Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15"

Transkript

1 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan Tillåtna hjälpmedel: Bifogad formelsamling (med approimationsshema) oh tabellsamling (dessa skall returneras). Egen miniräknare. Ansvarig lärare: Övrigt: Leif Rukman För att få maimala poäng på en uppgift krävs att antaganden oh motiveringar noga anges samt att lösningen även i övrigt är så utförlig att den utan svårighet kan följas! För betyget Godkänd krävs minst 4 poäng, för betyget Väl Godkänd krävs minst 6 poäng. Uppgift a Förklara begreppen målpopulation, rampopulation, undertäkning oh övertäkning samt vad dessa begrepp har med begreppet bias att göra. Ge gärna ett eempel för att tydliggöra det hela. b Förklara vad som menas med stugsittarurval oh problemet med dessa. Ge helst ett eempel. För att skatta medelvärdet i en population använder man ofta medelvärdet i stikprovet. Det finns dok några andra skattningstekniker, bland annat så kallade kvotskattningar. Förklara med hjälp av ett litet numeriskt eempel (t.e. med n4) vad det är som gör att en kvotskattning ibland fungerar myket bättre än det vanliga stikprovsmedelvärdet. Uppgift I nedanstående tabell redovisas hushållens konsumtionsutgifter (i miljarder kronor) tillsammans med KPI (konsumentprisinde) för åren 99, 995 oh. år KPI Hushållens konsumtionsutgifter a KPI ovan har 98 som basår. Byt basår till 99. b Redovisa hushållens konsumtionsutgifter som en indeserie med 99 som basår. Redovisa hushållens konsumtionsutgifter i 99 års penningvärde. d Ta fram en indeserie över hushållens konsumtionsutgifter i fasta priser. Använd 99 som basår.

2 Uppgift 3 Ett företag skall köpa in en ny kopieringsmaskin oh väljer bland tre olika, A, B oh C. Ett välkänt problem med denna typ av maskiner är att de ibland drabbas av papperstopp. Man får möjlighet att vid några tillfällen testa de olika maskinerna oh noterar vid varje tillfälle antal minuter maskinen är i aktiv drift utan att pappersstopp inträffar. Genomför under normalfördelningsantagande ett hypotestest för att utreda om maskinerna är likvärdiga med avseende på genomsnittlig tid innan de drabbas av pappersstopp. Maskin A: Maskin B: Maskin C: Uppgift 4 (fortsättning på föregående uppgift) Som föregående uppgift men du får nu inte anta normalfördelning. Uppgift 5 Ett företag tror att de timlöner de betalar ut följer en normalfördelning. För att testa om detta antagande är rimligt vill man genomföra ett hypotestest oh väljer därför slumpmässigt ut 3 av företagets arbetare (se nedan). Genomför ett lämpligt test på % signifikansnivå. X Timlön i kronor Frekvens 55 < < < < < 5 8 Summa 3 Uppgift 6 Tekentest, Wiloon tekenrangtest, Wiloon rangsummatest oh Kruskal-Wallis test förkommer i boken. Förklara vad dessa test går ut på oh vilka motsvarigheter testen har bland de parametriska testen.

3 Uppgift 7 En mäklare har nio hus inne till försäljning i ett visst område. Några data gällande dessa hus redovisas nedan. Hus nr (antal rum) (boarea i m ) y (pris i kronor) a Mäklaren har läst en del statistik oh tänker anpassa en modell av typen Y α + βx + ε till materialet. Frågan är nu vilken av X-variablerna som är det bästa valet i denna modell? Hjälp mäklaren välja X-variabel. Motiver ditt val (använd förslagsvis lämpliga grafer att motivera med). Anpassa sedan modellen till datamaterialet, d.v.s. ta fram den skattade linjen Y ' a + bx. Räknehjälp: 34, Σ 96, y 335, Σ i Σ i i Σ i 36, Σ 37, y 5775, i Σ i Σ 377, Σ 45, Σ i i i yi i yi 7b Anta att mäklaren får in ytterligare ett hus som har 4 rum oh kvadratmeters bostadsyta men att du inte vet något mer om detta hus. Vad anser du vore ett rimligt pris på detta hus? Motivera! 7 Konstruera ett intervall som med irka 95 % säkerhet innehåller priset på huset som kom in till mäklaren i 7b. 7d Räkna ut modellens förklaringsgrad. Hur tolkas förklaringsgraden? 7e Räkna ut den justerade förklaringsgraden. Förklara tanken bakom den justerade förklaringsgraden.

