n fullständig ANOVA-tablå och tsta om dt finns något linjärt samband mllan huspris och boyta. c) Bräkna md hjälp av ANOVAn rsidualspridningn och dtrminationskofficintn ( R ). G n vrbal tolkning av d båda värdna. d) Bräkna korrlationskofficintn nligt kap 6.3 i Praktisk statistik. Kontrollra att sambandt dtrminationskofficintn R = korrlationn i kvadrat vrklign stämmr. ) Tsta om dt är statistiskt säkrställt att korrlationn är skild från noll. Använd mtodn från kapitl 8.7 i Statistisk dataanalys. f) Bstäm tt 9 % konfidnsintrvall för β. Tolka intrvallt i ord. g) Uppskatta prist för hus md n boyta på kvm. Bstäm ävn tt 9 % konfidnsintrvall för dt gnomsnittliga prist för hus md dnna boyta. h) Bstäm tt intrvall som md 9 % sannolikht ringar in prist för tt slumpmässigt valt hus md boytan kvadratmtr. i) Bräkna d två rsidualr som saknas. Tolka d framräknad värdna i ord. j) Plotta rsidualrna mot boyta i tt spridningsdiagram. Kommntra din figur. Finns dt något som tydr på avviklsr från modllantagandna.
2 3 4 B MULTIPEL LINJÄR REGRESSION A För vilkn/vilka av ndanstånd fyra figurr gällr att x = 9, och y = 7, samt att yˆ = 3, +, x r =,86 s =, 4 B Lös följand kvationssystm a) x + y = x y = 6 b) 3 = b + 3b 6 = 4b + b c) 3 = 7b + 4b 34 = 4b + 9b A3 För tt matrial omfattand 3 obsrvationr gjords n analys av sambandt mllan två variablr x och y. Följand rsultat kund utläsas ur rdovisningn. (i) variansn i y-variabln är (ii) rgrssionslinjn skrivs yˆ = 4 x (iii) och dtrminationskofficintn är 8 % a) Bräkna korrlationskofficintn. b) Bräkna rsidualspridningn. Ldning: Forml..4 i formlsamlingn llr ställ upp ( ) ANOVAn. Då kan dt vara bra att vta att variansn för y = y y SST s y = n n. c) Tsta om dt linjära sambandt är statistiskt säkrställt. B Från n undrsökning av vilka faktorr som påvrkar prist på villor i n sydsvnsk ort insamlads n dl data som rdovisas ndan tillsammans md några summor. S ävn A. Hus Pris, y ( kr) Boyta, x ( kvm) Tomt, x ( kvm) Summa: 7 y = 38 x = 3 x = 9 x y = 479 x y = 77 x x = 47 a) Bstäm rgrssionn av huspris på boyta och tomtyta. Tolka på tt bgripligt sätt värdt på d båda b-kofficintrna. Jämför värdt på b md värdt i uppgift Aa. b) Ställ upp n fullständig ANOVA-tablå. Bräkna rsidualspridningn och dtrminationskofficintn. Jämför md motsvarand värdn från dn nkla rgrssionn i uppgift A. Kommntar! c) Tsta md hjälp av ANOVAn om modlln ska utökas md ävn tomtyta, dvs tsta hypotsn H : β = givt att boyta rdan finns i modlln. d) Bräkna rsidualrna för samma två obsrvationr som i uppgift A. Kommntar!
3 6 B3 a) Vad innbär bgrppt multikollinjäritt? b) Vilka följdr får multikollinjäritt på skattningarna och dras variansr? B4 En jämställdhtsdlgation vill härom årt undrsöka om kvinnor i n viss bransch had lägr lönr än männn. I n första pilotstudi valds slumpmässigt prsonr ut och man notrad dras värdn på d fyra variablrna lön (y, -tal kr), kön (x, =M =K), yrksrfarnht i år (x) samt utbildningsnivå (x3). Utbildningsnivån satts till antalt skolår plus llr minus några år bl. a. brond på typ av utbildning/xamn. Data och Minitabutskriftr finns i bilaga -3. Använd dssa! a) S bilaga övr. Hur stor är dn gnomsnittliga lönskillnadn mllan män och kvinnor? Är skillnadn statistiskt säkrställd? Tolka rsultatt av dt t-tst som är gnomfört md SPSS. b) S bilaga ndr. Ang rgrssionslinjn som visar hur inkomst (y) bror på kön (x). Rita in obsrvationrna och rgrssionslinjn och i tt spridningsdiagram. Tolka värdt på riktningskofficintn i ord. Jämför md a-uppgiftn! c) S bilaga ndr. Bräkna rsidualspridningn ur ANOVA-tablån. Tsta om β är skild från noll. Jämför md a-uppgiftn! d) S bilaga 3. Nu ska modlln ovan utökas md yttrligar n förklarand variabl, yrksrfarnht (x) llr utbildning (x3). Använd utskriftrna för att välja dn av variablrna som gr bäst modll tillsammans md kön (x). Valt av variabl ska tydligt motivras. Bstäm dn skattad rgrssionsmodlln md två förklarand variablr. Tolka värdt på b och b för dn nyinförda variabln i ord. ) Ställ upp n fullständig ANOVA-tablå och ang hur myckt dtrminationskofficintn ökat från modlln md n förklarand variabl till modlln md två förklarand variablr. Tsta också om tillskottt i förklaringsgrad är signifikant, dvs om dt är lönt att ta md ävn dn andra variabln. Tstt kan göras på flra sätt. Alla siffror som bhövs finns i bilaga 3. f) Rita in punktrna och d båda linjrna rgrssionsmodlln i d-uppgiftn motsvarar ju två paralllla linjr i tt spridningsdiagram. Använd olika symbolr för män rsp. kvinnor. C C C ICKE-LINJÄR REGRESSION Sambandt mllan vinst och produktionsvolym av n viss produkt var vid tt antal tidpunktr Vinst Volym (-tal) a) Rita in punktrna i tt spridningsdiagram. b) Anpassa n andragradskurva till punktrna samt rita in kurvan i figurn. c) Vilkn produktionsvolym gr störst vinst nligt dn anpassad kurvan? d) I vilkt intrvall ska produktionsvolymn hållas om vi vill hålla vinstn övr 3-nivån? Följand data för n vara förliggr, där Q = ftrfrågad kvantitt ( kg), P = prist och I = kundkrtsns inkomst i fast pnningvärd ( kr): År Q 4, 4,9 4,8 46,8 47,7 P 6,3 6, 6,,6, I log Q,64,63,66,67,679 log P,,4,7,93,8 log I,96,,,,7 Md hjälp av SPSS skattads dn multipla rgrssionsmodlln av log Q på log P och log I. Använd utskriftn ndan för att lösa uppgiftn. a) Skriv dn skattad lasticittsmodlln på dn ick-logaritmrad formn (SD sid 37). b) Vad blir pris- rspktiv inkomstlasticittrna? Tolka innbördn av dm i ord. c) Vad händr md ftrfrågan om inkomstrna ökar md 3 % och prisrna går upp 4 %? B Från tt stickprov om obsrvationr har vi bräknat följand. (i) s =, 8 y (ii) yˆ = 6,3,4x R =, 7 (iii) y ˆ = 4,,x +, x R =, 8 a) Bräkna s vid rgrssion av y på x. b) Bräkna s vid rgrssion av y på x och x. c) Tsta om dn multipla modlln är signifikant bättr än dn nkla. Log_P Log_I a. Dpndnt Variabl: Log_Q a -,844,97 -,99,8 -,97,67 -,38-3,636,68,6,34,7 6,698,
4 7 8 BILAGA BILAGA Prson Lön (y) (x) Erfarnht (x) Utbildning (x3) Summa Några summor för dn som vill kontrollräkna för hand = = = 3 3 = ( y y) 33 ( x x ) 4, 8 ( x x ) 66, ( x x ) 74, 9 ( x x)( y y) = ( x x )( y y), ( x x3)( y y) 8, ( = 3 = x x )( x x ) = 6, x x )( x x ) = 7, 4 x x )( x x ) = 86, ( 3 3 ( 3 3 T-Tst Lön Lön Equal variancs assumd Group Statistics Std. Error N Man Std. Dviation Man 98,7 79,36,9 8 94, 6,6 3, t df Indpndnt Sampls Tst Sig. (-taild) t-tst for Equality of Mans Man Diffrnc 9% Confidnc Intrval of th Std. Error Diffrnc Diffrnc Lowr Uppr 3,7 8,7 4,7 33,93 3,89 7,44 Summary Adjustd Std. Error of R R Squar R Squar th Estimat,86 a,344,37 74,33 a. Prdictors:, Total a. Prdictors:, b. Dpndnt Variabl: Lön ANOVA b Sum of Squars df Man Squar F Sig. 83,3 83,3 9,47,7 a 99449,7 8, 33, 9 a. Dpndnt Variabl: Lön a 98,7,46 3,896, -4,7 33,93 -,86-3,7,7