4 Uppgift 8 (fortsättning på uppgift 7) Plötsligt slog det mäklaren; varför nöja sig med en X- variabel när man kan ha med båda två i modellen? Sagt oh gjort, mäklaren lät SPSS anpassa modellen Y α + β X + β + ε oh fik då följande utskrifter: X Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate,84(a),79,6 65,676 a Preditors: (Constant), AREA, RUM ANOVA(b) Model Sum of Squares df Mean Square F Sig. Regression 639, ,3 7,34,5(a) Residual 5879, ,94 Total 8897, 8 a Preditors: (Constant), AREA, RUM b Dependent Variable: PRIS Coeffiients(a) Unstandardized Coeffiients Standardized Coeffiients Model B Std. Error Beta t Sig. (Constant) 69,5 9,899,9,7 RUM -3,38 4,489 -,95 -,43,5 AREA 4,667,7,437 3,67, a Dependent Variable: PRIS 8a Besvara fråga 7b med denna modell som utgångspunkt. 8b Tolka regressionskoeffiienterna i ord. 8 Ta fram ett konfidensintervall med 95 % konfidensgrad för parametern β. Förklara hur intervallet ska tolkas, d.v.s. innebörden av intervallet. 8d I tabellen i mitten, kolumnen längst till höger står det,5(a). Förklara vad denna siffra innebär. 8e I tabellen längst ner, kolumnen längst till höger, på raden RUM står det,5. Förklara vad denna siffra innebär. 8f Tyker du mäklaren ska använda modellen med en X-variabel eller den med båda X-variablerna? Motivera ditt val genom att helt kort jämföra fördelar oh nakdelar.

5 Svar/lösningsskisser till tentamen i statistik STAA oh STAA Uppgift. Se Dahmströms bok. Uppgift. år KPI Hushållens konsumtionsutgifter a) År KPI b) År Hushållens konsumtionsutgifter Inde ) År Hush kons.utg års penningv. d) År Hush kons.utg fasta priser, inde Uppgift 3 H : µ A µ B µ C Testa H : ej _ H på (förslagsvis) α 5 % signifikansnivå med hjälp av envägs-anova-testet. Beslutsregel: Förkasta nollhypotesen om F (.5) I vårt fall fik vi F obs F obs 4.7 (se ANOVA-tabellen nedan), dvs. nollhypotesen förkastas. Vi kan alltså (med 5 % felrisk ) påstå att maskinerna skiljer sig åt.,3

6 Anmärkning: En av testets förutsättningar är att alla populationerna har samma standardavvikelse, dvs. att σ A σ B σ C. Jämför vi skattningarna s,,, 3 nedan så verkar detta åtminstone inte orimligt. Numeriskt: Maskin observationer n T s j s j, j,,...,n n A 5, 7, 4, B 8, 5,, ,, C 8, 3, 5, ,, 7 sum 67 n SS tot SST, j j T n, j, j n n j j T j j j 49.8 ANOVA-tabell: källa SS df MSSS/df F behandling SST k 45 F 4. 7 slump SSE SStot SST n k total SS n 5 tot obs Uppgift 4 (fortsättning på föregående uppgift) Om fördelningen för maskinerna är lika så när som på att de eventuellt är förskjutna i sidled i förhållande till varandra (dvs. de har åtminstone samma form ), så kan vi formulera nollhypotesen enligt nedan. H : µ µ B H : ej _ H A µ C Vi använder den ike-parametriska motsvarigheten till envägs-anova, Kruskal- Wallis-test. Med α 5 % signifikansnivå får vi beslutsregeln förkasta nollhypotesen H χ om ( ) 99 obs