5 9 BILAGA 3 Svar till d numriska uppgiftrna Summary Adjustd Std. Error of R R Squar R Squar th Estimat??? a?????? 76, a. Prdictors:, Erfarnht, Total b. Dpndnt Variabl: Lön Erfarnht a. Dpndnt Variabl: Lön ANOVA b Sum of Squars df Man Squar 69,8 634,9 9884, 7 84, 33, 9 a 3,946 9,3,337, -,79 4,3 -,63 -,7,4??? 3,7 -,73 -,34,7 Summary Adjustd Std. Error of R R Squar R Squar th Estimat??? a?????? 4,44 a. Prdictors:, Utbildning, A a) yˆ =, +, x Hus vars boyta är kvm störr kostar i gnomsnitt kr mr. b) Orsak SS fg MS F R 33, 33, 36,8 E 6,89 3 8,99 T 448, 4 p-värdt <, % Ho förkastas, Dt är statistiskt säkrställt att dt finns tt linjärt samband mllan boyta och pris. c) s = 3, R = 73,9 % d) r =, 86 ) t = 6, 7 3 fg p <, % Ja, skild från noll f),±, 39 llr,7 < β <, g) ˆ µ =,496 +,74 =, 78,78 ±, 8 llr,9 µ 7, 6 3 < y x= < h),78 ± 6, 73 llr 9, < y x= <, i) 4 = y yˆ = 8, = + 4, 7 = y yˆ = 8 3,4 =, 4 Dn fjärd villan kostad ca 4 kr mr än förväntat pris för villor på 4 kvm. Dn sjund kostad ca 4 kr mindr än förväntat pris för villor på 9 kvm. j) Möjlign n svag tndns till att spridningn är lägr för d minsta husn mn dt är int spcillt tydlgt. Dt finns ingt som tydr på att n ick-linjär modll är bättr. 6, 4,, Uppgift Aj Total b. Dpndnt Variabl: Lön ANOVA b Sum of Squars df Man Squar 437,4 668,7 739,6 7 6, 33, 9, -, -4, -6, Boyta a Utbildning a. Dpndnt Variabl: Lön 8,46 34,6,38,33-78,67 8,7 -,443-4,4,???,473,74 6,687, A3 a) r =,894 b),44 c) R 3 3 F = p <, % Alltså ska Ho förkastas E 8 8,7 Dt linjära sambandt är signifikant T 9 9
6 B a) x = 8 y = b) b = b = 7 c) b = 3, 6383 b = 4, 383 B a) y ˆ =,63+,93x +, 6x Givt samma tomtyta kostar hus md tio kvm störr boyta i gnomsnitt 93 kr mr (,93 ggr kr). Givt samma boyta kostar hus md tio kvm störr tomt i snitt 6 kr mr. B a),4 b),37 c) Ja F =, fg = (/8) p < % C b) yˆ = 3,7 + 3, x,7x c) 448 d) mllan 34 och 6 b) Orsak SS fg MS F R (x, x) 394, 97, 44, *** Först x 33, Tillskott x 63,9 63,9 4, ** E 3,8 4,483 T 448, 4 s =, R = 88, % n ökning md 4, %-nht c) F = 4, Kritiskt F =4,7 ( %, fg = /) p < % Ho förkastas. (Tabllvärdt på %- nivån är 9,33 så p < % också.) Vi har sålds påvisat att β, dvs att ävn x (tomtyta) ska inkludras i modlln. d) = y yˆ =,34 =, 34 = y yˆ = 8,4= 3, Vinst Uppgift C Volym Obsrvd Quadratic B3 a) och b) s Statistisk dataanalys sid 38 36,97 +, C a) Q = a p I (där a =,844 ) b),97 rspktiv +, c) ftrfrågan förväntas öka,44 % B4 a) 4, p =,7 =,7 % vilkt mdför att Ho förkastas b) yˆ = 98, 4, x c) s = 74, 3 F = 9,47 p =,7 <, % llr t = 3,7 p =,7 <, % dvs xakt samma tstrsultat som i a-uppgiftn d) välj (x och x3), lägr SSE och MSE som gr lägr s, högr SSR som gr högr y ˆ = 8, 78,7x + 6, x3 ) Orsak SS fg MS F R (x, x3) , Enbart x 83 Tillskott x ,7 p <, E T 33 9 ökning i R = 47,6 %. Eftrsom p =, <, % Ho förkastas. Ja, β 3, dvs dn nya variabln gr tt signifikant tillskott till förklaringsgradn. R
Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
Läs merRäkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
Läs merVid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
Läs merTNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Läs merdär a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merKontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Läs merLINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Läs merNÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2
Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs merF16 MULTIPEL LINJÄR REGRESSION (NCT , 13.9) Anpassning av linjär funktion till givna data
Stat. teori gk, ht 006, JW F16 MULTIPEL LINJÄR REGRESSION (NCT 13.1-13.3, 13.9) Anpassning av linjär funktion till givna data Data med en beroende variabel (y) och K stycken (potentiellt) förklarande variabler
Läs merTentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Läs mer2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Läs merKontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
Läs merF11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
Läs merBengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002
ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
Läs merKONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
Läs merRevisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
Läs merTentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Läs mer1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Läs merSlumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs mer1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
Läs merSEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Läs merTryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Läs merANALYS AV DITT BETEENDE - DIREKTIV
Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).
Läs merKurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
Läs merINTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
Läs merFöreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Läs merLösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Läs mer247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Läs merFöreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merRevisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs merUndervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Läs merReferensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget
t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du
Läs merSkrivning i ekonometri lördagen den 29 mars 2008
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB, Ekonometri Skrivning i ekonometri lördagen den 9 mars 8.Vi vill undersöka hur variationen i antal arbetande timmar för gifta kvinnor i Michigan
Läs merMultipel linjär regression. Geometrisk tolkning. Tolkning av β k MSG Staffan Nilsson, Chalmers 1
Multipel linjär regression l: Y= β 0 + β X + β 2 X 2 + + β p X p + ε Välj β 0,β,β 2,, β p så att de minimerar summan av residualkvadraterna (Y i -β 0 -β X i - -β p X pi ) 2 Geometrisk tolkning Med Y=β
Läs merRegressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Läs merSkrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merarctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar
DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +
Läs merOm i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Läs merFöreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs mer1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Läs merKorrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Läs merUmeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Läs merÖvningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Läs mer2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Läs merSamhällsvetenskaplig metod, 7,5 hp
Samhällsvetenskaplig metod, 7,5 hp Provmoment: Individuell skriftlig tentamen kvantitativ metod, 2,0 hp Ladokkod: 11OA63 Tentamen ges för: OPUS kull H13 termin 6 TentamensKod: Tentamensdatum: Fredag 24
Läs merLösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Läs merSkriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Läs merDEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Läs merAnmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
Läs merRevisionsrapport 2010. Hylte kommun. Granskning av upphandlingar
Rvisionsrapport 2010 Hylt kommun Granskning av upphandlingar Jakob Smith fbruari 2011 Innhållsförtckning SAMMANFATTNING... 3 1 UPPDRAGET... 4 1.1 Bakgrund och syft... 4 1.2 Mtod och avgränsning... 4 2
Läs merLust och risk. ett spel om sexuell hälsa och riskbeteenden
Lust och risk tt spl om sxull hälsa och riskbtndn 2 / 11 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad pdagogikn
Läs merLaboration 2 multipel linjär regression
Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs mer732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland
Läs merRegressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Läs merSAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod...