7 I vårt fall fik vi (se nedan) H obs 5. 54, dvs. nollhypotesen kan inte förkastas. Vi har inte tillräkligt med bevis för att med högst 5 % felrisk kunna påstå att maskinerna skiljer sig åt. Det är med andra ord myket möjligt att maskinerna är likvärdiga. Anmärkning: (.) Numeriskt: χ så p-värdet är någonstans mellan 5 % oh %. sort Σ Ri n i A: ΣR B: ΣR C: ΣR 33 6 summa n( n + ) ( ΣR ) ( ΣR ) k H obs ( + ) ( ) n n n n nk ( 6 + ) ( 6 ) n 36 n 6 Uppgift 5 För att kunna genomföra ett hi-två-test av fördelning måste först µ oh σ skattas. X Timlön Frekvensf Klassmitt f f i kronor 55 < < < < < Summa f 43 8kr n 3 s ( f) f n n

8 4 Frequeny Lön Cases weighted by f Mean 8 Std. Dev.,99 N 3 X Frekvens ff o Sannolikhetsarea i klass f e ( f f ) fe < 65 X µ 65 8 P( X < 65) P σ. P( Z.57) < < < Summa H : Lönerna är normalfördelade H : Lönerna är inte normalfördelade Signifikansnivå: α% o e Testfunktion: sann. ( f f ) o e χ χ är χ -fördelad med 5-- fg om H är fe Kritiskt område: Förkasta nollhypotesen om det observerade värdet på teststatistikan är större än tabellvärdet, 4.65.

9 Resultat: χ 7.4 > Nollhypotesen förkastas. Slutsats: De observerade frekvenserna avviker för myket från vad som kan förväntas då observationerna kommer från en normalfördelning oh nollhypotesen förkastas på % signifikansnivå. Uppgift 6 Se Lind Marhal Mason. Uppgift 7 a) 5, 45, 4, Pris 35, 3, 5,,,,5 3, 3,5 4, 4,5 5, Antal rum

10 5, 45, 4, Pris 35, 3, 5,, 4, 6, 8,,, 4, 6, Area Area oh pris uppvisar det största linjära sambandet. Model (Constant) Area a. Dependent Variable: Pris Unstandardized Coeffiients Coeffiients a Standardized Coeffiients B Std. Error Beta t Sig. 4,56,5,4,98,,933,65,63,58 Y X b) Y Ett rimligt pris för huset är utifrån modellen a 35:- ) y a y b n y s y

11 Prediktionsintervall 96 ( ) 9 Y ' ± t s y + + ± + + n ( ) n ± 3 Med 95% säkerhet kommer försäljningspriset för detta hus ligga mellan 39:- oh 565:- d) SSR 37593,989 Förklaringsgraden (se tabellerna nedan) R.43 är andelen SStot 8897, av variationen i Y som förklaras av att X- varierar. I vårt fall skulle alltså irka 4 % av variationen i huspriserna hänga samma med att husen är olika stora (olika stor boyta). Resterande 58 % av variationen kan alltså inte förklaras av att boarean varierar. ANOVA(b) Model Sum of Squares df Mean Square F Sig. Regression 37593, ,989 5,,58(a) Residual 5378, ,748 Total 8897, 8 a Preditors: (Constant), X_AREA b Dependent Variable: Y_PRIS Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate,65(a),43,34 85,67 a Preditors: (Constant), X_AREA e) Den justerade förklaringsgraden blir R adj MSE MStot SSE / SStot ( n ) /( n ) 5378,33/7 7339, ,/8.5 Den vanliga förklaringsgraden R ökar automatiskt när vi tar med ytterligare X- variabler i modellen vilket inte R adj gör. Ska vi välja mellan flera olika modeller oh dessa inte har samma antal X-variabler i sig, blir jämförelsen mer rättvis om vi använder R i stället för R som kriterium. adj