Rvisionsrapport 2010 Malmö stad Granskning av policy och riktlinjr samt intrn kontroll mot mutor tc. Jakob Smith och Josabth Alfsdottr dcmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1. INLEDNING...
Läs mer732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Läs merEnkätsvar Sommarpraktik Gymnasiet 2016
Enkätsvar Sommarpraktik Gymnasit 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr int och 5
Läs mer4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
Läs merArbetsmarknad - marknadsformer. Förra gången. Svensk arbetsmarknad. Arbetsutbudets komponenter
Förra gångn Prisbildning Rala och nominlla tröghtr Marknadsformr Ej fri konkurrns man sättr prist Bilatrala rlationr, optimalt Prisr trögrörliga Olika branschr Övr tidn Arbtsmarknad - marknadsformr Monopol
Läs merBengt Sebring September 2003 Sida: 1 Ordförande GRANSKNINGSRAPPORT 3/2003
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2003-06-30 Bngt Sbring Sptmbr 2003 Sida: 1 Kommunrvisionn 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
Läs merRevisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
Läs merTENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS
STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Läs merMargarin ur miljö- och klimatsynpunkt.
Margarin ur miljö- och klimatsynpunkt. Dt är skillnad på och smör. Ävn när dt gällr miljön. Till barn i förskola och skola rkommndrar Livsmdlsvrkt och lätt för smör och smörblandad produktr. En ny analys
Läs mer24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Läs merFöreläsning 10 Kärnfysiken: del 2
Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt
Läs merEkosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
Läs merHittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Läs merRobin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Läs merKnagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv.
Knagg Knaggarna kan t.x. användas vid förbindning mllan ar och ar. I kombination md fäst är bärförmågan stor vid vältand och lyftand kraftr. Knaggarna tillvrkas av 2,0 ± 0,13 mm galvanisrad stålplåt och
Läs merSkrivning i ekonometri lördagen den 25 augusti 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA
Läs merEn scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Läs merUppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
Läs mera) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
Läs merHOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER
Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand
Läs merUppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna
TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs merPsykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här:
GÖTEBORGS UNIVERSITET Psykologiska institutionen Tentamen Kurs: PC1307 Kurs 7: Samhällsvetenskaplig forskningsmetodik PC1546 Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Tentamensdatum:
Läs merTentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling
Läs merProvmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:
Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs
Läs merStatistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Läs merAlgebra och geometri 5B Matlablaboration
Mariana Dalarsson, ME & Johan Svnonius, IT Algra och gomtri 5B46 - Matlalaoration 6-- Kurs: 5B46 Handldar: Karim Daho Uppgift Enligt uppgiftn gällr följand vationr: p ( x) + x a + ax + a x a (.) 7 f (
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs merEnkätsvar Sommarpraktik - Grundskola 2016
Enkätsvar Sommarpraktik - Grundskola 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr och 5
Läs merStatistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Läs merFöretag - Skatteverkets kontroll på webben
Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en
Läs merTEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
Läs mer