12 Uppgift 8 8a Skattat regressionsplan ( X, X ) a + b X + b X X X Y ˆ +. För det nyinkomna huset får vi Y ˆ( 4,) , med andra ord irka 33 kronor vore rimligt pris innan vi har ytterligare fakta om huset. 8b Tolkning av b : För två nyinkomna hus som har samma antal rum men det ena huset har m större yta, så skulle det större huset ligga uppskattningsvis irka 47 kronor högre i pris ( b ) än det mindre. Tolkning av b 3. 3 : För två nyinkomna hus som har samma boyta men det ena huset har ett rum mer, så skulle detta hus ligga uppskattningsvis irka 3 kronor lägre i pris än huset med färre antal rum. Detta resultat känns myket konstigt, att ytterligare rum drar ner priset (rummen blir i oh för sig mindre om ytan är given, så huset kanske känns mer trångt). Det verkar i alla fall vara problem med multikollinearitet: se SPSS-utskrifterna nedan. Correlations X_RUM X_AREA Y_PRIS Pearson Correlation Pearson Correlation Pearson Correlation X_RUM X_AREA Y_PRIS,87,36,87,65,36, Vi ser ett tydligt positivt samband i grafen, vilket okså bekräftas av att korrelationskoeffiienten är så hög, r.87, mellan antalet rum X oh boytan X. 8 X_AREA 6 4,5,,5 3, 3,5 4, 4,5 5, 5,5 X_RUM Se även uppgift 8e nedan.

13 ( ˆ ) ( ±.45.7) ( ± 3.6) (.55,7.783) 8 t ( 3) b σ. ±.5 9 b Intervallet säger att snittpriset för varje ytterligare kvadratmeter vi vill ha, ligger (då antalet rum är givet) någonstans mellan 55 oh 7783 kronor. Detta är ett myket brett intervall men stikprovet är ju okså ganska litet.. 8d p-värdet för test av H : β β är.5 %. Det verkar med andra ord inte troligt att nollhypotesen är sann. Därmed borde alltså åtminstone någon av X-variablerna gör åtminstone någon nytta i modellen. 8e Om X finns i modellen har testet av H : β ett p-värde som är 5. %. Om vi aepterar en felrisk på högst α 5 %, kan vi alltså inte utesluta att X inte behövs i modellen. Det skulle med andra ord vara möjligt att det ganska förvånande värdet på regressionskoeffiienten i 8b, b 3. 3, bara har orsakats av ren slump. 8f Jämför t.e. σˆ i de två modellerna (vilket är ekvivalent med att jämföra R adj ). Man bör okså väga in kompleiteten hos modellerna. Vid multikollinearitet kan vi få konstiga regressionskoeffiienter oh breda konfidensintervall för dessa (men själva skattningarna Y ˆ( X, X ) kan ändå vara bra), se ovan. Med en enda X-variabel kan vi enkelt illustrera samband oh spridning i en graf.

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Forsknings- och undersökningsmetodik Skrivtid: 4h

Forsknings- och undersökningsmetodik Skrivtid: 4h Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2011-03-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Erland

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

TENTAMEN I STATISTIK B,

TENTAMEN I STATISTIK B, 732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!! Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-09-19 kl. 09:00 13:00

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 4 april 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan.

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan. Matematisk statistik Tentamen: 28 5 27 kl 8 13 FMS 32 Matematisk statistik AK för V och L, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter

Läs mer

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-11-16 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.

Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka. y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann

Läs mer

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14

Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14 STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Handelshögskolan i Stockholm Anders Sjöqvist 2087@student.hhs.se Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Efter förra kursen hörde några av sig och ville gärna se mina aktivitetsuppgifter

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl

TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl ; Örebro universitet Handelshögskolan, statistik Statistik A, Grundläggande statistik TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl 08.15-13.15 Hjälpmedel: Miniräknare, ett A4-papper med egna anteckningar, tabell-

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A Deltentamen, 4p november 004, kl. 09.00-.00 Tillåtna hjälpmedel: Bifogad formel- och

Läs mer